• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類代數(shù)上的弱可加交換映射

      2019-10-28 02:19霍東華
      關(guān)鍵詞:代數(shù)

      霍東華

      摘要:設(shè)A是一個有單位元1的代數(shù).稱映射f:A→A是一個弱可加映射,如果滿足對任意的x,y∈A,存在tx,y,sx,y∈IF使得f(x+y)=tx,yf(x)+sx,yf (y)成立.本文證明了在一定的假設(shè)下,如果,是交換映射,則存在Ao(x)∈4和一個從4到Z(A)的映射Ai,使得對所有的x∈A有f(x)=λ0(x)x+ λ1(x).作為應(yīng)用,刻畫了Mn (IF)上一類交換的弱可加映射.

      關(guān)鍵詞:代數(shù); 交換映射; 弱可加映射

      中圖分類號:0152.2

      文獻標(biāo)志碼:A

      DOI: 10.3969/j.issn.1000-5641.2019.04.001

      [參考文獻]

      [1]POSNER E c Derivation in prime rings [J]. Proceedings of American Mathematical Society. 1957, 8(6): 1093-1100

      [2]BRESAR M. Centralizing mappings on von Neumann algebras [J]. Proceedings of American Mathematical So-ciety, 1991, 111(2): 501-510.

      [3]BRESAR M. Centralizing mappings and derivations in prirue rings [J]. Journal of Algebra, 1993, 156(2) : 385-394.

      [4] MAYNE J H. Centralizing automorphisms of prime rings [J]. Canadian Matheruatical Bulletin, 1976, 19(1):113-115.

      [5]BRESAR M, MARTINDLE W S, MIERS C R. Centralizing maps in prime ring with involution [Jl Journal ofAlgebra, 1993, 161(2): 342-357.

      [6]LEE T K.σ-Commuting mappings in semiprime rings [J]. Communications in Algebra, 2001, 29(7): 2945-2951.

      [7]LEE T K. Derivations and centralizing mappings in prime rings [J]. Taiwanese Journal of Mathematics, 1997,1(3): 333-342.

      [8]LEE T C. Derivations and centralizing maps on skew elements [J] . Soochow Journal of Mathematics, 1998, 24(4):273-290.

      [9]FILIPPIS V D, DHARA B. Some results concerning n - σ-centralizing mappings in semiprime rings [J]. ArabianJournal of Mathematics, 2014, 3(1): 15-21.

      [10] DU Y Q, WANG Y. k-Commuting maps on triangular algebras [J] Linear Algebra and its Applications, 2012,436(5): 1367-1375.

      [11]LI Y B, WEI F. Semi-centralizing maps of generalized matrix algebras [J]. Linear Algebra and its Applications,2012, 436(5): 1122-1153.

      [12]Qi x F, HOU J C. Characterization of k-commuting additive maps on rings [J]. Linear Algebra and its Applica-tions, 2015, 468: 48-62.

      [13]ALI S, DAR N A. On *-centralizing mappings in rings with involution [J]. Georgian Mathematical Journal, 2014,21(1): 25-28.

      [14]BRESAR M. Commuting Maps: A survey [J], Taiwanese Journal of Mathematics, 2004, 8(3): 361-397.

      [15] BRESAR M, SEMRL P. Commuting traces of biadditive maps revisited [J] Comruunications in Algebra, 2003,31(1): 381-388.

      [16]BAI Z F. DU S P. Strong commutativity preserving maps on rings [J]. Rocky Mountain Journal of Mathematics,2014, 44(3) : 733-742.

      猜你喜歡
      代數(shù)
      無限維3-Pre-李代數(shù)
      一個特殊四維左對稱代數(shù)上的Rota睟axter算子
      3-李-Rinehart代數(shù)的結(jié)構(gòu)
      山西省2018年專升本選拔考試 高等代數(shù)
      一類代數(shù)系統(tǒng)正解的存在性與特征區(qū)間
      單側(cè)π—模理想
      構(gòu)造圖形法解一類代數(shù)題
      三角問題向量化向量問題代數(shù)化
      實施正、余弦函數(shù)代換破解一類代數(shù)問題
      一個新發(fā)現(xiàn)的優(yōu)美代數(shù)不等式及其若干推論
      拉萨市| 祁阳县| 许昌县| 璧山县| 青州市| 许昌县| 容城县| 沙河市| 孟津县| 嘉义县| 长春市| 绍兴县| 通州区| 赫章县| 砀山县| 图木舒克市| 金川县| 益阳市| 大兴区| 临泽县| 永州市| 高淳县| 封开县| 拉萨市| 如东县| 涟源市| 称多县| 响水县| 平度市| 咸宁市| 尚志市| 濉溪县| 铜鼓县| 荥经县| 榕江县| 卓尼县| 韩城市| 林芝县| 基隆市| 南郑县| 安岳县|