• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      雙模耦合KdV方程的多孤子解與精確解

      2019-10-28 02:19趙倩白喜瑞

      趙倩 白喜瑞

      摘要:根據(jù)簡化的Hirota雙線性方法和Cole-Hopf變換,當(dāng)一個(gè)新的雙模耦合KdV方程中的非線性參數(shù)與耗散參數(shù)取特殊值時(shí),得到了該新的雙模耦合KdV方程的多孤子解.同時(shí),當(dāng)方程中的非線性參數(shù)與耗散參數(shù)取一般值時(shí),通過不同的函數(shù)展開法,如tanh/coth法和Jacobi橢圓函數(shù)法,可得到這個(gè)方程的其他精確解.

      關(guān)鍵詞:雙模耦合KdV方程; 簡化的Hirota方法; 多孤子解;周期解

      中圖分類號(hào):0178

      文獻(xiàn)標(biāo)志碼:A

      DOI: 10.3969/j.issn.1000-5641.2019.04.005

      0 引言

      一般來說,大多數(shù)非線性方程都是關(guān)于時(shí)間t的一階導(dǎo)數(shù)的方程,它們描述了單一方向的波.例如,KdV方程,Burgers方程等,這些模型均是沿x軸正向傳播的.而關(guān)于時(shí)間t的二階導(dǎo)數(shù)方程Boussinesq方程,它是沿x軸正向和負(fù)向兩個(gè)方向傳播的.

      4 結(jié)論

      在本文中,我們構(gòu)造了一個(gè)新的雙模耦合KdV方程,一方面,通過簡化的Hirota方法和Cole-Hopf變換,對(duì)于特殊的α、β值可得到該方程的孤子解,但對(duì)于一般的α、β值,孤子解是否存在,我們還不能確定.另一方面,通過不同的函數(shù)展開法,對(duì)于一般的α、β值,我們得到了該方程的其他精確解.

      [參考文獻(xiàn)]

      [1]KORSUNSKY s V Soliton solutions for a second-order KdV equation[J]Phys Lett A,1994, 185: 174-176

      [2]LEE c T.LIU J L.LEE c c.et al The second-order KdV equation and its soliton-like solution[J]ModernPhysics Letters B,2009. 23:1771-1780

      [3]LEE c c,LEE c T,LIU J L,et al Quasi-solitons of the two-mode Korteweg-de Vries equation[J]Eur Phys JAppl Phys, 2010,52:11301

      [4]LEE c T Some notes on a two-mode Korteweg-de Vries equation[J]Phys Scr. 2010,81:065006

      [5]LEE c T.LIU J L A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]Rocky Mtith, 2011, 41:1273-1289

      [6]LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system [J].Waves in Random and Complex Media, 2013, 23: 56-76.

      [7] LEE C T. LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation [J]. Physics of WavePhenomena, 2014, 22: 69-80.

      [8] LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation: Its mathematical physicalstructure and anomaly soliton phenomena [J]. Waves in Random and Complex Media, 2015, 25: 197-222.

      [9]LEE C T, LEE C C. Symbolic computation on a second-order KdV equation [J]. Journal of Symbolic Computa-tion, 2016, 74: 70-95.

      [10] WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation [J]. MathMethods Appl Sci, 2017, 40: 2277-2283.

      [11] LEE C T. LEE C C. LIU M L. Double-soliton and conservation law structures for a higher-order type ofKorteweg-de Vries equation [J] Physics Essays, 2015, 28: 633-638.

      [12] ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation [J/OL]. Journal ofKing Saud University-Science, (2017-07-03) [2018-06-28l. http://dx.doi.org/10.1016/j.jksus.2017.06.010.

      [13]XIAO Z J, TIAN B. ZHEN H L, et al. Multi-soliton solutions and Backlund transformation for a two-mode KdVequation in a fluid [J]. Waves in Random and Complex Media, 2017, 27: 1-14.

      [14] WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions [Jl Appl Math Lett, 2017,70: 1-6.

      [15] WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid: Multiple kink solutions and otherexact solutions [J]. Int J Appl Comput Math, 2017, 3: 3977-3985.

      [16] WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation: Conditions for multiple solitonsolutions to exist [J] Math Methods Appl Sci, 2017, 40: 4128-4133.

      [17] JARADAT H M. SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries: Multiple-soliton solutionsand other exact solutions [J] Nonlinear Dyn, 2017, 90: 371-377.

      [18] WAZWAZ A M. Two-mode fifth-order KdV equations: Necessary conditions for multiple-soliton solutions toexist [J] Nonlinear Dyn, 2017. 87: 1685-1691.

      [19]WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiplekink solutions [J]. Alexandria Eng J, 2018, 57: 1971-1976.

      [20] JARDAT H M. Two-mode coupled Burgers equation: Multiple-kink solutions and other exact solutions [J].Alexandria Eng J, 2018, 57: 2151-2155.

      [21]SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries usingthe simplified bilinear and the trigonoruetric-function methods [J]. Nonlinear Dyn, 2017, 90: 1363-1371.

      [22]WAZWAZ A M. Two wave mode higher-order modified KdV equations: Essential conditions for multiple solitonsolutions to exist [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2223-2230.

      [23] HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differentialequations [J]. Mathematics and Computers in Simulation, 1997, 43: 13-27.

      [24] WAZWAZ A M. Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation [Jl Appl MathComput, 2008, 204: 20-26.

      [25] ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-orderBoussinesq-Burgers equation [J]. Chin Phy B, 2011, 20: 010205.

      [26] WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations [J].Open Physics, 2013. 11: 291-295.

      [27]WAZWAZ A M. Multiple kink solutions for two coupled integrable (2 + 1)-dimensional systems [J]. Appl MathLett, 2016, 58: 1-6.

      [28] YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy [J]. Chin Phys B,2012, 21: 010201.

      [29]MALFLIET W, HEREMAN W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54: 563-568.

      [30]FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations [J]. Zeitschriftfur Naturforschung A, 2002, 57: 692-700.

      [31]WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations [J]. Appl Math and Comput,2004, 154: 713-723.

      [32] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinearwave equations [J]. Phys Lett A, 2001, 289: 69-74.

      通州区| 仁寿县| 远安县| 石泉县| 三穗县| 习水县| 新绛县| 渑池县| 哈巴河县| 卢氏县| 萍乡市| 黔西| 石景山区| 康平县| 峨边| 林周县| 邹平县| 宝山区| 沾益县| 昂仁县| 英超| 民和| 乌兰察布市| 南乐县| 广宗县| 辉县市| 谢通门县| 闽侯县| 象州县| 博湖县| 友谊县| 丰县| 麻江县| 桃江县| 盐源县| 五台县| 昌平区| 疏附县| 交城县| 宜兰市| 丰镇市|