車崢 岳詩雨 吳南 徐嘉蔚 陳晴
3.2 卵清蛋白的選擇性吸附
Ova、Cona和Lys是雞蛋清中的蛋白質(zhì),等電點分別為4.5、6.5和9.8,其中Ova是雞蛋清液中的主要蛋白質(zhì)[24]。首先考察了pH值對這3種蛋白質(zhì)吸附的影響。在pH 4.0~10.0的范圍內(nèi),TeW@MNP對Ova、Cona和Lys的吸附效率如圖3A所示,當(dāng)pH=4.0時,Cona和Lys的吸附效率很低,而對Ova的吸附效率達(dá)到最大值91.6%。
Cona和Lys的吸附效率隨著pH值增大先升高后降低,在pH=6.0時,對Cona的吸附效率達(dá)到97.4%,在pH=8.0時,Lys的吸附效率達(dá)到64.9%,而Ova的吸附效率隨著pH值的增大而逐漸降低。因此,對于Ova和Cona吸附效率,在其等電點附近時達(dá)到最大,主要表現(xiàn)為蛋白質(zhì)與TeW@MNP的疏水作用。Ova和Cona都是糖蛋白,在等電點附近時,其N糖苷鍵暴露[25],蛋白表面存在較多羥基,可與材料中TeW的氧原子形成氫鍵,從而使蛋白被吸附到材料上。隨著pH值增大,材料中氧原子的質(zhì)子化程度越來越弱,蛋白質(zhì)暴露的疏水基團減少,氫鍵減弱,蛋白質(zhì)的吸附效率隨體系pH值的增加而降低。在pH=8.0時,溶菌酶的吸附效率達(dá)到最大,主要作用為其與TeW@MNP之間的靜電作用[8]。綜上,通過控制溶液的pH值,可實現(xiàn)在雞蛋清液蛋白中選擇性吸附Ova。
離子強度對于蛋白質(zhì)分子與固相材料的相互作用有較大的影響。在pH=4.0條件下,分別配制了一系列含有不同濃度NaCl(0~500 mmol/L)的蛋白溶液,考察離子強度對Ova吸附的影響,結(jié)果如圖4A所示。隨著NaCl濃度增加,TeW@MNP對Ova的吸附效率先升高后降低, NaCl濃度為200 mmol/L時,吸附效率可達(dá)到98.9%,進(jìn)一步驗證了疏水作用為吸附的主要作用力[25]。由于實際樣品中存在一定濃度的鹽,所以本研究采用不加NaCl的0.04 mol/L BR溶液。
3.3 雞蛋清中卵清蛋白的分離純化
SDSPAGE分析結(jié)果如圖6所示,泳道1是蛋白分質(zhì)量標(biāo)準(zhǔn)(20.1~200 kDa); 泳道2是稀釋100倍后的雞蛋清蛋白樣品,在29.0~116 kDa有3個主要的蛋白質(zhì)條帶,分別為伴清蛋白(77.9 kDa)、 卵清蛋白(44.5 kDa)和其它低分子量的蛋白; 泳道3是經(jīng)TeW@MNP吸附后上清液的蛋白質(zhì)條帶,44.5 kDa 處Ova的條帶基本消失,而其它條帶沒有明顯變化; 泳道4和泳道5分別是水洗和0.05 mol/L pH 9.0 TrisHCl緩沖液洗脫的條帶,分別洗去了非特異性吸附的雜蛋白; 泳道5是經(jīng)0.1% SDS洗脫回收后得到的上清液,蛋白質(zhì)條帶出現(xiàn)在44.5 kDa,與Ova的條帶相一致,說明以TeW@MNP為吸附劑,在雞蛋清蛋白樣品中分離純化得到了卵清蛋白。
4 結(jié) 論
利用分子間靜電作用制備了基于碲鎢酸鹽的磁性納米復(fù)合材料TeW@MNP,采用紅外光譜、能譜和掃描電鏡等進(jìn)行了表征。將制備的TeW@MNP應(yīng)用于雞蛋清中蛋白質(zhì)的分離純化,結(jié)果表明,碲鎢酸鹽在一定條件下對卵清蛋白具有選擇性吸附性能,并有較高的吸附容量,以此建立了分離卵清蛋白的新方法,實現(xiàn)了雞蛋蛋清中卵清蛋白的高純度分離。本研究拓展了多金屬氧簇在生命科學(xué)領(lǐng)域中的應(yīng)用范圍。
References
1 Yamase T, Pope M T. Polyoxometalate Chemistry for Nanocomposite Design. New York: Kluwer Academic/Plenum, 2002: 350
2 Long D, Tsunashima R, Cronin L. Angew. Chem. Int. Edit.,? 2010,? 49(10): 1736-1758
3 Leng Y, Jiang Y, Peng H, Zhang Z, Liu M, Jie K, Zhang P, Dai S. Catal. Sci. Technol.,? 2019,? 3: 1-7
4 Yang W, Gao L H, Wang K Z. Polyhedron,? 2014,? 82: 80-87
5 Liu D, Lu Y, Tan H Q, Wang T T, Wang E B. Cryst. Growth Des.,? 2015,? 15(1): 103-114
6 Poppe K J, Warkentin U D E, Dierks T, Ermler U, Schneider K. J. Am. Chem. Soc.,? 2012,? 134: 9768-9774
7 Zebisch M, Krauss M, Schfer P, Strter N. Acta Crystallogr. S D,? 2014,? 70(4): 1147-1154
8 Bijelic A, Molitor C, Mauracher S G, AlOweini R, Kortz U, Rompel A. Chembiochem. Eur. J. Chem. Biol.,? 2015,? 16(2): 233-241
9 Wan H, Huang J, Liu Z, Li J, Zhang W, Zou H. Chem. Commun.,? 2015,? 51: 9391-9394
10 Li Y, Zhang X, Deng C. Chem. Soc. Rev.,? 2013,? 42(21): 8517-8539
11 Ma X, Zhang Y, Wang Z, Shen Y, Zhang M, Nie Q, Hou Y, Bai G. Mol. Nutr. Food Res.,? 2017,? 61:1700332-1700339
12 Dong L, Feng S, Li S, Song P, Wang J. Anal. Chem.,? 2015,? 87(5): 6849-6853
13 Cheng G, Wang Z G, Denagamage S, Zheng S Y. ACS Appl. Mater. Interfaces,? 2016,? 8(16): 10234-10242
14 Piovesana S, Capriotti A L, Cavaliere C, Ferraris F, Iglesias D, Marchesan S, Lagana A. Anal. Chem.,? 2016,? 88(24): 12043-12050
15 Yang K, Liu J, Li S, Li Q, Wu Q, Zhou Y, Zhao Q, Deng N, Liang Z, Zhang L, Zhang Y. Chem. Commun.,? 2014,? 50(67): 9521-9524
16 LIU QingYang, ZHANG TingTing. Chinese J. Anal. Chem.,? 2018,? 46(4): 524-529
劉慶陽, 張婷婷. 分析化學(xué), 2018,? 46(4): 524-529
17 Meng H, Chen X W, Wang J H. J. Mater. Chem.,? 2011,? 21: 14857-14863
18 WANG WeiWei, LIU SuQin, XUE Yun, WANG Yan, YAN Chao. Chinese Journal of Chromatography, 2017, 35(1): 99-104
王薇薇, 劉素琴, 薛 蕓, 王 彥, 閻 超. 色譜, 2017, 35(1): 99-104
19 Chen X W, Chen S, Wang J H. Analyst,? 2010,? 135(7): 1736-1741
20 Liu J W, Zhang Y, Chen X W, Wang J H. ACS Appl. Mater. Interfaces,? 2014,? 6(13): 10196-10204
21 Liu J W, Yang T, Ma L Y, Chen X W, Wang J H. Nanotechnology,? 2013,? 24(50): 505704
22 Sun S, Ma M, Qiu N, Huang X, Cai Z, Huang Q, Hua X. Colloids Surf. B,? 2011,? 88: 246-253
23 Xu Z, Xi P, Chen F, Zeng Z. Transition. Met. Chem.,? 2008,? 33: 237-241
24 Huntington J A, Stein P E. J. Chromatogr. B,? 2001,? 756: 189-198
25 de Groot J, Kosters H A, de Jongh H H. Biotechnol. Bioeng.,? 2006,? 97(4): 735-741
Abstract Tungstotelluratecoated magnetic nanoparticles(MNP) were prepared by immobilization of tungstotellurate salt onto the surface of branched polyethyleneimine (PEI)modified magnetic nanoparticles via electrostatic interaction. The structure and composition of TeW@MNP were confirmed by characterization with FTIR, EDS and SEM. The obtained TeW@MNP composite had proven to be a promising adsorbent for the adsorption of ovalbumin in egg whites. Approximately 0.5 mg of TeW@MNP composite gave rise to a maximum adsorption efficiency of 91.6% for 100 μg/mL ovalbumin in 200 μL of sample solution at pH 4.0 (BR buffer). The retained ovalbumin was readily recovered by using 0.1% SDS as a stripping reagent, providing a recovery of 98.1%. The adsorption behavior of ovalbumin fitted Langmuir model, corresponding to a theoretical adsorption capacity of 373.4 mg/g. The TeW@MNP composite was practically applied to the selective isolation of ovalbumin from egg whites, and SDSPAGE assay results clearly indicated that the ovalbumin with high purity was obtained. The above experimental results illustrated the great application potentials of polyoxometalates for protein isolation and purification and extended the application scope of polyoxometalates in life science field.
Keywords Tungstotellurate; Magnetic nanoparticles; Ovalbumin; Solidphase extraction