• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Hedgehog信號通路在肺癌中的研究進(jìn)展

      2019-09-29 13:49:29付政超呼群
      關(guān)鍵詞:配體抑制劑耐藥

      付政超 呼群

      【摘要】 肺癌發(fā)病率高、預(yù)后差,其發(fā)生過程涉及多個信號通路的異常改變,其中Hedgehog通路在肺癌中的作用逐漸被發(fā)現(xiàn),Hedgehog通路最早發(fā)現(xiàn)于果蠅胚胎發(fā)育過程,近來發(fā)現(xiàn)其涉及了肺、消化等多個組織器官的發(fā)育及癌變過程,特別是肺癌中發(fā)現(xiàn),Hedgehog通路的異常激活參與了肺癌的耐藥、增殖、轉(zhuǎn)移等過程。本文從Hedgehog信號通概述、Hedgehog在小細(xì)胞肺癌中的作用、非小細(xì)胞肺癌增殖、耐藥中的作用進(jìn)行綜述分析,旨在為Hedgehog通路在肺癌的研究提供新的思路及尋找肺癌治療的新靶點(diǎn)。

      【關(guān)鍵詞】 Hedgehog信號通路; 肺癌

      Advances in Hedgehog Signaling Pathway in Lung Cancer/FU Zhengchao,HU Qun.//Medical Innovation of China,2019,16(06):-172

      【Abstract】 Lung cancer has a high incidence and poor prognosis,its occurrence process involves abnormal changes of multiple signaling pathways,the role of Hedgehog signaling pathway in lung cancer has been gradually discovered.Hedgehog signaling pathway was the first found in the embryonic development of Drosophila melanogaster.Recently,it has been found that Hedgehog signaling pathway involves the development and canceration of lung,digestion and other tissues and organs,in particular.It is found that the abnormal activation of Hedgehog signaling pathway is involved in the process of drug resistance,proliferation and metastasis of lung cancer.This article reviews the role of Hedgehog signaling pathway in small cell lung cancer,proliferation and drug resistance of non-small cell lung cancer,in order to provide new ideas for the study of Hedgehog signaling pathway in lung cancer,path and search for new targets for lung cancer treatment.

      【Key words】 Hedgehog signaling pathway; Lung cancer

      First-authors address:Inner Mongolia Medical University,Hohhot 010110,China

      doi:10.3969/j.issn.1674-4985.2019.06.045

      肺癌是最常見的惡性腫瘤之一,預(yù)后差、致死率高。2018年全球肺癌新發(fā)病例210萬人,死亡病例180萬人,占癌癥死亡人數(shù)的近1/5(18.4%),并且在中國仍是男性腫瘤死亡的主要原因[1-2],有數(shù)據(jù)提示57%的非小細(xì)胞肺癌患者診斷時已有遠(yuǎn)端轉(zhuǎn)移[3-5]。而肺癌的發(fā)生、轉(zhuǎn)移及耐藥等過程涉及了包括Hedgehog、Went等多個信號傳導(dǎo)調(diào)控過程,但具體調(diào)控機(jī)制尚未清晰。本文從Hedgehog信號通路的概述,小細(xì)胞肺癌中Hedgehog的作用,非小細(xì)胞肺癌增殖、耐藥中Hedgehog的作用進(jìn)行綜述分析,從而發(fā)現(xiàn)目前研究Hedgehog信號通路在肺癌中調(diào)控的新觀點(diǎn)。

      1 Hedgehog信號通路概述

      Hedgehog信號通路首次發(fā)現(xiàn)并證實參與了果蠅胚胎的發(fā)育過程,經(jīng)典的Hedgehog信號通路組成包括配體蛋白Indian Hedgehog(IHh)、Desert Hedgehog(DHh)和Sonic Hedgehog(SHh);膜受體蛋白Patched(Ptch)和Smoothened(Smo)和目前發(fā)現(xiàn)的核內(nèi)轉(zhuǎn)錄因子Ci/Gli、SuFu、COX2、PKA和cAMP等。

      1.1 Hedgehog配體 經(jīng)典的Hedgehog配體主要有IHh、DHh和SHh。人類SHh由位于7q36.3的SHh基因編輯,已證實參與了胚胎發(fā)育時候誘導(dǎo)如中樞神經(jīng)、肺、腸道等組織器官的發(fā)育。上述三種Hedgehog同源基因分別在細(xì)胞膜上表達(dá)其對應(yīng)的糖蛋白,糖蛋白的N端具有信號活性,C端具有蛋白水解酶活性,C端通過共價鍵結(jié)合膽固醇分子并轉(zhuǎn)移到N端,在?;D(zhuǎn)移酶催化后使N端的半胱氨酸發(fā)生棕櫚?;?,進(jìn)而獲得信號傳導(dǎo)活性[6-7]。

      1.2 Hedgehog膜受體 經(jīng)典Hedgehog信號通路的膜受體包括Ptch和Smo兩類膜蛋白。Ptch蛋白在哺乳動物中分為Ptch1和Ptch2兩種,接受SHh、IHh和DHh的信號。雖然Ptch1和Ptch2均是Hedgehog的受體,但是功能和表達(dá)部位略有不同,Ptch1多表達(dá)在間質(zhì)細(xì)胞,而Ptch2則在皮膚和睪丸上皮細(xì)胞中表達(dá),近來有研究提示Ptch2亦參與了胰腺神經(jīng)內(nèi)分泌腫瘤、遺傳性疾病的發(fā)生發(fā)展,且在基底細(xì)胞癌中Ptch2有抑制腫瘤的作用[8-12]。Smoothened蛋白屬于7跨膜G蛋白偶聯(lián)受體蛋白,C端位于胞內(nèi),而N端7跨膜區(qū)富含半胱氨酸在細(xì)胞膜外接受信號[13]。Smo的第二個信號結(jié)合位點(diǎn)是其異辛基鏈上攜帶的具有一個羥基的膽固醇氧化衍生物,在沒有Hedgehog配體的情況下可通過特定的固醇氧化物激活Hedgehog信號通路,并誘導(dǎo)Smoothened蛋白向細(xì)胞膜上的原纖毛堆積,并激活下游通路[14-15]。雖然Smo激活Gli的機(jī)制目前尚不清楚,但Chong等[16]發(fā)現(xiàn)Smo和Dlg5相互作后可使得Gli激活,當(dāng)沒有Dlg5時Smo可抑制Gli抑制形成。目前認(rèn)為Smo是Hh通路中的激動性受體,而Ptch是抑制性受體。經(jīng)典的Hedgehog信號通路通過SHh配體結(jié)合Ptch1發(fā)揮作用,但是近來發(fā)現(xiàn)細(xì)胞膜蛋白GAS1、CDO和BOC也可能是Shh的受體,在胚胎發(fā)育早起起著決定性作用,而胚胎發(fā)育后期起著維持發(fā)育的作用[17-18]。

      1.3 核內(nèi)轉(zhuǎn)錄因子 Hedgehog信號通路的核內(nèi)轉(zhuǎn)錄因子包括Ci/Gli、SuFu、Kif7、PKA和cAMP等。

      Gli家族成員包括Gli1、Gli2和Gli3,其編碼的轉(zhuǎn)錄子在C2-H2位都含有鋅指結(jié)構(gòu)及組氨酸/半胱氨酸鏈,而鋅指結(jié)構(gòu)也是主要的功能區(qū)域。Gli1啟動區(qū)有一處18氨基酸區(qū)域成α螺旋狀,該區(qū)域包含一個同TFIID的TATA盒綁定蛋白相關(guān)的保守因子TAFII31,可使Gli1正反饋激動Hedgehog[19]。近來有研究提示Gli1啟動區(qū)從-2192到-109這一區(qū)間能和間充質(zhì)同源相關(guān)基因轉(zhuǎn)錄因子HOX2(MEOX2)及具有轉(zhuǎn)錄活性的RNA聚合酶II結(jié)合,并同具有表觀遺傳改變活性的H3K27Ac和H3K4me3相連接,從而接受表觀遺傳學(xué)調(diào)節(jié)[20]。

      Sufu是Hedgehog信號通路中的負(fù)性調(diào)控因子,其N端和C端可以結(jié)合Gli蛋白形成Gli-Sufu復(fù)合物,同時PKA抑制Sufu-Gli解離并阻止Sufu-Gli復(fù)合物向細(xì)胞原纖毛富集,另外Sufu-Gli復(fù)合物亦阻礙了Gli向細(xì)胞核內(nèi)轉(zhuǎn)運(yùn)及同DNA中的Gli結(jié)合區(qū)結(jié)合,從而負(fù)性調(diào)節(jié)Hedgehog信號通路并穩(wěn)定信號通路[21-23]。

      Kif7具有正性和負(fù)性雙向調(diào)節(jié)功能,有研究提示PPFIA1和PP2A共同作用促進(jìn)Kif7的去磷酸化,使得Kif7定位于原纖毛末端并促進(jìn)激活Gli蛋白[24-26]。

      在呼吸道細(xì)胞增殖中Kif7促進(jìn)細(xì)胞從G1期進(jìn)入S期進(jìn)而維持氣道正常結(jié)構(gòu)[27]。Kif7作為Hedgehog中的雙向調(diào)節(jié)因子,在呼吸道發(fā)育和維持細(xì)胞分化及誘導(dǎo)進(jìn)入細(xì)胞周期起了重要的作用。

      當(dāng)沒有Hh配體的情況下,Smo受Ptch的抑制,Ptch結(jié)合細(xì)胞周期蛋白B1和細(xì)胞周期蛋白依賴性激酶1(CDK1)組成的成熟促進(jìn)因子(MPF),并在細(xì)胞質(zhì)中結(jié)合和保留MPF,阻止Hedgehog通路激活,同時PKA、GSK3和CK1可使GliFL磷酸化并被β-Trcp蛋白識別,隨后將其C-末端水解形成GliR,而GliR轉(zhuǎn)入細(xì)胞核內(nèi)以后可以結(jié)合Hh的啟動區(qū)后抑制啟動區(qū)激活,從而阻止Hedgehog信號通路激活[28-29]。當(dāng)Hedgehog蛋白通過自分泌、旁分泌同Ptch結(jié)合后,Ptch被降解,從而解除了對Smo的抑制,而Smo被PKA和CK1磷酸化同時阻止了Smo的降解和內(nèi)吞,并通過磷酸化級聯(lián)反應(yīng)將Hh配體信號傳入胞內(nèi),同時Smo促進(jìn)Gli-Sufu向細(xì)胞原纖毛富集,并從Sufu-Gli中釋放Gli并形成GliA,當(dāng)GliA結(jié)合到Hh啟動區(qū)后進(jìn)一步激活轉(zhuǎn)錄而激活Hedgehog下游通路,同時Hedgehog蛋白結(jié)合Ptch后促進(jìn)胞周期蛋白B1釋放,并通過激活細(xì)胞周期蛋白D和細(xì)胞周期蛋白E的轉(zhuǎn)錄,從而促進(jìn)細(xì)胞進(jìn)入分裂周期而影響細(xì)胞分裂[28-30]。

      2 Hedgehog信號通路與肺癌

      2.1 Hedgehog和小細(xì)胞肺癌 小細(xì)胞肺癌是一種具有原始神經(jīng)內(nèi)分泌特征的高度侵襲腫瘤,有研究提示小細(xì)胞肺癌可通過配體依賴Hedgehog通路的激活維持其惡性表型[31]。在小細(xì)胞肺癌侵襲增殖方面,高表達(dá)的SHh可刺激N-myc和ascl1轉(zhuǎn)錄因子表達(dá),后者結(jié)合INSM1啟動子中的E2盒后激活內(nèi)源性INSM1表達(dá),而INSM1與PI3K/AKT和MEK/ERK1/2途徑相互作用又增強(qiáng)N-myc的穩(wěn)定性,進(jìn)一步增加了小細(xì)胞肺癌的侵襲性[32],另有研究發(fā)現(xiàn)小細(xì)胞肺癌SBC5細(xì)胞系中沉默RBPJ/MAML3后SMO和HES1表達(dá)降低且細(xì)胞增殖和分裂降低,上調(diào)增強(qiáng)RBPJ/MAML3表達(dá)后SMO和HES1表達(dá)增加,并細(xì)胞分裂增強(qiáng),亦提示Hedgehog和RBJ/MAML3共同參與了小細(xì)胞肺癌的增殖[33]。Hedgehog抑制劑用于小細(xì)胞肺癌治療方面,維莫德吉(Hedgehog抑制劑)通過結(jié)合并干膜蛋白抑制Hedgehog信號傳導(dǎo)從而抑制腫瘤細(xì)胞生長 [34],而Hedgehog抑制劑用于小細(xì)胞肺癌廣泛期的進(jìn)一步臨床試驗(E1508)中顯示順鉑聯(lián)合依托泊苷(CE)的PFS和OS分別是4.4個月和8.8個月,而CE聯(lián)合維莫德吉的PFS和CE聯(lián)合西妥珠單抗的PFS分別是4.4個月和4.6個月而OS分別是9.8個月和10.1個月,有效率分別是48%、56%和50%,但是無統(tǒng)計學(xué)意義[35]。綜上,Hedgehog通路參與了小細(xì)胞肺癌的侵襲、增殖過程,但在小細(xì)胞肺癌中Hedgehog通路和其他信號通路之間的交叉調(diào)節(jié)仍需要進(jìn)一步研究,雖然現(xiàn)有研究顯示Hedgehog抑制劑聯(lián)合化療用于小細(xì)胞肺癌廣泛期治療的OS和PFS并未有明顯改善,但是能否改善小細(xì)胞肺癌化療耐藥、減少化療藥物劑量等需要進(jìn)一步研究。

      2.2 Hedgehog和非小細(xì)胞肺癌 非小細(xì)胞肺癌占肺癌的83%并且發(fā)病率逐年增加。多項研究發(fā)現(xiàn)Hedgehog信號通路參與了非小細(xì)胞肺癌的增殖、轉(zhuǎn)移及非小細(xì)胞肺癌的耐藥[36]。

      非小細(xì)胞肺癌增殖轉(zhuǎn)移方面。有研究發(fā)現(xiàn)E-Cadherin蛋白與Gli蛋白的表達(dá)呈負(fù)相關(guān),下調(diào)Gli和抑制SHh/Gli信號通路后,E-Cadherin蛋白表達(dá)上調(diào),提示SHh激活促進(jìn)了非小細(xì)胞肺癌上皮間質(zhì)轉(zhuǎn)化,從而促進(jìn)非小細(xì)胞肺癌轉(zhuǎn)移[37],并且有研究發(fā)現(xiàn)部分非小細(xì)胞肺癌細(xì)胞表達(dá)未見切割的全長SHh蛋白并具有腫瘤干細(xì)胞的特點(diǎn),并通過旁分泌對SHh陰性細(xì)胞產(chǎn)生誘導(dǎo)增殖的作用[38]。肺鱗狀細(xì)胞癌(LSCC)方面,Gli1是關(guān)鍵的驅(qū)動因子,對數(shù)據(jù)庫分析可見Gli1的mRNA在LSCC中高度表達(dá),且提示預(yù)后不良[39]。同時有研究發(fā)現(xiàn)抑制SHh/GLi通路后E-Cadherin及β-Catenin表達(dá)上調(diào)且LSCC遷移被抑制,提示SHh/GLi可通過下調(diào)E-Cadherin及β-Catenin促進(jìn)細(xì)胞遷移[40]。肺腺癌方面,Gli1可以被MEK1-ERK1/2直接磷酸化而激活,并且Gli啟動區(qū)和SOX2相互結(jié)合及調(diào)節(jié),SOX2又促進(jìn)了多能因子(OCT4和NANOG)表達(dá)并抑制了分化譜系因子(HOPX和NKX2-1)表達(dá)進(jìn)而促使肺腺癌細(xì)胞干細(xì)胞化及促進(jìn)肺腺癌細(xì)胞增殖[41-43]。而在大細(xì)胞肺癌方面,使用Smo抑制劑BMS-833923和Gli抑制劑GANT61后細(xì)胞增殖受抑制,并且增加了大細(xì)胞肺癌細(xì)胞對順鉑的敏感性[44]。

      非小細(xì)胞肺癌耐藥方面,多項研究提示Hedgehog異常激活和非小細(xì)胞肺癌化療藥物耐藥有關(guān),并且抑制Hedgehog通路后可增加抗藥非小細(xì)胞肺癌細(xì)胞對化療藥物的敏感性[45],對36例非小細(xì)胞肺癌患者的研究中發(fā)現(xiàn),12例化療耐藥患者中Gli2陽性率高于非耐藥組,同時Gli2陽性的患者PSF和OS明顯低于Gli2陰性組,順鉑耐藥非小細(xì)胞肺癌細(xì)胞中使用vismodegib,可增加順鉑的細(xì)胞毒性[46]。近來研究發(fā)現(xiàn),在藥物敏感的非小細(xì)胞肺癌細(xì)胞中敲除Kif7后細(xì)胞膜原纖毛長度改變并伴有Hedgehog異常激活從而產(chǎn)生耐藥性,恢復(fù)Kif7后耐藥細(xì)胞恢復(fù)了對化療藥物的敏感性[47],該研究提示Kif7及細(xì)胞原纖毛的改變參與了非小細(xì)胞肺癌化療藥物耐藥過程。靶向藥物耐藥方面,雖然EGFR-TKI用于治療非小細(xì)胞肺癌取得一定進(jìn)展,但是EGFR-TKI耐藥成為非小細(xì)胞肺癌治療失敗的又一原因。有研究發(fā)現(xiàn)非小細(xì)胞肺癌EGFR-TKI耐藥過程存在Hedgehog異常激活并通過誘導(dǎo)EMT通路激活引起非小細(xì)胞肺癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化過程,從而獲得EGFR-TKI的耐藥性,使用Smo抑制劑阻斷Hedgehog后可亦可抑制非小細(xì)胞肺癌的上皮間質(zhì)轉(zhuǎn)化過程,同時原發(fā)和繼發(fā)的EGFR-TKI耐藥細(xì)胞可恢復(fù)對EGFR-TKI的敏感性,同SMO抑制劑和EGFR抑制劑可完全抑制PI3K/Akt和MAPK磷酸化,進(jìn)而表現(xiàn)出較強(qiáng)的抗腫瘤活性[48-49]。同時亦有研究發(fā)現(xiàn)Smo抑制劑可直接結(jié)合Gli1和Gli2抑制其DNA轉(zhuǎn)錄從而抑制Hedgehog通路,使肺腺癌和鱗癌生長受抑制并出現(xiàn)凋亡,且在小鼠抑制瘤實驗亦證實如此[41-42]。另外T790M突變陰性的EGFR-TKI耐藥非小細(xì)胞肺癌存在Hedgehog的異常激活并伴有上皮間質(zhì)轉(zhuǎn)化,而吉非替尼、阿法替尼和西莫替尼耐藥細(xì)胞系在體外可維持EGFR-TKIs耐藥性,但可使用選擇性SMO抑制劑sonidegib使得細(xì)胞系恢復(fù)對EGFR-TKI的敏感性[50]。

      3 展望

      Hedgehog信號通路作為重要的誘導(dǎo)胚胎及干細(xì)胞發(fā)育的信號通路,其異常激活參與了肺癌上皮間質(zhì)轉(zhuǎn)化過程,并通過上皮間質(zhì)轉(zhuǎn)化誘導(dǎo)了肺癌的侵襲、轉(zhuǎn)移、耐藥及肺癌細(xì)胞干細(xì)胞化過程。但是不同病理類型的肺癌中Hedgehog異常激活是否存在差異,不同病理類型的Hedgehog異常激活和生存期的關(guān)系仍需要進(jìn)一步研究。其二,Hedgehog異常激活參與了EGFR-TKI及順鉑等耐藥過程,但是對于原發(fā)耐藥和誘導(dǎo)耐藥的差別、使用Hedgehog抑制劑后是否會對其他正常組織細(xì)胞造成影響仍需要進(jìn)一步研究。其三,Hedgehog抑制劑用于小細(xì)胞肺癌廣泛期雖然沒有改善患者PSF和OS,但是在局限期能否改善需要進(jìn)一步臨床研究,同時使用Hedgehog抑制劑后是否出現(xiàn)Hedgehog抑制劑耐藥及耐藥過程需要進(jìn)一步研究及觀察。再次,有研究提示Gli啟動區(qū)和具有表觀遺傳學(xué)改變活性的H3K27Ac鏈接,而后者具有H3組蛋白27甲基轉(zhuǎn)移酶活性同表觀遺傳沉默甲基化有關(guān),是否Hedgehog功能失調(diào)亦同其下游抑制因子表觀遺傳學(xué)沉默有關(guān)需要進(jìn)一步研究。最后,Hedgehog作為胚胎發(fā)育過程中的重要通路,參與了呼吸道等發(fā)育過程,其誘導(dǎo)腫瘤發(fā)生過程是否存在基因差異或等位基因多態(tài)性改變,或哪種基因改變易造成肺癌發(fā)生,仍需要進(jìn)一步研究。綜上所述有必要進(jìn)一步研究Hedgehog及交叉調(diào)節(jié)在肺癌代謝、耐藥、轉(zhuǎn)移等的作用,才能進(jìn)一步將Hedgehog抑制劑用于肺癌的治療從而為肺癌治療提供新的方向。

      參考文獻(xiàn)

      [1] Freddie Bray BSc,Jacques Ferlay M E.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].Cancer Journal for Clinicians,2018,68(6):394-424.

      [2] Siegel R L,Miller K D,Jemal A.Cancer statistics,2018[J].Cancer Journal for Clinicians,2018,68(1):7-30.

      [3] Rami-Porta R,Asamura H,Travis W D,et al.Lung cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J].Cancer Journal for Clinicians,2017,67(2):138-155.

      [4] Siegel R,Desantis C,Virgo K,et al.Cancer treatment and survivorship statistics,2012[J].Cancer Journal for Clinicians,2012,62(4):220-241.

      [5] Miller K D,Siegel R L,Lin C C,et al.Cancer treatment and survivorship statistics,2016[J].Cancer Journal for Clinicians,2016,66(4):271-289.

      [6] Rodgers U,Lanyonhogg T,Masumoto N,et al.Characterization of Hedgehog Acyltransferase InhibitorsIdentifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells[J].Chemical Biology,2016,11(12):3256-3262.

      [7] Ciepla P,Konitsiotis A D,Serwa R A,et al.New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish[J].Chem Sci,2014,5(11):4249-4259.

      [8] Veenstra V L,Dingjan I,Waasdorp C,et al.Patched-2 functions to limit Patched-1 deficient skin cancer growth[J].Cellular Oncology,2018,41(4):427-437.

      [9] Hoyos A C,Kaminagakura E,Rodrigues M,et al.

      Immunohistochemical evaluation of Sonic Hedgehog signaling pathway proteins(Shh,Ptch1,Ptch2,Smo,Gli1,Gli2 and Gli3)in sporadic and syndromic odontogenic keratocysts[J].Clinical Oral Investigations,2019,23(1):153-159.

      [10] Vandamme T,Beyens M,Boons G,Schepers A,et al.

      Hotspot DAXX,PTCH2 and CYFIP2 mutations in pancreatic neuroendocrine neoplasms[J].Endocr Relat Cancer,2019,26(1):1-12

      [11] Taeubner J,Brozou T,Qin N,et al.Congenital embryonal rhabdomyosarcoma caused by heterozygous concomitant PTCH1 and PTCH2 germline mutations[J].European Journal of Human Genetics,2018,26(1):137-142.

      [12] Onodera S,Saito A,Hasegawa D,et al.Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype[J].PLoS One,2017,12(9):e0184702.

      [13] Nachtergaele S,Whalen D M,Mydock L K,et al.Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling[J].Elife,2013,2(24):e01340.

      [14] Bazan J F,Janda C,Garcia K C.Structural Architecture and Functional Evolution of Wnts[J].Developmental Cell,2012,23(2):227-232.

      [15] Johnson J S,Meliton V,Kim W K,et al.Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo[J].Journal of Cellular Biochemistry,2011,112(6):1673-1684.

      [16] Chong Y C,Mann R K,Zhao C,et al.Bifurcating action of Smoothened in Hedgehog signaling is mediated by Dlg5[J].Genes & Development,2015,29(3):262-276.

      [17] Allen B L,Song J Y,Izzi L,et al.Overlapping roles and collective requirement for the coreceptors GAS1,CDO,and BOC in SHH pathway function[J].Developmental Cell,2011,20(6):787.

      [18] Xavier G M,Seppala M,Barrell W,et al.Hedgehog receptor function during craniofacial development[J].Developmental Biology,2016,415(2):198-215.

      [19] Park H L,Bai C,Platt K A,et al.Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation[J].Development,2000,127(8):1593-1605.

      [20] Ooki A,Dinalankara W,Marchionni L,et al.Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma[J].Oncogene,2018,37(45):5967-5981.

      [21] Chen M H,Wilson C W,Li Y J,et al.Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved[J].Genes & Development,2009,23(16):1910-1280.

      [22] Hanna T,Lopez L V,Adrian S.A mechanism for vertebrate Hedgehog signaling:recruitment to cilia and dissociation of SuFu–Gli protein complexes[J].Journal of Cell Biology,2010,191(2):415-428.

      [23] Liem K F,He M,Ocbina P J R,et al.Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(32):13377-13382.

      [24] He M,Subramanian R,Bangs F,et al.The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment[J].Nature Cell Biology,2014,16(7):663-672.

      [25] Takahashi T,F(xiàn)riedmacher F,Takahashi H,et al.Kif7 expression is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia[J].Journal of Pediatric Surgery,2015,50(6):904-907.

      [26] Liu Y C,Couzens A L,Deshwar A R,et al.The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling[J].Science Signaling,2014,7(355):ra117-ra117.

      [27] Coles G L,Baglia L A,Ackerman K G.KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms[J].PLoS Genetics,2015,11(10):e1005525.

      [28] Wang X F,Shen Y,Cheng Q,et al.Apontic directly activates hedgehog and cyclin E for proper organ growth and patterning[J].Scientific Reports,2017,7(1):12470.

      [29] Humke E W,Dorn K V,Milenkovic L,et al.The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins[J].Genes & Development,2010,24(7):670-682.

      [30] Han Y,Shi Q,Jiang J.Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(20):6383-6388.

      [31] Watkins D N,Berman D M,Burkholder S G,et al.Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J].Nature,2003,422(6929):313-317.

      [32] Chen C,Breslin M B,Lan M S.Sonic hedgehog signaling pathway promotes INSM1 transcription factor in neuroendocrine lung cancer[J].Cellular Signalling,2018,46:83-91.

      [33] Onishi H,Ichimiya S,Yanai K,et al.RBPJ and MAML3:Potential Therapeutic Targets for Small Cell Lung Cancer[J].Anticancer Research,2018,38(8):4543-4547.

      [34] Smaele E D,F(xiàn)erretti E,Gulino A.Vismodegi,a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers[J].Current Opinion in Investigational Drugs,2010,11(6):707-718.

      [35] Belani C P,Dahlberg S E,Rudin C M,et al.Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer:A trial of the ECOG-ACRIN Cancer Research Group(E1508)[J].Cancer,2016,122(15):2371-2378.

      [36]熊歡婷.Hedgehog信號通路配體Shh在肺鱗癌中發(fā)病的分子機(jī)制[D].南昌:南昌大學(xué),2018.

      [37] Li H,Yue D,Jin J Q,et al.Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas[J].Oncotarget,2016,7(49):80415-80425.

      [38] Leprieur E G,Tolani B,Li H,et al.Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer[J].Oncotarget,2017,8(61):103744-103757.

      [39] Kasiri S,Shao C,Chen B,et al.GLI1 blockade potentiates the antitumor activity of PI3K antagonists in lung squamous cell carcinoma[J].Cancer Research,2017,77(16):4448-4459.

      [40] Yue D,Li H,Che J,et al.Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas[J].Journal of Experimental & Clinical Cancer Research Cr,2014,33(1):33-34.

      [41] Huang L,Walter V,Hayes D N,et al.Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2014,20(6):1566-1575.

      [42] Po A,Silvano M,Miele E,et al.Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma[J].Oncogene,2017,36(32):4641-4652.

      [43] Karachaliou N,Rosell R,Viteri S.The role of SOX2 in small cell lung cancer,lung adenocarcinoma and squamous cell carcinoma of the lung[J].Translational Lung Cancer Research,2013,2(3):172-179.

      [44] Ishiwata T,Iwasawa S,Ebata T,et al.Inhibition of Gli leads to antitumor growth and enhancement of cisplatin-induced cytotoxicity in large cell neuroendocrine carcinoma of the lung[J].Oncology Reports,2018,39(3):1148-1154.

      [45] Giroux-Leprieur E,Costantini A,Ding V,et al.Hedgehog Signaling in Lung Cancer:From Oncogenesis to Cancer Treatment Resistance[J].International Journal of Molecular Sciences,2018,19(9):2835.

      [46] Leprieur E G,Vieira T,Antoine M,et al.Sonic Hedgehog pathway activation is associated with resistance to platinum-based chemotherapy in advanced non-small cell lung carcinoma[J].Clinical Lung Cancer,2016,17(4):301-308.

      [47] Jenks A D,Vyse S,Wong J P,et al.Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer[J].Cell Reports,2018,23(10):3042-3055.

      [48] Bai X Y,Zhang X C,Yang S Q,et al.Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines[J].PLoS One,2016,11(3):e0149370.

      [49] Della Corte C M,Bellevicine C,Vicidomini G,et al.SMO Gene Amplification and Activation of the Hedgehog Pathway as Novel Mechanisms of Resistance to Anti-Epidermal Growth Factor Receptor Drugs in Human Lung Cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2015,21(20):4686-4697.

      [50] Corte C M D,Malapelle U,Vigliar E,et al.Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR[J].Oncotarget,2017,8(14):23020-23032.

      猜你喜歡
      配體抑制劑耐藥
      如何判斷靶向治療耐藥
      miR-181a在卵巢癌細(xì)胞中對順鉑的耐藥作用
      凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
      基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
      新型三卟啉醚類配體的合成及其光學(xué)性能
      PDCA循環(huán)法在多重耐藥菌感染監(jiān)控中的應(yīng)用
      組蛋白去乙酰化酶抑制劑的研究進(jìn)展
      磷酸二酯酶及其抑制劑的研究進(jìn)展
      基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
      系列含4,5-二氮雜-9,9′-螺二芴配體的釕配合物的合成及其性能研究
      张家界市| 富民县| 油尖旺区| 呈贡县| 会东县| 榕江县| 嘉义市| 资阳市| 临汾市| 宜丰县| 黄山市| 基隆市| 新余市| 翼城县| 龙井市| 蒙城县| 南华县| 双桥区| 旺苍县| 毕节市| 工布江达县| 贵港市| 盐池县| 泰和县| 澄城县| 儋州市| 陈巴尔虎旗| 拉萨市| 焉耆| 辽阳市| 陆河县| 富民县| 札达县| 通山县| 敦煌市| 永丰县| 平江县| 鹤山市| 安龙县| 佛山市| 玉屏|