姜義圣,許執(zhí)恒
腦發(fā)育疾病及發(fā)病機(jī)制
姜義圣,許執(zhí)恒
中國(guó)科學(xué)院遺傳與發(fā)育生物學(xué)研究所發(fā)育生物學(xué)研究中心,北京 100101
大腦發(fā)育是一個(gè)極其復(fù)雜又被精確調(diào)控的過(guò)程,主要包括神經(jīng)前體細(xì)胞增殖和分化、神經(jīng)元遷移和形態(tài)發(fā)生(包括軸、樹(shù)突發(fā)育)、突觸形成與修剪、軸突髓鞘化、神經(jīng)網(wǎng)絡(luò)的形成與重塑等過(guò)程,最終形成功能完善的神經(jīng)系統(tǒng)。其中的任何過(guò)程出現(xiàn)問(wèn)題都有可能導(dǎo)致大腦發(fā)育異常,造成大腦功能障礙,即腦發(fā)育疾病。兒童腦發(fā)育疾病在醫(yī)療總負(fù)擔(dān)中占比最高,因此被廣泛關(guān)注。腦發(fā)育疾病通常被劃分為兩類:一類以大腦形態(tài)結(jié)構(gòu)異常為指標(biāo),即大腦皮層發(fā)育畸形(malformation of cortical development, MCD);另一類以大腦功能障礙為指標(biāo),即神經(jīng)精神疾病(neuropsychopathy)。大腦皮層發(fā)育畸形中的小顱畸形(microcephaly)和神經(jīng)精神疾病中的孤獨(dú)癥譜系障礙(autism spectrum disorder, ASD)這兩種疾病具有許多共同之處,例如小顱畸形致病基因的突變高頻地出現(xiàn)在ASD病人中。本文針對(duì)這兩類具有代表性的腦發(fā)育疾病,從癥狀、病因、機(jī)制和相關(guān)基因等方面展開(kāi)介紹,以期為疾病的基礎(chǔ)研究和治療提供理論指導(dǎo)。
腦發(fā)育疾?。恍★B畸形;孤獨(dú)癥;致病基因
人類胚胎中樞神經(jīng)系統(tǒng)的建立始于受精后的第22天,此時(shí)神經(jīng)管開(kāi)始形成[1]。隨著發(fā)育的進(jìn)行,神經(jīng)管前部膨大形成“腦泡”,進(jìn)而發(fā)育成大腦。在胚胎發(fā)育早期,位于腦泡內(nèi)層——室管膜層(ventri-cular zone, VZ)的神經(jīng)干(前體)細(xì)胞(neural precursor cells, NPCs)大量增殖,新生成的細(xì)胞一部分保持著增殖分化的能力,逐漸形成亞室管膜層(subventricular zone, SVZ),另一部分分化成不成熟的神經(jīng)元,并沿著位于VZ區(qū)的放射狀膠質(zhì)細(xì)胞(radial glial cell)提供的輻射狀突起向外遷徙,從內(nèi)到外逐漸構(gòu)成各層大腦皮層并形成成熟的神經(jīng)元和神經(jīng)網(wǎng)絡(luò)[2]。即使出生后,大腦依舊會(huì)經(jīng)歷著巨大的改變。神經(jīng)元軸突髓鞘化和突觸發(fā)生貫穿著整個(gè)生命早期,大腦的重塑一直會(huì)持續(xù)到成年(圖1)[3]。
人類大腦發(fā)育是一個(gè)極其復(fù)雜的過(guò)程,大約有1/3的基因在大腦發(fā)育過(guò)程中表達(dá),并被精確調(diào)控[3]。任何發(fā)育過(guò)程出現(xiàn)錯(cuò)誤都有可能引起發(fā)育異常,從而導(dǎo)致腦發(fā)育疾病[4]。根據(jù)側(cè)重點(diǎn)不同,腦發(fā)育疾病通常被劃分為兩類:一類是大腦整體結(jié)構(gòu)出現(xiàn)明顯異常,以形態(tài)改變?yōu)橹饕卣?,即大腦皮層發(fā)育畸形(malformation of cortical development, MCD);另一類側(cè)重大腦的功能障礙,以智力、言語(yǔ)、社交等高級(jí)認(rèn)知和精神活動(dòng)異常為指標(biāo),即神經(jīng)精神疾病(neuropsychopathy)。大腦皮層發(fā)育畸形中的小顱畸形(microcephaly)和神經(jīng)精神疾病中的孤獨(dú)癥譜系障礙(autism spectrum disorder, ASD)具有許多共同之處。比如,大多數(shù)小顱畸形和ASD患兒都智力低下,許多小顱畸形患兒有孤獨(dú)癥行為,>15%孤獨(dú)癥患兒有小顱畸形,許多小顱畸形基因突變可能與孤獨(dú)癥相關(guān)[5]。因此,本文主要以小顱畸形和ASD為例,對(duì)兩類腦發(fā)育疾病的發(fā)病原因和機(jī)制展開(kāi)介紹,以期為疾病的基礎(chǔ)研究和治療提供理論指導(dǎo)。
神經(jīng)干細(xì)胞通過(guò)增殖和分化生成不成熟神經(jīng)元。之后不成熟神經(jīng)元發(fā)生一系列的形態(tài)變化,包括神經(jīng)元軸突和樹(shù)突發(fā)育、軸突髓鞘化和樹(shù)突棘發(fā)生等,逐漸成為成熟的神經(jīng)元。神經(jīng)元之間通過(guò)軸突末梢和樹(shù)突棘兩者共同形成的突觸相互聯(lián)系,構(gòu)成復(fù)雜的神經(jīng)網(wǎng)絡(luò)。
大腦皮層發(fā)育畸形是一類由遺傳、感染和供血異常等因素引起的腦發(fā)育異常疾病,并且常伴隨著其他神經(jīng)系統(tǒng)疾病,表現(xiàn)為發(fā)育遲緩、智力障礙、癲癇和運(yùn)動(dòng)障礙等癥狀[6]。目前已經(jīng)有幾百個(gè)基因被報(bào)道與MCD相關(guān)[4]。根據(jù)受影響的起始發(fā)育過(guò)程的不同,MCD主要被分為3類:(1)神經(jīng)干細(xì)胞增殖異常,如小顱畸形(microcephaly)、巨腦癥(megalen-cephaly)等;(2)神經(jīng)元遷移異常,如室旁結(jié)節(jié)性異位(periventricular nodular heterotopia)、無(wú)腦回畸形(lissencephaly)、鵝卵石腦畸形(cobblestone brain malformation)等;(3)神經(jīng)元遷移后腦區(qū)的構(gòu)建和連接異常,如多小腦回(polymicrogyria)、局灶性皮質(zhì)發(fā)育不良(focal cortical dysplasias)等[4,6]。但隨著對(duì)致病基因及其參與的信號(hào)通路的研究不斷深入,這3類MCD的界限逐漸被模糊。例如、和等基因的突變可以同時(shí)影響多個(gè)發(fā)育過(guò)程,造成多種大腦皮層發(fā)育畸形[4]。因此,這些不同類型的畸形往往不是獨(dú)立發(fā)生的。
小顱畸形在臨床上表現(xiàn)為新生兒的頭圍與同性別、年齡和種族的孩子比,低于平均值2個(gè)及以上標(biāo)準(zhǔn)差,而嚴(yán)重的小顱畸形則低于平均值3個(gè)標(biāo)準(zhǔn)差(圖2)[7,8]。小顱畸形患者通常伴隨著不同程度的其他癥狀,如智力低下、癲癇、發(fā)育遲緩(語(yǔ)言、站立、行走等)、聽(tīng)力缺失等。嚴(yán)重的小顱畸形會(huì)造成流產(chǎn)或危及生命。小顱畸形的發(fā)病率并不高,據(jù)統(tǒng)計(jì)美國(guó)每10 000個(gè)新生兒中有2~12個(gè)患有小顱畸形,但在臨床上目前還沒(méi)有有效的治療手段[9]。
常染色體隱性遺傳小顱畸形(autosomal reces-sive primary microcephaly, MCPH)是一種由單個(gè)基因隱性突變引起的罕見(jiàn)疾病,主要發(fā)生在近親結(jié)婚的人群中,新生兒發(fā)病比例為1∶30000~1∶250000[7]。MCPH病人有不同程度的智力發(fā)育遲緩,但與某些疾病如無(wú)腦回畸形或Taybi-Linder綜合征引起的小顱畸形不同,大多數(shù)MCPH患者的整個(gè)腦的結(jié)構(gòu)是完整的,改變的只是腦的體積[4,8]。腦的體積減小在某些條件下會(huì)伴隨著個(gè)體整體生長(zhǎng)缺陷,如布盧姆綜合征(Bloom syndrome)和小顱畸形骨發(fā)育不良先天性侏儒Ⅱ型(MOPD-Ⅱ)[7,8]。嚴(yán)重的小顱畸形也發(fā)生在塞克爾綜合征(Seckel syndrome)中[8]。然而,并不是所有小顱畸形患者的大腦功能都存在異常,有些患者除了頭小外一切正常[1]。
圖2 小顱畸形
患有小顱畸形和嚴(yán)重小顱畸形的兒童與正常兒童相比,頭圍明顯減小。圖片來(lái)源于美國(guó)疾病控制和預(yù)防中心(Centers for Disease Control and Prevention, CDC)。
1.1.1 小顱畸形的成因及發(fā)病機(jī)制
目前大部分小顱畸形患者的病因尚不明確,但一般認(rèn)為遺傳因素和環(huán)境因素導(dǎo)致了該疾病發(fā)生。就遺傳因素而言,目前已有大量的小顱畸形相關(guān)基因被報(bào)道。在腦發(fā)育的起始階段,神經(jīng)干細(xì)胞會(huì)通過(guò)自我更新的對(duì)稱分裂產(chǎn)生足夠多的細(xì)胞作為“庫(kù)存”以滿足后續(xù)的神經(jīng)發(fā)生。在小顱畸形患病家族中發(fā)現(xiàn)的突變基因,多數(shù)參與有絲分裂器的裝配,或者直接編碼中心體或紡錘體極蛋白[8]??梢酝茰y(cè)這些基因的突變是影響了神經(jīng)干細(xì)胞的增殖。某些MCPH相關(guān)基因突變已被證實(shí)會(huì)影響神經(jīng)前體細(xì)胞的細(xì)胞周期,導(dǎo)致其過(guò)早分化[10,11]。
除了基因突變之外,孕期風(fēng)險(xiǎn)因素的暴露也是小顱畸形的成因,包括:感染,如弓形蟲(chóng)、風(fēng)疹病毒、巨細(xì)胞病毒、單純皰疹病毒(herpes simplex virus, HSV)、寨卡病毒(Zika virus, ZIKV)等[1];嚴(yán)重的營(yíng)養(yǎng)不良;有害物質(zhì)的暴露,如酒精、藥物等;胎兒大腦供血中斷等。
1.1.2 ZIKV感染導(dǎo)致小顱畸形
2015~2016年,一種蟲(chóng)媒病毒——ZIKV在美洲和熱帶地區(qū)的暴發(fā)流行以及先天感染ZIKV與新生兒患小顱畸形之間的關(guān)聯(lián)引發(fā)了全球關(guān)注[12]。ZIKV屬于黃病毒科、黃病毒屬,單股正鏈RNA病毒,主要由伊蚊叮咬傳播,其他傳播方式包括母嬰傳播、性傳播、接觸傳播等[12~14]。
研究表明,孕婦感染ZIKV后,病毒可以通過(guò)胎盤屏障傳播給胎兒,進(jìn)入胎兒大腦并首先特異性地感染神經(jīng)干細(xì)胞,引起神經(jīng)干細(xì)胞增殖分化減少,隨后感染新生神經(jīng)元并造成其大量凋亡,最終導(dǎo)致小顱畸形[15~17]。ZIKV除了能感染中樞神經(jīng)系統(tǒng)外,同時(shí)也能感染外周神經(jīng)系統(tǒng),引起外周神經(jīng)元死亡[18]。除了神經(jīng)元,神經(jīng)膠質(zhì)細(xì)胞在大腦發(fā)育過(guò)程中也起著重要的作用。在哺乳動(dòng)物大腦中,約有50%~90%的細(xì)胞是由除神經(jīng)元以外的膠質(zhì)細(xì)胞構(gòu)成[19]。本課題組研究發(fā)現(xiàn)ZIKV也能感染膠質(zhì)前體細(xì)胞,抑制少突膠質(zhì)細(xì)胞前體細(xì)胞(oligodendro-cyte precursor cells, OPCs)的增殖和分化,阻礙少突膠質(zhì)細(xì)胞的形成和髓鞘化[20]。
ZIKV感染導(dǎo)致小顱畸形的分子機(jī)制十分復(fù)雜。本課題組通過(guò)對(duì)不同時(shí)期ZIKV感染的小鼠()模型大腦進(jìn)行轉(zhuǎn)錄組分析,結(jié)果表明ZIKV感染神經(jīng)干細(xì)胞后,能導(dǎo)致多個(gè)MCPH基因(、、、和等)表達(dá)量明顯下調(diào)[16,21]。一些在大腦發(fā)育過(guò)程中起重要調(diào)節(jié)作用的miRNA的表達(dá)也發(fā)生了變化。ZIKV感染小鼠胚胎大腦皮層后會(huì)導(dǎo)致miR-9上調(diào),導(dǎo)致膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子基因表達(dá)下調(diào)。在小鼠大腦中上調(diào)miR-9可以引起神經(jīng)前體細(xì)胞凋亡,抑制神經(jīng)發(fā)生,最終導(dǎo)致小顱畸形,而膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子作為miR-9的目標(biāo)分子,可以拮抗miR-9引起的神經(jīng)前體細(xì)胞凋亡[22]。有證據(jù)表明,ZIKV非結(jié)構(gòu)蛋白NS4A、NS4B和NS2A能抑制神經(jīng)前體細(xì)胞增殖,其中NS2A能與細(xì)胞的多種黏著復(fù)合體成員相互作用,使細(xì)胞黏著復(fù)合體降解,導(dǎo)致放射狀膠質(zhì)細(xì)胞(RGCs)增殖減少,提前分化[23,24]。而位于病毒前膜 蛋白(prM)上的S139N突變能顯著增強(qiáng)ZIKV的毒性[25],這個(gè)發(fā)現(xiàn)可以很好地解釋為什么ZIKV委內(nèi)瑞拉株(VEN/2016)比柬埔寨株(CAM/2010)具有更強(qiáng)的神經(jīng)毒性,造成更嚴(yán)重的小顱畸形表型[25,26]。全基因組表達(dá)分析和功能驗(yàn)證進(jìn)一步證實(shí),ZIKV在大腦發(fā)育的早期和晚期階段分別更傾向于靶向NPCs和OPCs,并激活先天免疫反應(yīng),這導(dǎo)致與細(xì)胞周期、神經(jīng)發(fā)生、少突膠質(zhì)細(xì)胞生成和細(xì)胞凋亡相關(guān)的基因網(wǎng)絡(luò)失調(diào),細(xì)胞死亡增加,細(xì)胞周期進(jìn)展中斷,NPCs與OPCs過(guò)早分化和增殖減少[27]。另一方面,ZIKV感染神經(jīng)膠質(zhì)細(xì)胞,包括星形膠質(zhì)細(xì)胞(astr-ocyte)和小膠質(zhì)細(xì)胞(microglial cell),導(dǎo)致它們的激活,造成強(qiáng)烈的免疫反應(yīng)(炎癥),并分泌大量的免疫因子[27]。免疫因子作用于NPCs、OPCs、神經(jīng)元和少突膠質(zhì)細(xì)胞,導(dǎo)致神經(jīng)發(fā)生受損,阻礙神經(jīng)膠質(zhì)細(xì)胞生成(特別是少突膠質(zhì)細(xì)胞生成)和神經(jīng)元髓鞘形成,并伴有大量神經(jīng)元死亡,從而損害大腦發(fā)育并導(dǎo)致先天性寨卡綜合征(congenital Zika syndrome, CZS),包括小顱畸形和其他嚴(yán)重的先天性神經(jīng)系統(tǒng)并發(fā)癥。
針對(duì)ZIKV感染引發(fā)的小顱畸形的治療方法一直在不斷嘗試和改進(jìn)。在小鼠模型中研究發(fā)現(xiàn),小分子化合物25-羥基膽固醇(25-HC)、氯喹(CQ)[28,29],人感染ZIKV后的恢復(fù)期血清[30],人源性單克隆抗體ZK2B10等[31],以及ZIKV包膜蛋白(E)肽段制成的疫苗E90[32],均能很好地預(yù)防ZIKV的感染,減輕小顱畸形表型。但對(duì)感染后期的胎鼠,治療效果卻并不理想。
1.1.3 小顱畸形的相關(guān)基因及其功能
迄今為止已發(fā)現(xiàn)至少25個(gè)基因的突變會(huì)導(dǎo)致MCPH,根據(jù)它們發(fā)現(xiàn)的順序分別命名為~,這些基因在各物種間高度保守[7,33]。其中13個(gè)基因(和)定位在中心體或紡錘體,參與中心體的形成或與有絲分裂器的功能相關(guān);有15個(gè)基因在細(xì)胞核有分布,其中6個(gè)基因()參與了染色質(zhì)或染色體的凝聚和重構(gòu)(圖3)??偟膩?lái)說(shuō),上述兩類基因均參與了有絲分裂過(guò)程。而由編碼紡錘體極蛋白的基因和的突變?cè)斐傻腗CPH最為常見(jiàn),分別占所有MCPH的68.6%和14.1%,其次是,占8%[7]。
Microcephalin ()是第一個(gè)被發(fā)現(xiàn)突變能導(dǎo)致MCPH的基因,屬于PTCB (protein with twin carboxyl-terminal BRCT domains)蛋白家族[34]。編碼一個(gè)DNA損傷應(yīng)答蛋白,能夠調(diào)控細(xì)胞周期G2/M檢查點(diǎn)激酶和同屬PTCB蛋白家族的的表達(dá),參與細(xì)胞內(nèi)DNA損傷響應(yīng)[33]。表達(dá)下調(diào)或突變,會(huì)導(dǎo)致和表達(dá)量下調(diào)和有絲分裂G2/M檢查點(diǎn)失效,進(jìn)而引發(fā)細(xì)胞癌變[34]。在有絲分裂過(guò)程中,MCPH1定位于中心體,其突變被認(rèn)為能導(dǎo)致神經(jīng)前體細(xì)胞分裂異常,從而造成小顱畸形[11]。
()全名為WD40結(jié)構(gòu)域重復(fù)蛋白62 (WD40-repeat protein 62),其隱性突變會(huì)造成大范圍嚴(yán)重的大腦功能異常,包括小顱畸形、癲癇 等[35]。本課題組研究發(fā)現(xiàn)在小鼠中WDR62能作為JNK信號(hào)通路上游的蛋白,調(diào)控神經(jīng)發(fā)生[10]。敲降或敲除能引起紡錘體裝配缺陷,導(dǎo)致有絲分裂阻滯,神經(jīng)前體細(xì)胞過(guò)早分化,并伴有細(xì)胞死亡[10]。進(jìn)一步研究發(fā)現(xiàn)WDR62能與MEKK3形成復(fù)合體激活JNK信號(hào)通路,調(diào)控神經(jīng)發(fā)生[35]。而JNK1激活后又能磷酸化WDR62的T1053位點(diǎn),從而招募FBW7降解WDR62[36]。這些研究發(fā)現(xiàn)促進(jìn)了突變引發(fā)小顱畸形的致病機(jī)制研究。
圖3 MCPH基因的功能歸類
25個(gè)MCPH基因的功能歸類網(wǎng)絡(luò)圖。黃色方形:功能類別;灰色橢圓:基因。基因功能類別信息來(lái)自京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes, KEGG)數(shù)據(jù)庫(kù)。亞細(xì)胞定位信息來(lái)自小鼠基因組信息(Mouse Genome Informatics, MGI)數(shù)據(jù)庫(kù)。
()也參與了紡錘體的形成和定向,在有絲分裂過(guò)程中發(fā)揮作用。研究發(fā)現(xiàn),突變能引起小鼠輕度的小顱畸形,但并沒(méi)有明顯地造成神經(jīng)細(xì)胞的凋亡,這暗示了能影響神經(jīng)前體細(xì)胞的增殖。在大腦發(fā)育過(guò)程中,能正向調(diào)控Wnt信號(hào)通路,參與神經(jīng)發(fā)生和神經(jīng)元的遷移過(guò)程。在小鼠中,敲降能導(dǎo)致Wnt信號(hào)通路調(diào)控的基因轉(zhuǎn)錄減少,而表達(dá)穩(wěn)定的β-catenin能挽救其表型[37]。在雪貂()的大腦中,敲除能導(dǎo)致其嚴(yán)重的小顱畸形表型(大腦重量最多能減少近40%)[38]。研究人員發(fā)現(xiàn)能調(diào)控室管膜層放射狀膠質(zhì)細(xì)胞(ventricular radial glial cells, VRGs)向亞室管膜層外側(cè)放射狀膠質(zhì)細(xì)胞(outer radial glial cells, ORGs)轉(zhuǎn)化發(fā)生的時(shí)期。敲除導(dǎo)致增殖能力強(qiáng)的VRGs過(guò)早地向增殖能力弱的ORGs轉(zhuǎn)化。ORGs對(duì)于雪貂和靈長(zhǎng)類等有腦回動(dòng)物大腦皮層的擴(kuò)張至關(guān)重要,而這群細(xì)胞在小鼠皮層發(fā)育過(guò)程中幾乎是缺失的[38]。這就解釋了為什么人類和雪貂大腦的缺失導(dǎo)致的小顱畸形表型比小鼠嚴(yán)重的多。
除了上述已經(jīng)命名的基因,還有其他基因突變也與小顱畸形相關(guān),如[39]、編碼細(xì)胞骨架蛋白的和[40]、編碼Rho家族小GTP酶蛋白的[41]等。
1.2.1 塞克爾綜合征(Seckel syndrome)
塞克爾綜合征又稱為小顱畸形侏儒Ⅰ型(micro-cephalic dwarfism type Ⅰ),與MCPH類似,也是一種常染色體隱性遺傳病,表現(xiàn)為小顱畸形、智力缺陷、身材矮小,面部、牙齒和骨骼畸形。目前發(fā)現(xiàn)至少有9個(gè)基因(、、、、、、、和,其中后4個(gè)基因與MCPH相關(guān))的隱性突變能導(dǎo)致塞克爾綜合征[7,42]。是第一個(gè)被發(fā)現(xiàn)的塞克爾綜合征基因,編碼一種絲氨酸/蘇氨酸蛋白激酶,主要參與DNA損傷應(yīng)答的信號(hào)通路,對(duì)有絲分裂過(guò)程中DNA的正常復(fù)制起著重要作用[43]。除此之外,還參與了細(xì)胞纖毛(cilia)的形成,敲除能導(dǎo)致纖毛長(zhǎng)度變短,對(duì)依賴?yán)w毛的信號(hào)通路(如生長(zhǎng)因子信號(hào)通路和Sonic hedgehog信號(hào)通路)的功能造成嚴(yán)重的影響[42]。因此,塞克爾綜合征可能是一種由胚胎發(fā)育過(guò)程中依賴?yán)w毛的信號(hào)通路功能異常引起的生長(zhǎng)發(fā)育異常疾病。
1.2.2 小顱畸形骨發(fā)育不良先天性侏儒Ⅱ型(microcephalic osteodysplastic primordial dwarfism type Ⅱ, MOPD-Ⅱ)
MOPD-Ⅱ是由中心粒周蛋白基因突變引起的一種常染色體隱性遺傳病,其造成的生長(zhǎng)缺陷在懷孕早期(12~14周)就能夠被超聲檢測(cè)觀察到,隨后缺陷逐漸加重,病人表現(xiàn)為小顱畸形、智力和運(yùn)動(dòng)障礙、身材矮小、四肢異常短小、手指彎曲或短小、牙齒異常并對(duì)胰島素耐受[7,44~46]。PCNT是中心粒外周物質(zhì)中一種主要的支架蛋白,在有絲分裂過(guò)程中,PCNT被PLK1磷酸化后能將多種調(diào)控蛋白和結(jié)構(gòu)蛋白招募到中心體上,幫助形成紡錘體。在細(xì)胞退出有絲分裂過(guò)程中,磷酸化的PCNT被分離酶切割,中心體的兩個(gè)中心粒相互分離,為下一次有絲分裂做準(zhǔn)備[47,48]。缺失PCNT,細(xì)胞在有絲分裂時(shí)中心粒會(huì)過(guò)早分離和復(fù)制,但是這些中心粒無(wú)法形成中心體,導(dǎo)致細(xì)胞無(wú)法形成正常的雙極紡錘體,有絲分裂不能正常進(jìn)行[47]。PCNT還與MCPH1、CDK5RAP2等多種MCPH蛋白互作,這可能也是為什么MOPD-Ⅱ與MCPH有很多共同之處[7]。
相比于大腦皮層發(fā)育畸形,神經(jīng)精神疾病的發(fā)生更為復(fù)雜,以至于人們無(wú)法單一地采用大腦結(jié)構(gòu)缺陷特征來(lái)分類,而是通過(guò)不同功能障礙組合的方式來(lái)區(qū)分。兒童期常見(jiàn)的精神障礙有孤獨(dú)癥譜系障礙、注意缺陷多動(dòng)障礙(attention deficit hyperac-tivity disorder, ADHD)、智力障礙(intellectual disabi-lity, ID)、Rett綜合征(Rett syndrome,RTT)、脆性X染色體綜合征(fragile X syndrome,F(xiàn)XS)、結(jié)節(jié)性硬化綜合征(tuberous sclerosis complex,TSC)等。
ASD是根據(jù)典型孤獨(dú)癥即自閉癥(autism)的核心癥狀進(jìn)行擴(kuò)展而定義的廣義孤獨(dú)癥,患者主要表現(xiàn)為認(rèn)知障礙、社交和交流能力缺陷和重復(fù)刻板行為,是一種復(fù)雜的神經(jīng)心理(neuropsychological)和行為缺陷。據(jù)CDC統(tǒng)計(jì),在8歲的兒童中ASD的發(fā)病率從2012年的1/110上升到2014年的1/59[49,50],而男性與女性的比率大約為5∶1[49]。
大部分ASD患者在出生后1.5~2年表現(xiàn)出臨床癥狀,包括睡眠障礙、情緒低落和焦慮等[51]。在這個(gè)年齡段,相對(duì)于其他癥狀,睡眠障礙的表現(xiàn)最為突出,因此很多兒童起初是因?yàn)樗邌?wèn)題而被確診為ASD。此外,ASD的某些癥狀在男孩和女孩上也有差別,男孩更多地表現(xiàn)為攻擊性、高度活躍和重復(fù)刻板行為,而女孩則更多表現(xiàn)為焦慮、情緒低落和智力低下[52]。而另一些病人在出生的2~3年內(nèi)各項(xiàng)發(fā)育顯示基本正常,但之后認(rèn)知、社交、交流以及自理能力逐漸退化,例如語(yǔ)言交流能力的喪失[53]。有趣的是,大約10%的ASD患者在某一方面,比如觀察、藝術(shù)、計(jì)算或者學(xué)習(xí)記憶方面有著超乎常人的能力,因此這類情況也被稱為“學(xué)者綜合征”[49]。同時(shí)研究表明大約25%~30%的ASD兒童患有癲癇,且癲癇發(fā)作的頻率比一般患者更高[49,54]。同時(shí),約30%的癲癇患者也被診斷出ASD[54]。
此外,多種疾病也會(huì)在不同程度上表現(xiàn)出ASD的相關(guān)癥狀,例如由突變引起的Rett綜合征,由或突變引起的結(jié)節(jié)性硬化綜合征(tuberous sclerosis complex, TSC),由突變引起的脆性X染色體綜合征等[3]。
2.1.1 ASD的成因及發(fā)病機(jī)制
ASD的成因復(fù)雜,有高度的遺傳性。研究發(fā)現(xiàn)同卵雙胞胎有一個(gè)兒童患有ASD,則另一個(gè)患ASD的概率高達(dá)36%~95%[50]。在過(guò)去的幾十年中,外顯子組測(cè)序和全基因組關(guān)聯(lián)分析(genome-wide associ-ation study, GWAS)在鑒定ASD風(fēng)險(xiǎn)基因上發(fā)揮了重要的作用,包括新生突變(mutations)、遺傳變異(inherited variants)、拷貝數(shù)變異(copy number variants)和基因組結(jié)構(gòu)變異(genomic structural varia-nts)[5,55,56]。據(jù)估計(jì),大約有1000個(gè)基因的突變可能與ASD相關(guān)[3,55]。這些基因往往在一個(gè)復(fù)雜的基因調(diào)控網(wǎng)絡(luò)中共同發(fā)揮作用,而由單一基因突變引發(fā)的ASD比例不超過(guò)5%。
除了遺傳因素以外,ASD的發(fā)生同時(shí)還可能受到發(fā)育早期諸多環(huán)境因素的影響,如汞污染、輻射污染和有毒氣體污染等[49]。孕婦產(chǎn)前感染(免疫 反應(yīng))、糖尿病、缺鋅、孕期及圍產(chǎn)期的心理壓力、藥物使用、毒素暴露等也是導(dǎo)致ASD的高風(fēng)險(xiǎn)因素[57]。這些環(huán)境風(fēng)險(xiǎn)因素通過(guò)增強(qiáng)已存在的遺傳易感性,從而增加了ASD發(fā)生的危險(xiǎn)性。不同的環(huán)境因素對(duì)個(gè)體不同遺傳背景產(chǎn)生的易感性的作用是不同的,這可能是ASD患者表現(xiàn)出的癥狀不盡相同的原因。
關(guān)于ASD的發(fā)病機(jī)制,目前還沒(méi)有統(tǒng)一的定論。目前大多數(shù)ASD相關(guān)基因被發(fā)現(xiàn)參與了神經(jīng)元細(xì)胞骨架的形成、神經(jīng)元軸突的投射和突觸的形成[58],而這些生物學(xué)過(guò)程最終決定著大腦的結(jié)構(gòu)和神經(jīng)環(huán)路的連接。神經(jīng)影像學(xué)研究發(fā)現(xiàn)ASD兒童大腦的內(nèi)部連接存在異常[59,60],前額葉和顳葉區(qū)域的神經(jīng)元與其他腦區(qū)的功能性連接減少[61]。大腦胼胝體(cor-pus callosum)發(fā)育不全在ASD患者中也被發(fā)現(xiàn)[62,63],胼胝體是連接著大腦左右半球神經(jīng)纖維,在大腦半球之間的感覺(jué)、運(yùn)動(dòng)和意識(shí)信息的傳遞方面起著重要作用。除了不同腦區(qū)功能性連接異常外,神經(jīng)元興奮性-抑制性平衡(excitatory/inhibitory balance)受影響也被認(rèn)為是ASD發(fā)病的可能原因[3,54]。
2.1.2 ASD的相關(guān)基因及其功能
與ASD相關(guān)的基因種類繁多,同一個(gè)基因往往參與大腦發(fā)育的多個(gè)過(guò)程,在不同的信號(hào)途徑和生物學(xué)過(guò)程中發(fā)揮作用,這也是為什么ASD常伴隨著其他綜合征發(fā)生的原因之一。2016年,Caitlin等[54]總結(jié)了ASD相關(guān)基因,根據(jù)它們的功能分成了細(xì)胞核信號(hào)傳遞(signaling to the nucleus)、局部調(diào)控(local regulation)、感受器(sensors)、興奮性–抑制性協(xié)調(diào)(E:I coordination)、結(jié)構(gòu)組成(structural)和發(fā)育(dev-elopment)等6大類,并給出了每個(gè)基因的可信度評(píng)級(jí)。圖4選取了可信度評(píng)級(jí)最高的44個(gè)基因,可以看到它們主要涉及兩個(gè)方面的功能:一個(gè)是定位于細(xì)胞核,參與DNA和組蛋白的修飾、轉(zhuǎn)錄調(diào)控和染色質(zhì)重塑過(guò)程;另一個(gè)是定位于突觸,在神經(jīng)遞質(zhì)受體和離子通道發(fā)揮正常功能和突觸結(jié)構(gòu)形成上起重要作用[64]。下面以定位于細(xì)胞核內(nèi)的DNA結(jié)合蛋白基因、定位于突觸后膜的支架蛋白基因和細(xì)胞膜蛋白基因?yàn)槔?,介紹這些基因的突變導(dǎo)致ASD的可能機(jī)制。
(chromodomain helicase DNA binding protein 8)是ASD基因組研究中最常見(jiàn)的相關(guān)基因之一[5,65~67]。屬于染色質(zhì)解旋酶DNA結(jié)合蛋白家族,是ATP依賴的染色質(zhì)重塑因子,在染色質(zhì)動(dòng)態(tài)性、轉(zhuǎn)錄和細(xì)胞存活方面發(fā)揮重要作用[68]。參與調(diào)控Wnt-β-catenin信號(hào)通路。的單倍劑量不足能導(dǎo)致基因過(guò)度激活,從而抑制多種神經(jīng)相關(guān)基因的表達(dá)[69]。在小鼠中敲降能導(dǎo)致神經(jīng)元遷移延遲,神經(jīng)元樹(shù)突復(fù)雜性降低,同時(shí)小鼠表現(xiàn)出ASD表型[68,69]。除此之外,的單倍劑量不足或功能缺失還與發(fā)育延遲、智力障礙、腸胃障礙、睡眠障礙和巨頭畸形等疾病相關(guān)[70]。
圖4 ASD基因的功能歸類和亞細(xì)胞定位
A:44個(gè)高可信度的ASD基因的功能歸類網(wǎng)絡(luò)圖。黃色方形:功能類別;灰色橢圓:基因;B:44個(gè)高可信度的ASD基因的亞細(xì)胞定位分布圖。數(shù)字代表基因個(gè)數(shù)?;蛞訡aitlin等[54]總結(jié)的“High Confidence”和“Strong Candidate”的ASD基因?;虻哪茴悇e信息來(lái)自KEGG數(shù)據(jù)庫(kù),亞細(xì)胞定位信息來(lái)自MGI數(shù)據(jù)庫(kù)。
也被稱為,是SHANK蛋白家族的成員之一(另外兩個(gè)為和SHANK2,其中的功能缺失也與ASD高度相關(guān))。SHANK3是一種定位于興奮性突觸的突觸后致密區(qū)(PSD)的支架蛋白,能與PSD中的多種受體蛋白、信號(hào)分子、細(xì)胞骨架蛋白相互作用,調(diào)控樹(shù)突棘的形成和結(jié)構(gòu)[71]。有研究表明的單倍劑量不足能導(dǎo)致個(gè)體的語(yǔ)言和交流障礙,造成ASD[72~74]。不同形式的突變可能導(dǎo)致多種不同的神經(jīng)發(fā)育異常疾病,包括智力障礙、發(fā)育遲緩、精神分裂癥和Rett綜合征,而在1%的ASD患者中,該基因多種不同形式的突變被發(fā)現(xiàn)[74,75]。有研究組利用CRISPR/Cas9基因編輯技術(shù)通過(guò)干擾的表達(dá),在食蟹猴()中成功敲除了該基因,建立了缺失導(dǎo)致ASD的非人靈長(zhǎng)類動(dòng)物模型[73,75]。
(patched domain containing 1)定位于X染色體,編碼一個(gè)含有固醇敏感多肽區(qū)的12次跨膜蛋白,猜測(cè)其可能是一種Sonic hedgehog受體[49,66]。對(duì)ASD家系的研究發(fā)現(xiàn)了多個(gè)不同的基因片段的微缺失和無(wú)義突變。一項(xiàng)調(diào)查研究表明,在23個(gè)突變的個(gè)體中,超過(guò)40%的人體患有ASD或表現(xiàn)出ASD樣行為[76]。突變小鼠表現(xiàn)出注意障礙性多動(dòng)癥(attention-deficit hyperactivity disorder, ADHD)樣行為、強(qiáng)烈的攻擊性和條件恐懼反射缺陷,并且在抑制性神經(jīng)元中條件敲除也能表現(xiàn)出ADHD樣行為,這暗示了參與了神經(jīng)環(huán)路的興奮性–抑制性平衡[65]。在小鼠大腦的海馬齒狀回細(xì)胞中高表達(dá),敲除能導(dǎo)致海馬齒狀回興奮性–抑制性失衡,但對(duì)神經(jīng)元的突觸結(jié)構(gòu)和神經(jīng)前體細(xì)胞的增殖沒(méi)有明顯的影響[77]。
本課題組研究發(fā)現(xiàn)POSH蛋白家族成員也與ASD相關(guān)。2012年臺(tái)灣的一個(gè)研究小組在一位患有ASD男孩的5號(hào)染色體5q32的位置,發(fā)現(xiàn)一段遺傳自父親(有輕微ASD癥狀)的染色體微缺失,這段微缺失包含了13個(gè)已知基因,是其中之一[77]。我們實(shí)驗(yàn)室構(gòu)建了單拷貝缺失小鼠,該小鼠表現(xiàn)出明顯的社交互動(dòng)和交流障礙、重復(fù)刻板行為,并伴有多動(dòng)和癲癇等ASD癥狀。進(jìn)一步研究發(fā)現(xiàn),單拷貝缺失小鼠大腦海馬樹(shù)突棘發(fā)育存在缺陷,谷氨酸能受體亞基組成異常和興奮性突觸傳遞異常。值得注意的是,這些缺陷選擇性地發(fā)生在單側(cè)大腦,與臨床患兒功能磁共振結(jié)果相吻合,即ASD患兒存在左半球腦功能障礙。該研究首次證實(shí)單拷貝缺失是ASD的一種高風(fēng)險(xiǎn)因子,甚至是致病基因,其突變導(dǎo)致疾病的發(fā)病機(jī)制很可能是由于左腦半球突觸功能缺陷引起的[79]。
此外,在一項(xiàng)包含32個(gè)ASD中國(guó)患者的3人組GWSAs研究中,3個(gè)MCPH基因(、和)的罕見(jiàn)突變頻繁出現(xiàn)。而且在其中的14個(gè)患者中發(fā)現(xiàn)了另外12個(gè)小顱畸形相關(guān)基因的突變[5]。該結(jié)果提示,與小顱畸形等大腦皮層發(fā)育畸形疾病相關(guān)的調(diào)控網(wǎng)絡(luò)在ASD的發(fā)病機(jī)制上也可能發(fā)揮著重要作用。
2.2.1 Rett綜合征(Rett syndrome, RTT)
RTT是一種主要由(methyl CpG binding protein 2)突變引起的X染色體連鎖的大腦神經(jīng)發(fā)育疾病?;颊咧饕獮榕?,出生6~18個(gè)月后發(fā)育停滯,頭圍增長(zhǎng)緩慢,表現(xiàn)出嚴(yán)重的認(rèn)知和運(yùn)動(dòng)障礙,并伴有ASD樣行為[80]。臨床數(shù)據(jù)顯示突變有70%~80%的幾率導(dǎo)致RRT[81]。MECP2屬于甲基化結(jié)合結(jié)構(gòu)域(methyl binding domain, MBD)蛋白家族,編碼甲基化CpG的結(jié)合蛋白,在腦組織中廣泛表達(dá)[80]。在神經(jīng)細(xì)胞中,MECP2能通過(guò)與甲基化的DNA結(jié)合與各種轉(zhuǎn)錄調(diào)控因子相互作用,調(diào)控下游基因表達(dá)。在少突膠質(zhì)細(xì)胞中,MECP2能直接與髓鞘相關(guān)基因和的啟動(dòng)子區(qū)域結(jié)合,抑制其表達(dá)[82]。另外MECP2能直接與miRNA加工復(fù)合體成員DGCR8結(jié)合,抑制相關(guān)miRNA (這些miRNA的靶基因包括在神經(jīng)發(fā)育過(guò)程中起重要作用的、和等)的表達(dá)[83]。由此猜測(cè),突變導(dǎo)致原本受其調(diào)控的神經(jīng)發(fā)育相關(guān)基因的表達(dá)紊亂,進(jìn)而引發(fā)RTT。除了突變,、、和等基因的突變也與RTT相關(guān)[80,84]。
2.2.2 脆性X染色體綜合征(fragile X syndrome, FXS)
FXS是由基因(fragile X mental retardation 1)的功能缺失引起的一類最常見(jiàn)的遺傳性智力障礙疾病,主要表現(xiàn)為中度到重度的智力低下,同時(shí)表現(xiàn)出ASD的相關(guān)癥狀,如重復(fù)刻板行為,交流障礙和睡眠障礙,因此也常被列為ASD中的一種。編碼蛋白FMRP作為RNA結(jié)合蛋白,在功能上高度保守,在不同的組織中廣泛表達(dá),其中腦和生殖腺表達(dá)量最高[85]。FMRP能夠與大量的神經(jīng)發(fā)育、神經(jīng)元樹(shù)突及樹(shù)突棘構(gòu)建和突觸可塑性相關(guān)基因的mRNA直接結(jié)合并調(diào)控它們的細(xì)胞定位、穩(wěn)定性以及蛋白翻譯[86]。除了與mRNA結(jié)合, FMRP還能和小干擾RNA(small interfering RNA,siRNA)、miRNA、與Piwi蛋白相互作用的RNA(Piwi-interacting RNA,piRNA)以及長(zhǎng)鏈非編碼RNA(long non-coding RNA,LncRNA)這4類非編碼RNA結(jié)合,調(diào)控其功能[85]。有研究表明FMRP能與轉(zhuǎn)錄的長(zhǎng)鏈非編碼RNA(LncRNA)直接結(jié)合并負(fù)向調(diào)控其含量,而能夠特異性調(diào)控神經(jīng)元軸突發(fā)育[86]。目前關(guān)于突變導(dǎo)致FXS的發(fā)病機(jī)制仍然不清楚,有待進(jìn)一步研究。
2.2.3 結(jié)節(jié)性硬化綜合征(tuberous sclerosis co-mplex, TSC)
TSC是由或雜合突變引起的一種常染色體顯性遺傳的神經(jīng)皮膚綜合征,可發(fā)生在任何年齡,并且多個(gè)器官和系統(tǒng)受到影響[87,88]。通常該病在嬰幼兒和兒童時(shí)期得到確診,表現(xiàn)為皮膚損傷、癲癇和心臟、大腦、腎臟等器官出現(xiàn)錯(cuò)構(gòu)瘤。患者的長(zhǎng)時(shí)程記憶和工作記憶受損,有智力和認(rèn)知障礙,并且30%~40%的患者同時(shí)患有ASD[3]。和分別編碼錯(cuò)構(gòu)瘤蛋白(hamartin)和薯球蛋白(tuberin),在正常的組織器官中廣泛表達(dá)。TSC1和TSC2通過(guò)形成蛋白復(fù)合體,抑制參與調(diào)節(jié)細(xì)胞生長(zhǎng)、增殖和體積的mTOR信號(hào)通路[54]。該蛋白復(fù)合體中的一個(gè)蛋白發(fā)生突變,就可能導(dǎo)致mTOR信號(hào)通路過(guò)度激活,細(xì)胞增殖、分化和遷移紊亂,組織過(guò)度生長(zhǎng),引發(fā)TSC。因此,目前主要采用mTOR信號(hào)通路的抑制劑來(lái)治療TSC。
相對(duì)而言,兩類腦發(fā)育疾病中大腦皮層發(fā)育畸形比神經(jīng)精神疾病有更明顯的臨床癥狀,包括大腦形態(tài)的改變、大腦功能障礙、生長(zhǎng)發(fā)育遲緩甚至體形的改變。大腦皮層發(fā)育畸形的致病基因更多定位于細(xì)胞核和中心體,參與染色質(zhì)重塑、基因表達(dá)調(diào)控和有絲分裂等最為基本和重要的生物學(xué)過(guò)程。而神經(jīng)精神疾病的致病基因除了參與上述過(guò)程外,還有一類是定位于神經(jīng)元的突觸,與突觸形成、突觸可塑性、神經(jīng)遞質(zhì)受體和離子通道的功能相關(guān)。這也是為什么很多神經(jīng)精神疾病的患者大腦形態(tài)沒(méi)有明顯的改變。
因此,兩類腦發(fā)育疾病的劃分只是針對(duì)我們對(duì)疾病的認(rèn)識(shí)角度或?qū)用娌煌缘?,隨著對(duì)它們的認(rèn)識(shí)不斷加深,這樣的劃分也許并不合適。大腦形態(tài)結(jié)構(gòu)的改變勢(shì)必會(huì)影響其功能(除個(gè)別案例),而功能的異常則是以結(jié)構(gòu)形態(tài)的改變?yōu)榛A(chǔ)的,不論是在細(xì)胞水平、神經(jīng)環(huán)路水平,還是大腦整體結(jié)構(gòu)水平。認(rèn)識(shí)腦發(fā)育疾病,離不開(kāi)對(duì)大腦發(fā)育過(guò)程和各腦區(qū)和核團(tuán)功能的理解和解析。
近年來(lái),神經(jīng)科學(xué)領(lǐng)域發(fā)展迅速。隨著高通量測(cè)序技術(shù)的發(fā)展,特別是單細(xì)胞測(cè)序技術(shù)在神經(jīng)科學(xué)領(lǐng)域的應(yīng)用,極大的促進(jìn)了我們對(duì)大腦發(fā)育過(guò)程中神經(jīng)細(xì)胞的種類和功能的認(rèn)識(shí),同時(shí)高通量測(cè)序提供的基因表達(dá)圖譜能幫助我們理解眾多的神經(jīng)發(fā)育相關(guān)基因之間是如何協(xié)同合作、共同調(diào)控神經(jīng)發(fā)育的[89~91]?;诓《据d體的神經(jīng)環(huán)路示蹤技術(shù)可以高效地標(biāo)記腦區(qū)間的神經(jīng)投射,對(duì)大腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的解析提供了極大的便利。光遺傳(optogenetics)和化學(xué)遺傳(designer receptors exclusively activated by designer drugs, DREADDs)技術(shù)可以人為地激活或抑制特定的腦區(qū)和神經(jīng)環(huán)路,幫助人們?cè)谏窠?jīng)環(huán)路水平理解大腦是如何調(diào)控個(gè)體的學(xué)習(xí)、記憶、社交等行為。此外,各種離子和神經(jīng)遞質(zhì)的熒光探針的發(fā)明,如鈣離子熒光探針(GCaMP)、乙酰膽堿熒光探針、多巴胺熒光探針,結(jié)合活體成像技術(shù),可以實(shí)時(shí)地活體監(jiān)測(cè)個(gè)體大腦神經(jīng)元的活動(dòng),這為揭示腦發(fā)育疾病特別是神經(jīng)精神疾病的發(fā)病機(jī)制提供了新的途徑[92~94]。
目前針對(duì)這些大腦發(fā)育相關(guān)疾病,并沒(méi)有有效的治療手段。絕大多數(shù)與腦發(fā)育疾病相關(guān)的致病基因目前尚未明了或確認(rèn)。相關(guān)疾病基因操作動(dòng)物模型的構(gòu)建,是確認(rèn)致病基因并探究發(fā)病機(jī)制和治療手段所必需的。基因編輯技術(shù)的發(fā)展,極大地促進(jìn)了小鼠、大鼠()、家豬()和非人靈長(zhǎng)類動(dòng)物模型建立,為未來(lái)攻克腦發(fā)育疾病的難題(診斷和治療)提供了重要基礎(chǔ)[95]。
[1] Devakumar D, Bamford A, Ferreira MU, Broad J, Rosch RE, Groce N, Breuer J, Cardoso MA, Copp AJ, Alexandre P, Rodrigues LC, Abubakar I. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management., 2018, 18(1): e1–e13.
[2] Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration., 2007, 128(1): 29–43.
[3] Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders., 2019, 101(6): 1070–1088.
[4] Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes., 2014, 13(7): 710–726.
[5] Wu J, Yu P, Jin X, Xu X, Li J, Li Z, Wang M, Wang T, Wu X, Jiang Y, Cai W, Mei J, Min Q, Xu Q, Zhou B, Guo H, Wang P, Zhou W, Hu Z, Li Y, Cai T, Wang Y, Xia K, Jiang YH, Sun ZS. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing., 2018, 45(10): 527–538.
[6] Lerman-Sagie T, Leibovitz Z. Malformations of cortical development: from postnatal to fetal imaging., 2016, 43(5): 611–618.
[7] Zaqout S, Morris-Rosendahl D, Kaindl AM. Autosomal recessive primary microcephaly (MCPH): an update., 2017, 48(3): 135–142.
[8] Woods CG, Basto R. Microcephaly., 2014, 24(23): R1109–1111.
[9] Mahmood S, Ahmad W, Hassan MJ. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum., 2011, 6: 39.
[10] Xu D, Zhang F, Wang Y, Sun Y, Xu Z. Microcephaly- Associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex., 2014, 6(6): 1176–1177.
[11] Zhong X, Pfeifer GP, Xu X. Microcephalin encodes a centrosomal protein., 2006, 5(4): 457–458.
[12] Mlakar J, Korva M, Tul N, Popovi? M, Polj?ak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodu?ek V, Vizjak A, Pi?em J, Petrovec M, Av?i? ?upanc T. Zika virus associated with microcephaly., 2016, 374(10): 951–958.
[13] D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I. Evidence of sexual transmission of Zika virus., 2016, 374(22): 2195–2198.
[14] Deng YQ, Zhang NN, Li XF, Wang YQ, Tian M, Qiu YF, Fan JW, Hao JN, Huang XY, Dong HL, Fan H, Wang YG, Zhang FC, Tong YG, Xu Z, Qin CF. Intranasal infection and contact transmission of Zika virus in guinea pigs., 2017, 8(1): 1648.
[15] Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, Christian KM, Didier RA, Jin P, Song H, Ming GL. Zika virus infects human cortical neural progenitors and attenuates their growth., 2016, 18(5): 587–590.
[16] Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z. Zika virus disrupts neural progenitor development and leads to microcephaly in mice., 2016, 19(1): 120–126.
[17] Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, Araujo ESM, de Sequeira PC, de Mendon?a MCL, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RMR, Tanuri A, de Filippis AMB. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in brazil: a case study., 2016, 16(6): 653–660.
[18] Oh Y, Zhang F, Wang Y, Lee EM, Choi IY, Lim H, Mirakhori F, Li R, Huang L, Xu T, Wu H, Li C, Qin CF, Wen Z, Wu QF, Tang H, Xu Z, Jin P, Song H, Ming GL, Lee G. Zika virus directly infects peripheral neurons and induces cell death., 2017, 20(9): 1209–1212.
[19] Zuchero JB, Barres BA. Glia in mammalian development and disease., 2015, 142(22): 3805–3809.
[20] Li C, Wang Q, Jiang Y, Ye Q, Xu D, Gao F, Xu JW, Wang R, Zhu X, Shi L, Yu L, Zhang F, Guo W, Zhang L, Qin CF, Xu Z. Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice., 2018, 4: 43.
[21] Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, Cao WC, Qin CF, Luo ZG. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice., 2016, 26(6): 645–654.
[22] Zhang H, Chang Y, Zhang L, Kim SN, Otaegi G, Zhang Z, Nie Y, Mubarak T, Li C, Qin CF, Xu Z, Sun T. Upregulation of MicroRNA miR-9 is associated with microcephaly and Zika virus infection in mice., 2018, 56(6): 4072–4085.
[23] Yoon KJ, Song G, Qian X, Pan J, Xu D, Rho HS, Kim NS, Habela C, Zheng L, Jacob F, Zhang F, Lee EM, Huang WK, Ringeling FR, Vissers C, Li C, Yuan L, Kang K, Kim S, Yeo J, Cheng Y, Liu S, Wen Z, Qin CF, Wu Q, Christian KM, Tang H, Jin P, Xu Z, Qian J, Zhu H, Song H, Ming GL. Zika-Virus-Encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins., 2017, 21(3): 349–358.e6.
[24] Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV, Zhao Z, Jung JU. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy., 2016, 19(5): 663–671.
[25] Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, Ji X, Xu YP, Li G, Li C, Wang HJ, Deng YQ, Wu M, Cheng ML, Ye Q, Xie DY, Li XF, Wang X, Shi W, Hu B, Shi PY, Xu Z, Qin CF. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly., 2017, 358(6365): 933–936.
[26] Zhang F, Wang HJ, Wang Q, Liu ZY, Yuan L, Huang XY, Li G, Ye Q, Yang H, Shi L, Deng YQ, Qin CF, Xu Z. American strain of Zika virus causes more severe microcephaly than an old asian strain in neonatal mice., 2017, 25: 95–105.
[27] Xu D, Li C, Qin CF, Xu Z. Update on the animal models and underlying mechanisms for ZIKV-Induced microcephaly., 2019.
[28] Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P, Li XF, Ye Q, Tian M, Hong S, Fan J, Zhao H, Li L, Vishlaghi N, Buth JE, Au C, Liu Y, Lu N, Du P, Qin FX, Zhang B, Gong D, Dai X, Sun R, Novitch BG, Xu Z, Qin CF, Cheng G. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model., 2017, 46(3): 446–456.
[29] Li C, Zhu X, Ji X, Quanquin N, Deng YQ, Tian M, Aliyari R, Zuo X, Yuan L, Afridi SK, Li XF, Jung JU, Nielsen- Saines K, Qin FX, Qin CF, Xu Z, Cheng G. Chloroquine, a FDA-approved Drug, prevents zika virus infection and its associated congenital microcephaly in mice., 2017, 24: 189–194.
[30] Wang S, Hong S, Deng YQ, Ye Q, Zhao LZ, Zhang FC, Qin CF, Xu Z. Transfer of convalescent serum to pregnant mice prevents Zika virus infection and microcephaly in offspring., 2017, 27(1): 158–160.
[31] Li C, Gao F, Yu L, Wang R, Jiang Y, Shi X, Yin C, Tang X, Zhang F, Xu Z, Zhang L. A single injection of human neutralizing antibody protects against Zika virus infection and microcephaly in developing mouse embryos., 2018, 23(5): 1424–1434.
[32] Zhu X, Li C, Afridi SK, Zu S, Xu JW, Quanquin N, Yang H, Cheng G, Xu Z. E90 subunit vaccine protects mice from Zika virus infection and microcephaly., 2018, 6(1): 77.
[33] Wang YJ, Zhou XK, Xu D. Pathogenesis underlying autosomal recessive primary microcephaly., 2019, 40.王玉杰, 周小坤, 徐丹. 常染色體隱性遺傳小頭畸形致病機(jī)制解析. 遺傳, 2019, 40.
[34] Xu X, Lee J, Stern DF. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1., 2004, 279(33): 34091–34094.
[35] Bilgüvar K, Oztürk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizo?lu D, Tüysüz B, Ca?layan AO, G?kben S, Kaymak?alan H, Barak T, Bakircio?lu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Din?er A, Johnson MH, Bronen RA, Ko?er N, Per H, Mane S, Pamir MN, Yal?inkaya C, Kumanda? S, Top?u M, Ozmen M, Sestan N, Lifton RP, State MW, Günel M. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations., 2010, 467(7312): 207–210.
[36] Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J, Liu L, Yeap YYC, Zhang W, Zhang F, Feng Y, Ma T, Wang Y, Ng DCH, Niu X, Su B, Behrens A, Xu Z. MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis., 2018, 16(12): e2006613.
[37] Buchman JJ, Durak O, Tsai LH. ASPM regulates Wnt signaling pathway activity in the developing brain., 2011, 25(18): 1909–1914.
[38] Johnson MB, Sun X, Kodani A, Borges-Monroy R, Girskis KM, Ryu SC, Wang PP, Patel K, Gonzalez DM, Woo YM, Yan Z, Liang B, Smith RS, Chatterjee M, Coman D, Papademetris X, Staib LH, Hyder F, Mandeville JB, Grant PE, Im K, Kwak H, Engelhardt JF, Walsh CA, Bae BI. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size., 2018, 556(7701): 370–375.
[39] Marjanovi? M, Sánchez-Huertas C, Terré B, Gómez R, Scheel JF, Pacheco S, Knobel PA, Martínez-Marchal A, Aivio S, Palenzuela L, Wolfrum U, McKinnon PJ, Suja JA, Roig I, Costanzo V, Lüders J, Stracker TH. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination., 2015, 6: 7676.
[40] Parrini E, Conti V, Dobyns WB, Guerrini R. Genetic basis of brain malformations., 2016, 7(4): 220–233.
[41] Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, Clayton-Smith J, Corning K, Jones JR, Lam WWK, Mancini GMS, Marcelis C, Mohammed S, Pfundt R, Roifman M, Cohn R, Chitayat D, Deciphering Developmental Disorders Study, Millard TH, Katsanis N, Brunner HG, Banka S. RAC1 missense mutations in developmental disorders with diverse Phenotypes., 2017, 101(3): 466–477.
[42] Yigit G, Brown KE, Kayserili H, Pohl E, Caliebe A, Zahnleiter D, Rosser E, B?gershausen N, Uyguner ZO, Altunoglu U, Nürnberg G, Nürnberg P, Rauch A, Li Y, Thiel CT, Wollnik B. Mutations in CDK5RAP2 cause Seckel syndrome., 2015, 3(5): 467–480.
[43] O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in seckel syndrome., 2003, 33(4): 497–501.
[44] Bober MB, Jackson AP. Microcephalic osteodysplastic primordial dwarfism, Type II: a clinical review., 2017, 15(2): 61–69.
[45] Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, van Essen AJ, Goecke TO, Al-Gazali L, Chrzanowska KH, Zweier C, Brunner HG, Becker K, Curry CJ, Dallapiccola B, Devriendt K, D?rfler A, Kinning E, Megarbane A, Meinecke P, Semple RK, Spranger S, Toutain A, Trembath RC, Voss E, Wilson L, Hennekam R, de Zegher F, D?rr HG, Reis A. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism., 2008, 319(5864): 816–819.
[46] Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, Vernay B, Al Sanna N, Saggar A, Hamel B, Earnshaw WC, Jeggo PA, Jackson AP, O'Driscoll M. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling., 2008, 40(2): 232–236.
[47] Kim J, Kim J, Rhee K. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis., 2019, 132(6): jcs225789.
[48] Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit., 2015, 6: 10076.
[49] Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Autism: cause factors, early diagnosis and therapies., 2014, 25(6): 841–850.
[50] Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W, Robinson Rosenberg C, White T, Durkin MS, Imm P, Nikolaou L, Yeargin-Allsopp M, Lee LC, Harrington R, Lopez M, Fitzgerald RT, Hewitt A, Pettygrove S, Constantino JN, Vehorn A, Shenouda J, Hall-Lande J, van Naarden Braun K, Dowling NF. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites, United States, 2014., 2018, 67(6): 1–23.
[51] Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity., 2004, 24(42): 9228–9231.
[52] Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings., 2014, 10(2): 74–81.
[53] Werner E, Dawson G, Munson J, Osterling J. Variation in early developmental course in autism and its relation with behavioral outcome at 3-4 years of age., 2005, 35(3): 337–350.
[54] Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops., 2016, 89(6): 1131–1156.
[55] Ramaswami G, Geschwind DH. Genetics of autism spectrum disorder., 2018, 147: 321–329.
[56] Guo H, Peng Y, Hu Z, Li Y, Xun G, Ou J, Sun L, Xiong Z, Liu Y, Wang T, Chen J, Xia L, Bai T, Shen Y, Tian Q, Hu Y, Shen L, Zhao R, Zhang X, Zhang F, Zhao J, Zou X, Xia K. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort., 2017, 7: 44155.
[57] Park HR, Lee JM, Moon HE, Lee DS, Kim BN, Kim J, Kim DG, Paek SH. A short review on the current understanding of autism spectrum disorders., 2016, 25(1): 1–13.
[58] Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses., 2011, 70(5): 898–907.
[59] Baribeau DA, Anagnostou E. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature., 2013, 4: 175.
[60] Huang MX, Liu XH, Zhang ZJ, Chen C, Wang D, Hou X, Chen H, Xia K. Functional connection between the stereotyped behavior and the motor front area in children with autism., 2018: 1–4.
[61] Tyszka JM, Kennedy DP, Paul LK, Adolphs R. Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism., 2014, 24(7): 1894–1905.
[62] He Q, Duan Y, Karsch K, Miles J. Detecting corpus callosum abnormalities in autism based on anatomical landmarks., 2010, 183(2): 126–132.
[63] Booth R, Wallace GL, Happé F. Connectivity and the corpus callosum in autism spectrum conditions: insights from comparison of autism and callosal agenesis., 2011, 189: 303–317.
[64] Zhao H, Zhang YC, Zhang YQ. Recent progresses in molecular genetics of autism spectrum disorders., 2015, 37(9): 845–854.趙暉, 張永超, 張永清. 自閉癥譜系障礙的分子遺傳學(xué)研究進(jìn)展. 遺傳, 2015, 37(9): 845–854.
[65] Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Sestan N, Lifton RP, Günel M, Roeder K, Geschwind DH, Devlin B, State MW. De novo mutations revealed by whole-exome sequencing are strongly associated with autism., 2012, 485(7397): 237–241.
[66] Wells MF, Wimmer RD, Schmitt LI, Feng G, Halassa MM. Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/–) mice., 2016, 532(7597): 58–63.
[67] Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, Turner TN, Liu Y, Zhao W, Hoekzema K, Vives L, Xia L, Tang M, Ou J, Chen B, Shen Y, Xun G, Long M, Lin J, Kronenberg ZN, Peng Y, Bai T, Li H, Ke X, Hu Z, Zhao J, Zou X, Xia K, Eichler EE. De novo genic mutations among a Chinese autism spectrum disorder cohort., 2016, 7: 13316.
[68] Xu Q, Liu YY, Wang X, Tan GH, Li HP, Hulbert SW, Li CY, Hu CC, Xiong ZQ, Xu X, Jiang YH. Autism-associatedCHD8 deficiency impairs axon development and migration of cortical neurons., 2018, 9: 65.
[69] Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, Suyama M, Takumi T, Miyakawa T, Nakayama KI. CHD8 haploinsufficiency results in autistic-like phenotypes in mice., 2016, 537(7622): 675–679.
[70] Yasin H, Gibson WT, Langlois S, Stowe RM, Tsang ES, Lee L, Poon J, Tran G, Tyson C, Wong CK, Marra MA, Friedman JM, Zahir FR. A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8., 2019, 64(4): 271–280.
[71] Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckars?ter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders., 2007, 39(1): 25–27.
[72] Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice., 2013, 78(1): 8–27.
[73] Zhao H, Tu Z, Xu H, Yan S, Yan H, Zheng Y, Yang W, Zheng J, Li Z, Tian R, Lu Y, Guo X, Jiang YH, Li XJ, Zhang YQ. Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3- deficient non-human primate., 2017, 27(10): 1293–1297.
[74] Li Y, Jia X, Wu H, Xun G, Ou J, Zhang Q, Li H, Bai T, Hu Z, Zou X, Xia K, Guo H. Genotype and phenotype correlations for SHANK3mutations in neurodevelopmental disorders., 2018, 176(12): 2668–2676.
[75] Tu Z, Zhao H, Li B, Yan S, Wang L, Tang Y, Li Z, Bai D, Li C, Lin Y, Li Y, Liu J, Xu H, Guo X, Jiang YH, Zhang YQ, Li XJ. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms., 2019, 28(4): 561–571.
[76] Chaudhry A, Noor A, Degagne B, Baker K, Bok LA, Brady AF, Chitayat D, Chung BH, Cytrynbaum C, Dyment D, Filges I, Helm B, Hutchison HT, Jeng LJ, Laumonnier F, Marshall CR, Menzel M, Parkash S, Parker MJ, DDD Study, Raymond LF, Rideout AL, Roberts W, Rupps R, Schanze I, Schrander-Stumpel CT, Speevak MD, Stavropoulos DJ, Stevens SJ, Thomas ER, Toutain A, Vergano S, Weksberg R, Scherer SW, Vincent JB, Carter MT. Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder., 2015, 88(3): 224–233.
[77] Tora D, Gomez AM, Michaud JF, Yam PT, Charron F, Scheiffele P. Cellular functions of the autism risk factor PTCHD1 in mice., 2017, 37(49): 11993–12005.
[78] Gau SS, Liao HM, Hong CC, Chien WH, Chen CH. Identification of two inherited copy number variants in a male with autism supports two-hit and compound heterozygosity models of autism., 2012, 159B(6): 710–717.
[79] Wang S, Tan N, Zhu X, Yao M, Wang Y, Zhang X, Xu Z. Sh3rf2 haploinsufficiency leads to unilateral neuronal development deficits and autistic-like behaviors in mice., 2018, 25(11): 2963–2971.
[80] Gold WA, Krishnarajy R, Ellaway C, Christodoulou J. Rett syndrome: a genetic update and clinical review focusing on comorbidities., 2018, 9(2): 167–176.
[81] Zhai W, Hu HX, Le L, Zhuang FF, Wang KZ, Zhao Y, Wang K, Liu XM, Sun DA, Wang XY, Kuang SH, Hu KP. Generation and analysis of the Rett syndrome-associated MeCP2- null rat model., 2016, 38(11): 1004–1011.翟偉, 胡宏秀, 樂(lè)亮, 莊峰峰, 王克柱, 趙英, 王凱, 劉新民, 孫迪安, 王曉英, 匡世煥, 胡克平. Rett綜合征相關(guān)基因敲除大鼠模型的構(gòu)建及分析. 遺傳, 2016, 38(11): 1004–1011.
[82] Sharma K, Singh J, Pillai PP. MeCP2 differentially regulate the myelin MBP and PLP protein expression in oligodendrocytes and C6 glioma., 2018, 65(3): 343–350.
[83] Cheng TL, Wang Z, Liao Q, Zhu Y, Zhou WH, Xu W, Qiu Z. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex., 2014, 28(5): 547–560.
[84] Yang WX, Pan H. Regulation mechanism and research progress of MeCP2 in Rett syndrome., 2014, 36(7): 625–630.楊文旭, 潘虹. MeCP2在Rett綜合征中的調(diào)控機(jī)制. 遺傳, 2014, 36(7): 625–630.
[85] Li EH, Zhao X, Zhang C, Liu W. Fragile X mental retardation protein participates in non-coding RNA pathways., 2018, 40(2): 87–94.李恩惠, 趙欣, 張策, 劉威. 脆性X智力低下蛋白參與非編碼RNA通路的研究進(jìn)展. 遺傳, 2018, 40(2): 87–94.
[86] Guo Y, Chen X, Xing R, Wang M, Zhu X, Guo W. Interplay between FMRP and lncRNA TUG1 regulates axonal development through mediating SnoN-Ccd1 pathway., 2018, 27(3): 475–485.
[87] Randle SC. Tuberous sclerosis complex: a review., 2017, 46(4): e166–e171.
[88] Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, Tomkins S, Sampson JR, Cheadle JP. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis., 1999, 64(5): 1305–1315.
[89] Loo L, Simon JM, Xing L, McCoy ES, Niehaus JK, Guo J, Anton ES, Zylka MJ. Single-cell transcriptomic analysis of mouse neocortical development., 2019, 10(1): 134.
[90] Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons., 2019, 22(4): 642–656.
[91] Tiklová K, Bj?rklund ?K, Lahti L, Fiorenzano A, Nolbrant S, Gillberg L, Volakakis N, Yokota C, Hilscher MM, Hauling T, Holmstr?m F, Joodmardi E, Nilsson M, Parmar M, Perlmann T. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development., 2019, 10(1): 581.
[92] Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. Ultrasensitive fluorescent proteins for imaging neuronal activity., 2013, 499(7458): 295–300.
[93] Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, Jiang H, Wang S, Looby JC, Guagliardo NA, Langma LW, Lu J, Zuo Y, Talmage DA, Role LW, Barrett PQ, Zhang LI, Luo M, Song Y, Zhu JJ, Li Y. A genetically encoded fluorescent acetylcholine indicator forand in vivo studies., 2018, 36(8): 726–737.
[94] Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, Luo Y, Li F, Wang H, Yamaguchi T, Yong Z, Gao Y, Peng W, Wang L, Zhang S, Du J, Lin D, Xu M, Kreitzer AC, Cui G, Li Y. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice., 2018, 174(2): 481–496.e19.
[95] Zhang B, Chen XF, Huang X, Yang X. Research advances on animal genetics in China in 2015., 2016, 38(6): 467–507.張博, 陳曉芳, 黃勛, 楊曉. 2015年中國(guó)動(dòng)物遺傳學(xué)研究領(lǐng)域若干重要進(jìn)展. 遺傳, 2016, 38(6): 467–507.
Brain developmental diseases and pathogenic mechanisms
Yisheng Jiang, Zhiheng Xu
Development of the human brain is a strictly complex and precisely regulated process. Brain development includes the proliferation and differentiation of neural progenitor cells, migration and maturation of neurons, myelination of neuronal axons, synaptogenesis and organization of the neural circuits. Abnormalities of these developmental processes can lead to severe malformation and dysfunction of the brain, which may result in brain developmental diseases which have a high medical burden and have attracted global attention. Brain developmental diseases are typically divided into two categories according to abnormal brain morphology and dysfunction: malformation of cortical development (MCD) and neuropsychopathy. Microcephaly and autism spectrum disorder (ASD) are representative disorders of MCD and neuropsychopathy respectively. In this review, we summarize the progresses of these two typical and relevant brain developmental diseases including the mechanism and etiology of their development, gene expression, symptoms, and related to provide theoretical guidance for basic research and management and treatment.
brain developmental diseases; microcephaly; autism; disease associated genes
2019-05-13;
2019-07-04
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31430037,31730108)和中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(編號(hào):XDB32020100,QYZDJ-SSW-SMC007,GJHZ1827)資助[Supported by the National Natural Science Foundation of China (Nos. 31430037, 31730108) and Strategic Priority Research Program and Innovation Program of the Chinese Academy of Sciences (Nos. XDB32020100, QYZDJ-SSW-SMC007, GJHZ1827)]
姜義圣,博士研究生,專業(yè)方向:細(xì)胞生物學(xué)。E-mail: ysjiang@genetics.ac.cn
許執(zhí)恒,博士,研究員,博士生導(dǎo)師,研究方向:信號(hào)轉(zhuǎn)導(dǎo)與疾病的病理生理機(jī)制。E-mail: zhxu@genetics.ac.cn
10.16288/j.yczz.19-133
2019/9/2 16:21:27
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190902.1620.003.html
(責(zé)任編委: 夏昆)