李曉東,吳榮興,王曉明,鄭 東
(寧波職業(yè)技術(shù)學(xué)院 建筑工程學(xué)院,浙江 寧波 315800)
即使考慮壓電效應(yīng),石英晶體諧振器的振動(dòng)可以用三維運(yùn)動(dòng)方程進(jìn)行分析,但是其邊界條件異常復(fù)雜[1]。在20世紀(jì)中后期,受計(jì)算機(jī)性能所限,有限元法對(duì)該問題還無法直接求解,因此Mindlin提出了位移的近似假設(shè)
基于Mindlin的位移假設(shè),Lee等將位移和電勢展開為厚度坐標(biāo)的三角函數(shù)級(jí)數(shù)和,推導(dǎo)出可用于晶體板振動(dòng)分析的高階板方程[4]。相比于Mindlin板理論,Lee高階板方程可以很好地分析高階振動(dòng)模態(tài)。Mindlin采用Lee板方程研究了晶體諧振器的三階泛音振動(dòng)。在二維方程的推導(dǎo)成功后,Yong和Wang等基于這些Mindlin高階板方程用有限元法研究了AT切石英晶體諧振器的溫頻特性和電極效應(yīng)影響,同時(shí)也獲得了石英晶體諧振器的各類電學(xué)參數(shù)[5]。同樣,偏場作用和結(jié)構(gòu)效應(yīng)的分析也引起了研究人員的注意,例如尺寸效應(yīng)、溫度效應(yīng)和加速度效應(yīng)等都得到了充分的研究。
隨著石英晶體諧振器在各類電子系統(tǒng)、設(shè)備和儀器中的廣泛應(yīng)用,對(duì)于頻率穩(wěn)定性要求越來越高。電子行業(yè)已經(jīng)不滿足基頻的應(yīng)用,各種導(dǎo)航、通訊和智能設(shè)備對(duì)于高頻的需要也越來越多。目前業(yè)界常用的AT切石英晶體諧振器,普遍以基頻和三階頻為主要工作模態(tài),但是實(shí)驗(yàn)室中已經(jīng)可以達(dá)到10階頻。與此同時(shí),新切型也得到了研究人員的關(guān)注,AT切型石英晶片由于其制作簡單、溫度穩(wěn)定性好而得到了大量的應(yīng)用,2018年全球AT切石英晶片產(chǎn)量達(dá)100億顆以上。SC切型是雙旋轉(zhuǎn)切型,與AT切型一樣,石英晶片的板厚越薄,厚度剪切振動(dòng)的頻率就越高。在石英晶體諧振器的實(shí)際研制過程中,通過改變石英晶體板的厚度來提高石英晶體諧振器的頻率是產(chǎn)品設(shè)計(jì)中采用的方法。SC切型是最新發(fā)現(xiàn)具有各種顯著特性的新切型,實(shí)驗(yàn)數(shù)據(jù)表現(xiàn)非常不錯(cuò),急需理論分析。
新切型泛音石英晶體諧振器的理論研究也面臨了很大的挑戰(zhàn),主要原因是AT切石英晶體雖然是各向異性材料,但是彈性常數(shù)有一定的對(duì)稱性,可以對(duì)振動(dòng)模態(tài)進(jìn)行選擇。研究人員常選的是厚度剪切振動(dòng)和彎曲振動(dòng)模態(tài)。但是SC切石英晶體是完全各向異性材料,不存在彈性元素的對(duì)稱性,彈性常數(shù)矩陣的36個(gè)元素都是非零數(shù)值[6]。因此SC切石英晶體板內(nèi)的所有振動(dòng)模態(tài)都是通過彈性常數(shù)耦合在一起的。在振動(dòng)模態(tài)選取過程中,無法對(duì)任何一個(gè)進(jìn)行省略,在分析基頻厚度剪切振動(dòng)過程中,必須保留全部6個(gè)振動(dòng)模態(tài),而研究3階厚度剪切振動(dòng)模態(tài)時(shí),需要保留12個(gè)振動(dòng)模態(tài),以此類推,分析五階厚度剪切振動(dòng)模態(tài),需要考慮全部18個(gè)振動(dòng)模態(tài)。帶來的方程將是非常巨大,對(duì)于解析求解幾乎是不可能。
數(shù)量龐大的振動(dòng)方程不僅在求解上帶來難度,而且需要的修正系數(shù)計(jì)算也是一項(xiàng)很難的工作。對(duì)于AT切石英晶體板的高頻振動(dòng),可以用與精確解近似的方法獲得相應(yīng)的修正系數(shù)。但是對(duì)于SC切石英晶體板高頻振動(dòng),如果獲得全部振動(dòng)模態(tài)的修正系數(shù)也是非常難的。Wu和Wang等基于Mindlin板方程研究了SC切石英晶體板的色散關(guān)系、頻譜關(guān)系和模態(tài)波形圖[7]。
對(duì)于新切型石英晶體諧振器的泛音高頻振動(dòng),目前有兩種方法存在研究可能。解析法必須對(duì)全部石英晶體彈性常數(shù)矩陣的元素進(jìn)行比較,省略部分的小系數(shù),從而降低模態(tài)和方程的數(shù)量。另一種方法是有限元法,隨著計(jì)算機(jī)性能的不斷提高,過去認(rèn)為難以用三維方法直接建模目前看來逐漸變的可能。特別是對(duì)于AT切石英晶體板厚度剪切振動(dòng)中,已經(jīng)用有限元法對(duì)石英晶體諧振器進(jìn)行直接三維建模,獲得了精確的振動(dòng)頻率和模態(tài)云圖。因此新切型石英晶體板的泛音振動(dòng),完全可以用有限元法進(jìn)行分析[8]。
從Mindlin板理論出發(fā),分析了AT切石英晶體板基頻和泛音的研究方法,接著介紹了SC切型泛音石英晶體諧振器研究的困難和挑戰(zhàn)。提出解析法分析和有限元分析對(duì)新切型石英晶體諧振器的聯(lián)合研究方法,為新切型泛音石英晶體諧振器的制作奠定了理論基礎(chǔ)。