丁法龍,茅澤育,韓 凱
·農(nóng)業(yè)水土工程·
基于仿真及物理模型試驗(yàn)構(gòu)建圓形斷面管道非滿流流速函數(shù)
丁法龍,茅澤育,韓 凱
(清華大學(xué)水利水電工程系,北京 100084)
明渠斷面流速分布是精確測(cè)量明渠斷面流量的基礎(chǔ),也是明渠水流運(yùn)動(dòng)規(guī)律研究的基本問題。為探究圓形斷面管道非滿流的斷面流速分布特性,采用經(jīng)實(shí)測(cè)資料驗(yàn)證的三維紊流數(shù)學(xué)模型及數(shù)值求解方法,對(duì)不同底坡和充滿度組合情況下的圓管非滿流進(jìn)行了數(shù)值模擬。結(jié)果表明:圓管非滿流的斷面流速分布對(duì)充滿度非常敏感,充滿度越大,垂線流速的非單調(diào)性越明顯,當(dāng)充滿度低于0.5時(shí),未出現(xiàn)最大流速點(diǎn)下潛(dip)現(xiàn)象;當(dāng)充滿度超過0.5時(shí),dip現(xiàn)象越發(fā)明顯,這是因?yàn)楫?dāng)充滿度超過0.5后,內(nèi)凹型側(cè)壁對(duì)水面的約束作用增強(qiáng),斷面二次流更加明顯。圓管非滿流斷面上各垂線的流速分布曲線具有很好的相似性,均接近于拋物線曲線特征,二次函數(shù)中的待定系數(shù)主要受垂線橫向位置和充滿度的影響。通過回歸分析建立了圓管無壓均勻流中沿垂線流速的拋物線分布公式,同時(shí)給出了各系數(shù)的確定方法,按上述流速分布律計(jì)算的流速值與實(shí)測(cè)值吻合良好,曲線擬合的決定系數(shù)均在0.92以上,表明給出的拋物型垂線流速分布規(guī)律是合理可靠的。
流量;流速;管道;圓形;非滿流
圓形斷面管道因具有較好的受力性能及便于預(yù)制和運(yùn)輸?shù)葍?yōu)點(diǎn),被廣泛應(yīng)用于人工管渠、輸水涵洞、城市雨洪管道等灌溉和給排水工程中,出于對(duì)通風(fēng)、防爆、排除有害氣體以及適應(yīng)水量變化等問題的考慮,在設(shè)計(jì)時(shí)通常將圓管內(nèi)水流設(shè)計(jì)為非滿流[1],水體的上部邊界與大氣直接接觸,管道非滿流由重力主導(dǎo),本質(zhì)上屬于明渠流動(dòng)。
明渠斷面流量的精確測(cè)量是引、排水工程中必須要解決的技術(shù)問題,也是進(jìn)行水資源優(yōu)化配置的基礎(chǔ)。工程實(shí)際中,明渠均勻流流量計(jì)算常采用曼寧公式,它對(duì)于常規(guī)的折線形斷面明渠具有一定的精確度,但卻明顯不適用于圓管非滿流水力計(jì)算。根據(jù)圓形斷面的幾何關(guān)系,結(jié)合曼寧公式,可得過水流量關(guān)于糙率、充滿角、圓管直徑、底坡的表達(dá)式[1]。分析該式的函數(shù)極值,可知圓管非滿流的流量隨充滿度(或充滿角)的增加呈先增加后減小的非單一性變化,即流量最大值出現(xiàn)在充滿度為0.94時(shí)的非滿流狀態(tài),而不是恰為滿管流時(shí),這與實(shí)際情況相悖,因?yàn)閷?shí)際使用的圓形斷面管道,當(dāng)?shù)灼?、糙率、管徑一定時(shí),過水?dāng)嗝媪髁侩S水深的增加單調(diào)遞增[2]。
從曼寧公式本身角度進(jìn)行分析,該雙值性現(xiàn)象可解釋為:曼寧公式以水力半徑作為衡量斷面過流能力的幾何指標(biāo),但由于圓形斷面形狀的特殊性,超過一半水深后壁面逐漸內(nèi)凹,則當(dāng)充滿度達(dá)到某一值后,斷面濕周的增速要大于過流斷面積的增速,二者的比值即水力半徑逐漸減小,隨充滿度(即水深與管徑的比值)的雙值性變化導(dǎo)致了流量隨亦呈現(xiàn)雙值性變化,故對(duì)于圓形斷面管道非滿流,曼寧公式無法體現(xiàn)其真實(shí)流動(dòng)特性。
明渠斷面流速分布長期以來是工程水力學(xué)研究的熱點(diǎn)問題,在曼寧公式等流量估算公式不適用的情況下,要精確測(cè)量明渠斷面流量,無論是采用流速-面積法,還是采用流速-水位法,均需準(zhǔn)確掌握明渠斷面的流速分布。圓管明渠水流的自由水面不受固壁約束,流態(tài)容易受到管道斷面幾何特征、管道壁面粗糙程度及管道底坡等相關(guān)因素的影響,因此比圓管有壓流復(fù)雜很多[2];另外,相較于矩形、梯形、三角形等折線形斷面明渠及拋物形的天然河道,由于受橫向內(nèi)凹型曲率壁面的影響,圓管非滿流斷面流速分布呈現(xiàn)更為顯著的三維性,典型表現(xiàn)為垂線最大縱向流速點(diǎn)出現(xiàn)在水面以下的dip現(xiàn)象。
對(duì)于圓形斷面明渠流速分布的研究,國內(nèi)鮮見報(bào)道,國外研究則主要以魚道和涵管為研究對(duì)象,以寬淺明渠中的垂向流速對(duì)數(shù)律為基本分布模型,并針對(duì)外區(qū)流速值偏離對(duì)數(shù)曲線的現(xiàn)象,采用尾流函數(shù)加以修正,修正后的對(duì)數(shù)-尾流律成為接受度最高的垂線流速分布形式[3-6]。但這種垂線流速分布形式在應(yīng)用時(shí)存在明顯的局限性,如公式中涉及的積分常數(shù)取值存在異議[7-8];尾流強(qiáng)度系數(shù)的影響因素眾多,具體取值不易確定[9],且對(duì)數(shù)函數(shù)在應(yīng)用中也存在不便,遇到積分時(shí),往往因原函數(shù)無法確定,使得其應(yīng)用范圍受限,渠底流速和流速梯度為無窮大,不能反映側(cè)壁處的流速分布[10]。除公式形式自身的缺陷外,垂線流速分布的對(duì)數(shù)-尾流律未考慮邊壁的影響,分析水槽試驗(yàn)和數(shù)值計(jì)算結(jié)果,實(shí)際的垂向流速分布與對(duì)數(shù)-尾流曲線相比較,靠近中心區(qū)域的相關(guān)系數(shù)較高,但邊壁區(qū)域的相關(guān)系數(shù)較小。
綜上,曼寧-謝才公式未考慮圓形斷面獨(dú)特的邊壁幾何形態(tài),不能很好地闡述流量隨水深呈非單一性的變化;用于描述垂線流速分布的對(duì)數(shù)律及其衍生形式在應(yīng)用時(shí)又產(chǎn)生諸多局限性。因此,研究圓管無壓流動(dòng)斷面流速分布特性,對(duì)于豐富明渠水動(dòng)力學(xué)理論,指導(dǎo)相關(guān)工程設(shè)計(jì)具有重要意義。通過試驗(yàn)確定明渠尤其是閉合斷面明渠的流速分布,需要耗費(fèi)大量時(shí)間且數(shù)據(jù)量有限,數(shù)值模擬是種便捷的替代方式。針對(duì)圓形斷面管道無壓均勻流進(jìn)行了數(shù)值模擬,將數(shù)模結(jié)果與物理模型試驗(yàn)結(jié)果進(jìn)行比較,驗(yàn)證數(shù)模及計(jì)算參數(shù)的合理性,并利用驗(yàn)證后的模型開展系列數(shù)值試驗(yàn),研究了圓管無壓均勻流的時(shí)均縱向流速的斷面分布特性。
圓形斷面管道內(nèi)的非滿水流,可簡化為圖1所示的流動(dòng),該流動(dòng)屬于三維不可壓縮流動(dòng),可由以下連續(xù)方程和動(dòng)量方程(Navier-Stokes方程)來描述
式中為流體密度,kg/m3;u、u為流速分量(m/s),=1,2,3、=1,2,3;x、x為坐標(biāo)分量;為壓強(qiáng),Pa;f為質(zhì)量力,N/kg;為運(yùn)動(dòng)黏性系數(shù),m2/s。
工程實(shí)際中的明渠水流絕大多數(shù)為紊流,本研究采用雷諾時(shí)均(Reynolds averaged N-S)的數(shù)值模擬方法對(duì)時(shí)均N-S方程組進(jìn)行求解,需選取合適的紊流模型封閉方程組。國內(nèi)外研究表明,在窄深式斷面明渠中,側(cè)壁和水面的影響使水流結(jié)構(gòu)呈現(xiàn)三維性[11-15],同寬淺明渠相比,最為直觀的區(qū)別就是,受第2類二次流的影響,過流斷面上垂線最大流速點(diǎn)出現(xiàn)在水面以下,即最大流速下潛(dip)現(xiàn)象[16-19]。同一般的窄深式明渠水流類似,圓形斷面明渠中也有該現(xiàn)象發(fā)生,但受內(nèi)凹形側(cè)壁形態(tài)的影響,圓形明渠中二次流形態(tài)有其獨(dú)特性,有研究[20-21]表明,與折線形斷面明渠相比,圓形斷面明渠的二次流不存在底渦,僅由1對(duì)主渦組成,主渦的位置、大小和強(qiáng)度與渠道充滿度有關(guān),該主渦在水面附近將側(cè)壁處低流速水體輸運(yùn)至中部,將表層高流速水體輸運(yùn)至水面以下,使最大流速下潛,由于沒有底渦的存在,圓形明渠中出現(xiàn)最大流速下潛(dip)現(xiàn)象時(shí),最大流速位置更低。
第2類二次流是由于雷諾應(yīng)力的各向異性產(chǎn)生的,因此,為了準(zhǔn)確模擬第2類二次流對(duì)斷面流速分布的影響,應(yīng)采用各向異性的紊流模型。RNG-模型是根據(jù)張量不黏性理論提出的非線性-紊流模型,與線性的標(biāo)準(zhǔn)-模型相比,RNG-模型能夠準(zhǔn)確地預(yù)測(cè)各向異性紊流[22-23]。因此,本研究采用RNG-模型封閉雷諾方程組,對(duì)圓形斷面管道非滿流特性進(jìn)行數(shù)值模擬研究,湍動(dòng)能輸運(yùn)方程和湍動(dòng)耗散率輸運(yùn)方程如下[23]:
式中eff=+,為流體動(dòng)力黏性系數(shù),N·s/m2;為流體渦黏度,N·s/m2;G為由于平均速度梯度引起的湍動(dòng)能產(chǎn)生項(xiàng),m2/s2;一般4個(gè)經(jīng)驗(yàn)常數(shù)的取值==1.39,1=1.42,2=1.68[16]。
注:B為水面寬度,m;h為水深,m;D為管道直徑,m;q為充滿角;i為底坡;pw為邊壁某點(diǎn)距離管道底部中點(diǎn)的濕周距離,m;x、y、z分別為展向、垂向和縱向坐標(biāo);A為邊壁上某一點(diǎn)。
數(shù)值計(jì)算的邊界條件及解算方法為:圓形斷面管道上游進(jìn)水邊界條件設(shè)置為流量入口,給定相應(yīng)的入口流量值;下游出水邊界條件為自由出流(outflow),下游空氣出口邊界條件為給定大氣壓力值105Pa;為了考慮空氣對(duì)水流流速的影響,自由水面的處理摒棄了明渠均勻流模擬常用的“剛蓋”假定方法,采用Tru-VOF方法計(jì)算自由界面的水體體積率函數(shù)方程,該方法相較于傳統(tǒng)的VOF方法很大程度上減少了模型收斂所需時(shí)間,可以準(zhǔn)確地追蹤水流自由表面變化的情況[24];壁面邊界條件為無滑移固壁條件,通過設(shè)置壁面顆粒的平均凸起高度k來量化管壁粗糙程度,并由標(biāo)準(zhǔn)壁面函數(shù)來確定壁面附近流速分布。
網(wǎng)格劃分采用FAVOR(fractional area/volume obstacle representation)技術(shù),這種方法對(duì)于復(fù)雜邊界的流動(dòng)區(qū)域,可以用平滑變化的六面體結(jié)構(gòu)化網(wǎng)格進(jìn)行離散,可高效解決網(wǎng)格模型失真問題[25]。計(jì)算域過流斷面的網(wǎng)格尺寸設(shè)為0.01 m,橫向垂向基本相同;沿流動(dòng)方向網(wǎng)格尺寸為0.05 m。FAVOR技術(shù)采用有限差分法離散控制方程為代數(shù)方程組并進(jìn)行數(shù)值求解,動(dòng)量方程中對(duì)流項(xiàng)的離散格式采用二階迎風(fēng)格式,擴(kuò)散項(xiàng)采用二階中心差分格式,湍動(dòng)能和湍動(dòng)能耗散率的離散格式均采用二階迎風(fēng)格式;計(jì)算殘差值設(shè)為10-6,時(shí)間步長在計(jì)算過程可自動(dòng)調(diào)節(jié),并限定最小時(shí)間步長為10-6s以保證數(shù)值穩(wěn)定性;坡度對(duì)水流的影響通過將重力分解為縱向和垂向分量來體現(xiàn)。
建立管徑0.4 m、管長50 m的圓管無壓流動(dòng)幾何模型,針對(duì)3種不同底坡與12種不同充滿度(即水深與管徑的比值),共計(jì)36種工況條件的圓管無壓均勻流進(jìn)行數(shù)值計(jì)算,具體工況參數(shù)及網(wǎng)格劃分情況見表1。
表1 數(shù)值計(jì)算的工況參數(shù)
為驗(yàn)證上述數(shù)學(xué)模型及其計(jì)算參數(shù)的可靠性,針對(duì)圓管明流的斷面流速分布進(jìn)行了室內(nèi)測(cè)量試驗(yàn)。測(cè)流試驗(yàn)在長20 m、直徑0.4 m且頂部開敞(距頂部4 cm以上部分被切割掉)的圓形斷面有機(jī)玻璃質(zhì)水槽中進(jìn)行,水槽底坡=0.004,試驗(yàn)系統(tǒng)布置如圖2所示。
圖2 試驗(yàn)布置圖
通過流量控制閥給定不同的首部流量,為保證邊界層充分發(fā)展并盡快形成均勻流條件,在水槽進(jìn)口和出口分別布置隔離板以減小水面波動(dòng),選取距離水槽首部15 m處為量測(cè)斷面,根據(jù)流速分布的對(duì)稱性,自中垂線向右等距平移2 cm設(shè)置測(cè)速垂線,每條垂線上自水面向下等距降低2 cm布置測(cè)點(diǎn),試驗(yàn)水溫在16 ℃左右。采用Nortek AS公司生產(chǎn)的Vetrino小威龍三維點(diǎn)式多普勒聲波流速儀測(cè)量斷面流速,測(cè)流用的探頭類型為側(cè)視(平視)探頭,流速采樣頻率為25 Hz,每個(gè)測(cè)點(diǎn)收集100個(gè)數(shù)據(jù),以其算術(shù)平均值作為該點(diǎn)的時(shí)均流速值;斷面水深使用SCM60型水位測(cè)針測(cè)量,精度為0.1 mm;流量采用HFT多普勒流量計(jì)測(cè)量,測(cè)量精度為±0.5%。
流速是分析水流運(yùn)動(dòng)規(guī)律的最基本要素,紊流的內(nèi)部結(jié)構(gòu)、能量傳遞過程及阻力特性等各種動(dòng)力要素均與流速分布相關(guān)或以流速分布體現(xiàn)[26-29],對(duì)比時(shí)均縱向流速的計(jì)算值與實(shí)測(cè)值,可以驗(yàn)證數(shù)學(xué)模型及相關(guān)參數(shù)的可靠性。物理試驗(yàn)結(jié)果及數(shù)值模擬結(jié)果的對(duì)比,前提是保證2種流動(dòng)過程的邊界層充分發(fā)展且已形成均勻流,因此,按照以下方式分別確定物理試驗(yàn)和數(shù)值模擬中的均勻流斷面,進(jìn)行運(yùn)動(dòng)要素的對(duì)比:1)物理試驗(yàn)中,分別選取距離首部13、14、15、16、17 m的5個(gè)過流斷面,每個(gè)斷面上按照上文所述布置測(cè)點(diǎn),通過對(duì)比5個(gè)不同斷面上相同對(duì)應(yīng)位置的測(cè)點(diǎn)的平均流速值發(fā)現(xiàn),在各個(gè)充滿度條件下,5個(gè)斷面上各對(duì)應(yīng)點(diǎn)的最大相對(duì)差值均在1.26%以內(nèi),可認(rèn)為5個(gè)不同的斷面上具有相同的斷面流速分布廓線,即此時(shí)已經(jīng)形成均勻流。2)數(shù)值模擬中,分別在后處理中截取距離首部28、29、30、31、32 m的5個(gè)過流斷面,每個(gè)斷面上按照上文所述布置測(cè)點(diǎn),通過對(duì)比5個(gè)不同斷面上相同對(duì)應(yīng)位置的測(cè)點(diǎn)的平均流速值發(fā)現(xiàn),在各個(gè)充滿度條件下,5個(gè)斷面上各對(duì)應(yīng)點(diǎn)的最大相對(duì)差值均在0.73%以內(nèi),可認(rèn)為5個(gè)不同的斷面上具有相同的斷面流速分布廓線,即此時(shí)已經(jīng)形成均勻流。由上述可知,物理試驗(yàn)中距首部15 m處的過流斷面前后和數(shù)值模擬中距首部30 m處的過流斷面前后均已形成均勻流,可以就該2個(gè)斷面進(jìn)行物理試驗(yàn)和數(shù)值模擬的結(jié)果比對(duì)。表2為底坡0.004、管徑0.4 m、流量=0.246 m3/s(對(duì)應(yīng)充滿度=0.47)時(shí),過流斷面不同垂線上的時(shí)均縱向流速計(jì)算值與實(shí)測(cè)值對(duì)比。由表可見,縱向時(shí)均流速計(jì)算值與實(shí)測(cè)值的相對(duì)誤差均在±4.2%以內(nèi),表明上述數(shù)學(xué)模型及其參數(shù)對(duì)于模擬過流斷面的時(shí)均縱向流速分布具有較高的計(jì)算精度。
紊動(dòng)能是表征紊流紊動(dòng)特性的重要參數(shù),運(yùn)用Vectrino(小威龍)聲學(xué)多普勒流速儀可以測(cè)量了各個(gè)流速測(cè)點(diǎn)的脈動(dòng)流速,從而得到實(shí)際的紊動(dòng)能大??;在RNG-兩方程模型中,紊動(dòng)能是基本未知量,可以直接求解得到。底坡0.004、管徑0.4 m、流量=0.246 m3/s(對(duì)應(yīng)充滿度=0.47)時(shí),過流斷面不同測(cè)點(diǎn)的對(duì)比,見表2,紊動(dòng)能計(jì)算值與實(shí)測(cè)值之間的相對(duì)誤差均在±4.85%以內(nèi),表明該數(shù)學(xué)模型及參數(shù)選取對(duì)于模擬圓管明流的紊動(dòng)特性亦有較高的精度。
3.2.1 斷面流速分布
圓管明渠水流流態(tài)受側(cè)壁影響較大,斷面流速分布呈現(xiàn)明顯的三維性,圖3所示為底坡=0.001 5、=0.75條件下,距管首30 m處過流斷面的流速等值線圖,由圖可見,最大流速點(diǎn)出現(xiàn)在半水深以下,dip現(xiàn)象顯著,對(duì)比所有工況的斷面流速分布等值線圖發(fā)現(xiàn),當(dāng)充滿度低于0.5時(shí),基本沒有出現(xiàn)dip現(xiàn)象;當(dāng)充滿度超過0.5時(shí),dip現(xiàn)象越發(fā)明顯,這是因?yàn)楫?dāng)充滿度超過0.5后,內(nèi)凹型側(cè)壁對(duì)水面的約束作用增強(qiáng),斷面二次流更加明顯。圖3中斷面流速沿中垂線對(duì)稱分布,近壁區(qū)的流速等值線基本平行于邊壁,其他各工況亦有類似規(guī)律,與充滿度大小無關(guān)。
表2 不同垂線位置及相對(duì)水深條件下均縱向流速和紊動(dòng)能計(jì)算與實(shí)測(cè)值及相對(duì)誤差
注:管徑0.4 m、底坡0.004、充滿度0.47、流量為0.246 m3·s-1。
Note: Pipe diameter 0.4 m, slope 0.004, filling ratio 0.47 and flow rate 0.246 m3·s-1.
3.2.2 垂線流速分布
為便于工程計(jì)算應(yīng)用,通常把明渠斷面流速分布的分析歸結(jié)為垂線流速分布分析(如對(duì)數(shù)律、對(duì)數(shù)-尾流律亦是描述垂線流速分布),將垂線流速分布沿橫向進(jìn)行面積積分即可得到明渠斷面流量。圖4為=0.004,不同充滿度時(shí)的斷面中垂線流速分布,可見圓管非滿流的垂線流速分布曲線對(duì)過流斷面形式非常敏感,充滿度越大時(shí),垂線上的流速沿水深越呈非單調(diào)變化趨勢(shì),即最大流速點(diǎn)的dip現(xiàn)象越明顯,這與斷面流速等值線圖的分析結(jié)果一致。
注:以過流斷面中垂線最低端為原點(diǎn),沿水流展向向右為x軸,沿水深方向向上為y軸。
注:D為管道直徑,m;y為垂向坐標(biāo),m;V為斷面平均流速,m·s-1;a為充滿度,下同。
圖5為=0.004、=0.7條件下,不同橫向位置處垂線上的流速分布,由圖可見,不同橫向位置處的垂線流速分布形式存在差異,尤其是靠近邊壁區(qū)域的垂線,這是由內(nèi)凹型側(cè)壁對(duì)紊動(dòng)水體的約束作用增強(qiáng)所致。
注:h為水深,m;u為點(diǎn)的時(shí)均流速,m·s-1。
3.2.3 垂線流速分布擬合分析
式中為過流斷面平均流速,m/s;,,為待定系數(shù)。
由于時(shí)均縱向流速以中垂線為軸呈對(duì)稱分布,現(xiàn)只分析中垂線右側(cè)即>0的情形。根據(jù)系數(shù)、、在不同的流動(dòng)區(qū)域受和的影響程度不同,將過流斷面沿橫向劃分為中心區(qū)和邊壁區(qū),其中:1)當(dāng)<0.5時(shí),≤2/5為中心區(qū),>2/5為邊壁區(qū);2)當(dāng)≥0.5時(shí),≤/3為中心區(qū),>/3為邊壁區(qū)。方差分析結(jié)果表明,中心區(qū)的系數(shù)、、與橫向位置和充滿度均呈線性相關(guān)關(guān)系,而邊壁區(qū)的系數(shù)、、則主要受垂線橫向位置的影響,而與充滿度基本無關(guān)。通過回歸分析,得到不同流動(dòng)區(qū)域中待定系數(shù)、、與充滿度和垂線所在的橫向位置之間的函數(shù)關(guān)系,如表3所示,其適用條件為0.10≤≤0.95,0.001 2 m3/s≤≤0.527 m3/s。
表3 待定系數(shù)a,b,c的擬合函數(shù)關(guān)系式
拋物型流速垂向分布律可以較為準(zhǔn)確地反映圓管無壓均勻流中的流速分布,且拋物線函數(shù)形式簡單,便于工程實(shí)際應(yīng)用,在準(zhǔn)確掌握了圓管非滿流流速分布規(guī)律后,就可以通過量測(cè)過流斷面上特征點(diǎn)流速來確定垂線平均流速和斷面平均流速,從而比較精確地計(jì)算圓管非滿流的過水流量。
采用經(jīng)實(shí)測(cè)資料驗(yàn)證的三維紊流數(shù)學(xué)模型及數(shù)值求解方法,對(duì)不同底坡和充滿度組合情況的圓形斷面管道無壓流動(dòng)進(jìn)行了數(shù)值模擬,主要結(jié)果及結(jié)論如下:
1)在玻璃材質(zhì)管徑為0.4 m、底坡為0.004、流量為0.246 m3/s(對(duì)應(yīng)充滿度為0.47)條件時(shí),過流斷面不同垂線上的時(shí)均縱向流速計(jì)算值與實(shí)測(cè)值的相對(duì)誤差均在±4.2%以內(nèi),表明數(shù)學(xué)模型及其參數(shù)對(duì)于模擬過流斷面的時(shí)均縱向流速分布具有較高的計(jì)算精度。
2)圓管非滿流的斷面流速分布對(duì)充滿度非常敏感,充滿度越大,垂線流速的非單調(diào)性越明顯。當(dāng)充滿度低于0.5時(shí),基本沒有出現(xiàn)dip現(xiàn)象;當(dāng)充滿度超過0.5時(shí),dip現(xiàn)象越發(fā)明顯,這是因?yàn)楫?dāng)充滿度超過0.5后,內(nèi)凹型側(cè)壁對(duì)水面的約束作用增強(qiáng),斷面二次流更加明顯。
3)圓管非滿流斷面上各垂線的流速分布曲線具有很好的相似性,均接近于拋物線曲線特征,二次函數(shù)中的待定系數(shù)主要受垂線橫向位置和充滿度的影響。
4)通過回歸分析建立了充滿度0.10≤≤0.95條件下圓管無壓均勻流中沿垂線流速的拋物線分布公式,同時(shí)給出了各系數(shù)的確定方法,按上述流速分布律計(jì)算的流速值與實(shí)測(cè)值吻合良好,曲線擬合的決定系數(shù)均在0.92以上,表明給出的拋物型垂線流速分布律是合理的。拋物型分布律能較好地體現(xiàn)圓管非滿流的垂線流速分布規(guī)律,采用垂線流速的拋物型分布律計(jì)算斷面流量,既克服了采用曼寧公式計(jì)算流量時(shí)流量隨充滿度呈雙值變化的不合理性,又比函數(shù)形式繁瑣、不易積分求解流量的對(duì)數(shù)律衍生公式更易用于工程計(jì)算。
[1] 茅澤育,趙璇,羅昇. 圓形斷面管道非滿流流速計(jì)算表達(dá)式[J]. 水科學(xué)進(jìn)展,2007,18(2):170-174.
Mao Zeyu, Zhao Xuan, Luo Sheng. Analytic xepression for partially-filled flow velocity in pipe in of circular section[J]. Advances in Water Science, 2007, 18(2): 170-174. (in Chinese with English abstract)
[2] Guo J. Modified log-wake-law for smooth rectangular open channel flow[J]. Journal of Hydraulic Research, 2014, 52(1): 121-128.
[3] Rafik Absi. An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows[J]. Journal of Hydraulic Research, 2011, 49(1): 8.
[4] Clark S P, Toews J S, Tkach R. Beyond average velocity: Modelling velocity distributions in partially filled culverts to support fish passage guidelines[J]. International Journal of River Basin Management, 2014, 12(2): 101-110.
[5] Morrison, Ryan R, Hotchkiss, et al. Turbulence characteristics of flow in a spiral corrugated culvert fitted with baffles and implications for fish passage[J]. Ecological Engineering, 2009, 35(3): 381-392.
[6] Steffler P M, Rajaratnam N, Peterson A W. LDA measurements in open channel[J]. Journal of Hydraulic Engineering, 1985, 111(1): 119-130.
[7] Salih Kirkg?z M, Mehmet Ardi?lio?lu. Velocity profiles of developing and developed open channel flow[J]. Journal of Hydraulic Engineering, 1997, 123(12): 1099-1105.
[8] 王殿常,王興奎,李丹勛. 明渠時(shí)均流速分布公式對(duì)比及影響因素分析[J]. 泥沙研究,1998(3):86-90.
Wang Dianchang, Wang Xingkui, Li Danxun. Comparison of time average velocity formula and analysis of impact factors on open channel[J]. Journal of Sediment Research, 1998(3): 86-90. (in Chinese with English abstract)
[9] Yang S Q , Lim S Y , Mccorquodale J A . Investigation of near wall velocity in 3-D smooth channel flows[J]. Journal of Hydraulic Research, 2005, 43(2): 149-157.
[10] George W K. Is there a universal log law for turbulent wall-bounded flows[J]. Philos Trans A Math Phys Eng Sci, 2007, 365(365): 789-806.
[11] 韓延成,徐征和,高學(xué)平,等. 二分之五次方拋物線形明渠設(shè)計(jì)及提高水力特性效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):139-144.
Han Yancheng, Xu Zhenghe, Gao Xueping, et al. Design of two and a half parabola-shaped canal and its effect in improving hydraulic property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 139-144. (in Chinese with English abstract)
[12] Kundu S, Kumbhakar M, Ghoshal K. Reinvestigation on mixing length in an open channel turbulent flow[J]. Acta Geophysica, 2018, 66(1): 93-107.
[13] Minakshee Mahananda, Prashanth Reddy Hanmaiahgari, Balachandar R. Effect of aspect ratio on developing and developed narrow open channel flow with rough bed[J]. Canadian Journal of Civil Engineering, 2018, 45(1): cjce-2017-0458.
[14] Xia W, Chen H, Wang J, et al. Fractal characteristics of turbulent flows in open channel[J]. Journal of Hydroelectric Engineering, 2018. DOI:10.11660/slfdxb.20180705
[15] Vishal G, Tomar J, Bharti R P. Critical parameters for non-Newtonian power-law fluid flow across a channel confined circular cylinder[R/OL]. 2019. https://www.researchgate.net/ publication/330552989
[16] Momplot A, Kouyi G L, Mignot E, et al. Typology of the flow structures in dividing open channel flows[J]. Journal of Hydraulic Research, 2018, 55(1): 63-71.
[17] Anjum N, Ghani U, Pasha G A, et al. Reynolds stress modeling of flow characteristics in a vegetated rectangular open channel[J]. Arabian Journal for Science & Engineering, 2018(2): 1-8.
[18] Pu J H. Turbulent rectangular compound open channel flow study using multi-zonal approach[J]. Environmental Fluid Mechanics, 2018(3): 1-16.
[19] Bonakdari H, Frédérique Larrarte, Lassabatere L, et al. Turbulent velocity profile in fully-developed open channel flows[J]. Environmental Fluid Mechanics, 2008, 8(1):1-17.
[20] Zhu Z, Wang J, Yan C, et al. Experimental study on natural circulation flow resistance characteristics in a 3?×?3 rod bundle channel under rolling motion conditions[J]. Progress in Nuclear Energy, 2018, 107: 116-127.
[21] Keramaris E, Pechlivanidis G. Effects of different porous beds on turbulent characteristics in an open channel above the porous bed[J]. Flow Measurement & Instrumentation, 2017, 54: 20-26.
[22] 張春晉,孫西歡,李永業(yè),等. 流固耦合作用對(duì)筒裝料管道車水力輸送內(nèi)部流場(chǎng)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):307-315.
Zhang Chunjin, Sun Xihuan, Li Yongye, et al. Effect of fluid-structure interaction on internal flow field characteristics of tube-contained raw material pipeline hydraulic transportation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 307-315. (in Chinese with English abstract)
[23] 陳慶光,徐忠,張永建. RNG-模式在工程湍流數(shù)值計(jì)算中的應(yīng)用[J]. 力學(xué)季刊,2003,24(1):88-95.
Chen Qingguang, Xu Zhong, Zhang Yongjian. Application of RNG-models in numerical simulations of engineering turbulent flows[J]. Chinese Quarterly of Mechanics, 2003, 24(1): 88-95. (in Chinese with English abstract)
[24] 冉聃頡,王文娥,胡笑濤. 梯形喉口無喉道量水槽設(shè)計(jì)及其水力性能模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):177-183.
Ran Danjie,Wang Wen'e, Hu Xiaotao. Design of trapezoidal cut-throated flumes and its hydraulic performance simulation and test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 177-183. (in Chinese with English abstract)
[25] Huai W, Xue W, Qian Z. Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch[J]. Advances in Water Resources, 2015, 80: 30-42.
[26] Stewart M T, Cameron S M, Nikora V I, et al. Hydraulic resistance in open-channel flows over self-affine rough beds[J/OL]. Journal of Hydraulic Research, 2018: 1-14. DOI: 10.1080/00221686.2018.1473296
[27] 劉曉東,韓宇,邱流潮,等. 基于平均紊動(dòng)結(jié)構(gòu)下明渠水流流速分布研究[J]. 灌溉排水學(xué)報(bào),2018,37(8):106-114.
Liu Xiaodong, Han Yu, Qiu Liuchao. Velocity distribution within open channel studied using the average structure of turbulent flow[J]. Journal of Irrigation and Drainage, 2018, 37(8): 106-114. (in Chinese with English abstract)
[28] 王文娥,薛城,胡笑濤. 溝灌三角形長喉道田間量水槽水力特性試驗(yàn)及數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):109-116.
Wang Wen'e, Xue Cheng, Hu Xiaotao. Numerical simulation and test of hydraulic performance for triangle long-throat flume for water measurement in furrow irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 109-116. (in Chinese with English abstract)
[29] 李廣寧,孫雙科,郭子琪,等. 仿自然魚道水力及過魚性能物理模型試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(9):147-154.
Li Guangning, Sun Shuangke, Guo Ziqi, et al. Physical model test on hydraulic characteristics and fish passing performance of nature-like fish way[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 147-154. (in Chinese with English abstract)
Establishment of velocity function of partially-filled flow in circular pipe based on simulation and physical model experiment
Ding Falong, Mao Zeyu, Han Kai
(,,100084,)
Velocity distribution of cross-section in open channel is not only the basis of accurate measurement of flow rate, but also the basic problem of studying the hydraulic characteristics of open channel. In order to explore the cross-sectional velocity distribution of partially-filled flow in circular pipe, a 3-D turbulent mathematical model and numerical solution method, verified by measured data, were adopted to simulate the partially-filled flow in circular pipe with different combinations of slopes and filling ratios. By comparison of the measured values and calculated values, the results showed that in a circular pipe with diameter 0.4 m, bottom slope 0.004, and flow rate 0.246 m3/s (corresponding filling ratio 0.47), the maximum relative error between the calculated velocities and measured values on all vertical lines was within the plus or minus 4.2%, and the maximum relative error between the calculated turbulent kinetic energy and measured values on all vertical lines was within the plus or minus 4.85%, suggesting that mathematical model and its parameters for simulation of the velocity distribution had higher calculation accuracy. The simulation results showed that cross-sectional velocity distribution was very sensitive to the filling ratio. The larger filling ratio would lead to more obvious dip phenomenon of maximum vertical velocity. When the filling ratio was lower than 0.5, no dip phenomenon occurred. When the filling ratio exceeded 0.5, the dip phenomenon became more obvious. This was because when the filling degree exceeded 0.5, the constraint effect of the side wall on the water surface was enhanced, and the secondary flow in the section was more obvious. There also showed obvious differences in the forms of vertical velocity distribution at different transverse positions, especially those close to the boundary wall, which was caused by the enhanced constraint effect of the concave side wall. Vertical profiles of time-averaged longitudinal velocity among various cases had very good similarity, and the profile curves were close to the feature of parabolic function. Influenced by factors such as section geometry and hydraulic characteristics, although the velocity distribution of each vertical line had a good similarity, the empirical coefficients by parabolic regression analysis that determined the shape of the velocity distribution curve on the specific vertical line had changed a lot. Multi-factor analysis of variance was conducted to the undetermined coefficientsin parabolic function, which showed they were mainly affected by transverse position of vertical lines and filling ratio of cross section. According to the affecting degree of filling ratio and transverse position to the empirical coefficientsthe cross sections of the partially-filled flow were divided into the central areas and the side wall areas along the transverse direction. Moreover, the dividing lines between central area and side wall area when the filling ratio was less than 0.5 was different from that when the filling ratio was greater than 0.5. Analysis of variance showed that the empirical coefficients of the central area were linearly correlated with the transverse position and the filling ratio, while the coefficients of the side wall area were mainly affected by the transverse position of the vertical line, and basically independent of the filling ratio. By means of regression analysis, the velocity parabolic distribution formula on vertical lines in partially-filled flow were established, and the determination methods of each coefficients were given. The calculated values of vertical velocity distribution areas were in good agreement with the measured values, which indicated that the parabolic vertical velocity distribution law was reliable. Parabolic function could better reflect the velocity distribution along vertical lines of partially filled flow in circular pipe. Application of the parabolic function to obtain flow rate on cross section, cannot only overcome the irrationality of Manning formula, but also was more easier than logarithmic law to be used in engineering calculation.
flow rate; flow velocity; canals; circular; partially-filled flow
丁法龍,茅澤育,韓 凱. 基于仿真及物理模型試驗(yàn)構(gòu)建圓形斷面管道非滿流流速函數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):55-61.doi:10.11975/j.issn.1002-6819.2019.18.007 http://www.tcsae.org
Ding Falong, Mao Zeyu, Han Kai. Establishment of velocity function of partially-filled flow in circular pipe based on simulation and physical model experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 55-61. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.007 http://www.tcsae.org
2018-12-13
2019-08-10
國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0402504)
丁法龍,博士,主要從事水力學(xué)及河流動(dòng)力學(xué)方面的研究工作。Email:dflaizy@163.com
10.11975/j.issn.1002-6819.2019.18.007
TV93
A
1002-6819(2019)-18-0055-07