• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      環(huán)境流體動(dòng)力學(xué)模擬優(yōu)選人工濕地設(shè)計(jì)中隔板濕地長度比

      2019-11-08 01:23:26崔遠(yuǎn)來郭長強(qiáng)
      關(guān)鍵詞:隔板水力凈化

      萬 荻,崔遠(yuǎn)來,郭長強(qiáng),馬 震

      環(huán)境流體動(dòng)力學(xué)模擬優(yōu)選人工濕地設(shè)計(jì)中隔板濕地長度比

      萬 荻1,崔遠(yuǎn)來1※,郭長強(qiáng)2,馬 震1

      (1. 武漢大學(xué)水資源與水電工程科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,武漢 430072;2. 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310058)

      采用環(huán)境流體動(dòng)力學(xué)模型(environmental fluid dynamics code,EFDC)建立表面流人工濕地水動(dòng)力-水質(zhì)耦合模型,研究隔板長度與濕地長度比值(簡稱隔長比)對(duì)表面流人工濕地水力性能及凈化效果的影響規(guī)律,優(yōu)選適宜的隔長比。結(jié)果表明:1)率定和驗(yàn)證的12組結(jié)果中,水動(dòng)力模型模擬評(píng)價(jià)結(jié)果為中等及以上,即相關(guān)系數(shù)>0.7、納什系數(shù)>0.4、相對(duì)誤差<20%,的有7組,水質(zhì)模型模擬評(píng)價(jià)結(jié)果為中等及以上,即相對(duì)誤差<20%,的有10組。2)表面流人工濕地適宜隔長比隨長寬比的增加而增大,當(dāng)長寬比由1、2、4變?yōu)?、8、16時(shí),對(duì)應(yīng)的適宜隔長比分別為0.675、0.850、0.938。3)表面流人工濕地主要水力指標(biāo)隨適宜隔長比的增大而增加,對(duì)凈化效果指標(biāo)的提升不明顯。4)在適宜隔長比不變的情況下增加濕地的表面積能明顯提升水質(zhì)凈化效果(>50%)。研究可為表面流人工濕地實(shí)際工程設(shè)計(jì)提供依據(jù)。

      水力性能;凈化效果;優(yōu)化;表面流人工濕地;隔長比;長寬比;EFDC模型

      0 引 言

      影響表面流人工濕地水力性能和凈化效果的主要設(shè)計(jì)參數(shù)有長寬比、水深、流量、進(jìn)出口布置、水力負(fù)荷、植物和隔板設(shè)置等[1-6]。目前國內(nèi)外已有不少針對(duì)長寬比對(duì)水力性能及凈化效果影響的研究。Thackston等[7]研究表明窄長的濕地具有較高的水力性能,隨著長寬比增大,濕地的水力性能呈指數(shù)級(jí)增長。Koskiaho[8]發(fā)現(xiàn)隔板能有效地引導(dǎo)主流對(duì)濕地面積進(jìn)行優(yōu)化利用,大大提高了濕地的水力效率。朱永青[9]通過試驗(yàn)表明,增大長寬比對(duì)總磷的去除效率略有提升。蒲紅杰等[10-11]均認(rèn)為增大長寬比能有效提升濕地對(duì)污染物的凈化效果。

      開展表面流人工濕地水力性能和凈化效果試驗(yàn)時(shí),由于試驗(yàn)場地的限制,常常通過設(shè)置隔板來達(dá)到增大長寬比的效果[12]。Su等[13]通過增設(shè)隔板對(duì)濕地的水力效率進(jìn)行了優(yōu)化設(shè)計(jì)。Cui等[14]認(rèn)為擁有隔板的濕地系統(tǒng)具有較好的混合流動(dòng)方向和內(nèi)部供氧能力,能有效去除化糞池廢水中的氮和磷。實(shí)際工程設(shè)計(jì)中,對(duì)于較大長寬比的處理,往往基于較小長寬比的濕地通過在濕地寬邊中部設(shè)置隔板來達(dá)到寬度(width,)減小一半,長度(length,)增大1倍,長寬比(aspect ratio,/)增至4倍的效果[15]。然而,目前鮮有研究針對(duì)濕地實(shí)際工程設(shè)計(jì)提出具體隔板設(shè)置方案。因此,確定合理的隔板長度或隔長比,使得通過隔板設(shè)置形成的較大長寬比的濕地(簡稱模型濕地)與實(shí)際長寬比濕地(簡稱實(shí)際濕地)水力性能和凈化效果相近對(duì)實(shí)際工程設(shè)計(jì)具有重要意義。由于通過試驗(yàn)更改隔板長度工程量巨大,因此數(shù)值模擬是有效途徑。

      在眾多數(shù)值模型中,環(huán)境流體動(dòng)力學(xué)模型(environmental fluid dynamics code,EFDC)在水動(dòng)力模擬方面具有較強(qiáng)的優(yōu)勢,在水質(zhì)模擬方面,能夠模擬藻、碳、氮、磷的轉(zhuǎn)化過程[16],已被廣泛用于濕地[17-18]、湖泊[19-20]以及小型生態(tài)溝[21]等地表水的模擬及研究。

      綜上,本文基于表面流人工濕地示蹤試驗(yàn)及水質(zhì)凈化效果試驗(yàn)的數(shù)據(jù),率定和驗(yàn)證EFDC模型,開展不同長寬比條件下模型濕地與實(shí)際濕地的水動(dòng)力及水質(zhì)過程模擬分析,優(yōu)選出不同情況下的隔長比,為表面流人工濕地優(yōu)化設(shè)計(jì)和提升改造提供依據(jù)。

      1 材料與方法

      1.1 表面流人工濕地試驗(yàn)

      試驗(yàn)區(qū)位于江西省贛撫平原區(qū)的江西省灌溉試驗(yàn)中心站表面流人工濕地試驗(yàn)基地內(nèi),試驗(yàn)小區(qū)由18個(gè)長6 m、寬4.7 m的小型試驗(yàn)池和2個(gè)長14.7 m、寬6.0 m的中型試驗(yàn)池及1個(gè)長14.7 m、寬6.0 m的蓄水池組成。本次試驗(yàn)基于混合水平的正交試驗(yàn)L16(44×23)設(shè)計(jì),即4個(gè)四水平因素和3個(gè)二水平因素,共計(jì)16次試驗(yàn),各設(shè)計(jì)因素水平分布見表1。根據(jù)試驗(yàn)設(shè)計(jì)方案對(duì)試驗(yàn)池進(jìn)行形狀改造,使其成為16個(gè)表面積均為18 m2的表面流人工濕地試驗(yàn)池(編號(hào)分別為1、2、…16),試驗(yàn)具體設(shè)計(jì)及處理參考文獻(xiàn)[15]。

      表1 表面流人工濕地正交試驗(yàn)設(shè)計(jì)因素水平

      1.2 表面流人工濕地水力指標(biāo)及水質(zhì)指標(biāo)

      已有研究從眾多的水力指標(biāo)中篩選出了4個(gè)具有代表性、敏感性和穩(wěn)定性的水力指標(biāo),分別為有效容積率(effective volume ratio,)、短路指標(biāo)10、莫里爾離散指數(shù)(Morril dispersion index,MDI)和矩指數(shù)(moment index,MI)[22-24]。

      根據(jù)試驗(yàn)方案,測定的水質(zhì)指標(biāo)包含總氮(total nitrogen,TN)和總磷(total phosphorus,TP)。因此,選取總磷濃度去除率TP和總氮濃度去除率TN為濕地凈化效果指標(biāo)[15]。

      中值誤差0.5(見式(1))用來評(píng)價(jià)2濕地各個(gè)指標(biāo)之間的吻合程度,即水力性能和凈化效果之間的接近程度[25]。

      式中代表指標(biāo)個(gè)數(shù);,′(=1,2,…,)分別表示一組模型濕地的各水力、凈化效果指標(biāo)值和實(shí)際濕地的各水力、凈化效果指標(biāo)值。

      1.3 模型評(píng)價(jià)標(biāo)準(zhǔn)

      對(duì)于水動(dòng)力模型,選取相關(guān)系數(shù)(correlation coefficient,)、納氏系數(shù)(Nash-Suttcliffe coefficient)和相對(duì)誤差(relative error,)為效率評(píng)價(jià)指標(biāo),根據(jù)系數(shù)的取值劃分為4個(gè)評(píng)價(jià)標(biāo)準(zhǔn):優(yōu)、良、中、差[26],見表2。

      對(duì)于水質(zhì)模型,由于水質(zhì)凈化效果試驗(yàn)采用每間隔一段時(shí)間取樣監(jiān)測的方式,不能獲取類似示蹤劑濃度自動(dòng)監(jiān)測的結(jié)果,數(shù)據(jù)點(diǎn)分散且不多,因此采用相對(duì)誤差為判別標(biāo)準(zhǔn)。

      表2 水動(dòng)力模型模擬效率評(píng)價(jià)標(biāo)準(zhǔn)

      1.4 EFDC模型及參數(shù)率定方法

      1.4.1 模型簡介

      環(huán)境流體動(dòng)力學(xué)模型(EFDC)是一個(gè)開源的地表水模型,其由FORTRAN語言編寫而成,在單一源代碼框架下,耦合了水動(dòng)力、水質(zhì)與富營養(yǎng)化、泥沙輸運(yùn)、有毒化學(xué)物質(zhì)輸運(yùn)與轉(zhuǎn)化等子模塊[16]。目前,EFDC已經(jīng)在100多個(gè)地表水系統(tǒng)中得到廣泛驗(yàn)證。EFDC模型水動(dòng)力模塊在水平方向和垂直方向分別采用曲線正交坐標(biāo)變換和坐標(biāo)變換。其基本方程是基于湍流方程的垂直流體靜力邊界層形式變換,利用變密度的Boussinesq近似得到,包含動(dòng)量方程、連續(xù)性方程、狀態(tài)方程、物質(zhì)傳輸方程[27]。EFDC水質(zhì)模塊基于求解21個(gè)狀態(tài)變量的質(zhì)量平衡方程,用于模擬3組藻類、碳循環(huán)、氮循環(huán)、磷循環(huán)和硅循環(huán)、溶解氧和糞大腸菌群。本文采用該模型的水動(dòng)力和水質(zhì)模塊來模擬表面流人工濕地的水動(dòng)力及水質(zhì)過程。

      1.4.2 表面流人工濕地水動(dòng)力-水質(zhì)耦合模型構(gòu)建

      結(jié)合試驗(yàn)濕地尺寸,本次模型構(gòu)建采用0.1 m × 0.1 m的矩形網(wǎng)格,為使模型運(yùn)行穩(wěn)定且不發(fā)生水流邊界溢出,時(shí)間步長經(jīng)多次調(diào)試取為0.1 s。模型的輸入數(shù)據(jù)中水深、流量和植物資料等均來源于實(shí)測值,初始時(shí)刻水深即為設(shè)計(jì)水深。設(shè)置2種入流邊界:與濕地同寬度的均勻進(jìn)水入流邊界,進(jìn)水高度10 cm;在濕地寬邊中間進(jìn)水的入流邊界,進(jìn)水口寬20 cm,進(jìn)水高度10 cm。出流邊界位于濕地進(jìn)水邊對(duì)面的寬邊中部,寬20 cm,高10 cm。模型通過調(diào)整分配系數(shù)對(duì)流量在寬度網(wǎng)格上的分配來設(shè)置兩種入流邊界。對(duì)于設(shè)置有隔板的濕地,將已修改格式的EFDC網(wǎng)格文件導(dǎo)入Delft-3D軟件中,調(diào)整網(wǎng)格疏密使隔板區(qū)域網(wǎng)格寬度與隔板實(shí)際寬度相同(0.01 m),然后將從Delft-3D軟件中導(dǎo)出的網(wǎng)格文件導(dǎo)入到EFDC模型中,通過修改dxdy文件,設(shè)置隔板高度為1 m。

      1.4.3 模型參數(shù)率定和驗(yàn)證

      通過表面流人工濕地的示蹤試驗(yàn)數(shù)據(jù)及水質(zhì)凈化數(shù)據(jù)進(jìn)行模型參數(shù)的率定和驗(yàn)證。進(jìn)行參數(shù)率定時(shí),根據(jù)經(jīng)典案例及相關(guān)文獻(xiàn)[28-32]先確定模型參數(shù)的初始值。通過敏感性分析,得到背景值/常數(shù)的渦流黏度、無量綱水平擴(kuò)散系數(shù)、邊壁糙率、底部粗糙度、最大硝化反應(yīng)速率、硝化作用最適溫度和底泥對(duì)磷酸根的吸收/釋放通量為影響表面流人工濕地水動(dòng)力及水質(zhì)過程的敏感參數(shù)[33-34]。在此基礎(chǔ)上,對(duì)敏感參數(shù)進(jìn)行手動(dòng)微調(diào),當(dāng)率定組濕地的模擬與實(shí)測過程總體吻合較好時(shí)確定參數(shù)取值,然后用驗(yàn)證組濕地?cái)?shù)據(jù)驗(yàn)證模型。

      1.5 模擬方案設(shè)置

      本次模擬方案設(shè)置模型濕地和實(shí)際濕地2種濕地各6個(gè),長和寬的設(shè)置見表3。均采用中進(jìn)中出的流量邊界,流量為0.85 m3/h,初始水深0.2 m。

      表3 模擬方案設(shè)置

      模型濕地設(shè)置隔板,實(shí)際濕地?zé)o隔板,實(shí)際濕地與模型濕地一一對(duì)應(yīng),即模型濕地1對(duì)應(yīng)實(shí)際濕地7,模型濕地2對(duì)應(yīng)實(shí)際濕地8,依此類推,其中實(shí)際濕地的長寬比為對(duì)應(yīng)模型濕地的4倍。方案模擬的目的是通過對(duì)比模型濕地與實(shí)際濕地(見圖1),找到使模型濕地的長寬比增至4倍的適宜隔長比。即對(duì)模型濕地進(jìn)行多個(gè)隔長比的模擬,得到多組結(jié)果,并分別與實(shí)際濕地的模擬結(jié)果對(duì)比,其中與實(shí)際濕地的模擬結(jié)果最為接近的模型濕地對(duì)應(yīng)的隔長比為適宜隔長比。

      注:通過在模型濕地(長寬比1:1)中設(shè)置隔板達(dá)到與實(shí)際濕地(長寬比4:1)等效的目的。

      2 結(jié)果與分析

      2.1 水動(dòng)力模塊率定及驗(yàn)證結(jié)果

      由于9~12號(hào)濕地由2個(gè)中型試驗(yàn)池改造得來,每個(gè)中型試驗(yàn)池里分隔出2個(gè)特定尺寸的濕地試驗(yàn)池,進(jìn)行9~12號(hào)濕地試驗(yàn)時(shí),位于同一個(gè)中型試驗(yàn)池里的2個(gè)試驗(yàn)濕地相互影響,使水深觀測數(shù)據(jù)不準(zhǔn)確。故本次模型研究僅利用另外12個(gè)單獨(dú)濕地(1~8號(hào)和13~16號(hào))的試驗(yàn)數(shù)據(jù)進(jìn)行模型參數(shù)的率定及驗(yàn)證,其中1~8號(hào)濕地?cái)?shù)據(jù)用于率定模型參數(shù),13~16號(hào)濕地?cái)?shù)據(jù)用于驗(yàn)證模型。水動(dòng)力模塊模型參數(shù)率定值如表4所示,率定組濕地的模擬和實(shí)測值的評(píng)價(jià)結(jié)果見表5,示蹤曲線對(duì)比見圖2。由率定組結(jié)果(表5)可知,4個(gè)評(píng)價(jià)結(jié)果為優(yōu)或良(1、3、5、8號(hào)濕地),1個(gè)評(píng)價(jià)結(jié)果為中(2號(hào)濕地),3個(gè)評(píng)價(jià)結(jié)果為差(4、6、7號(hào)濕地)。評(píng)價(jià)結(jié)果為中的2號(hào)濕地的相關(guān)系數(shù)和納氏系數(shù)均符合良好標(biāo)準(zhǔn),僅相對(duì)誤差較大。

      表4 水動(dòng)力模塊模型參數(shù)率定值

      注:本文研究對(duì)象為層流,雷諾數(shù)很小,相較于江河湖海等一般紊流水體,其AHO和AHD取值要小。

      Note: Research object of this paper is laminar flow, and the Reynolds number is very small. Compared with general turbulent water bodies such as rivers, lakes and seas, the AHO and AHD values are smaller.

      表5 水動(dòng)力模塊率定和驗(yàn)證結(jié)果

      進(jìn)一步分析率定期示蹤劑濃度模擬結(jié)果(圖2)可知,評(píng)價(jià)結(jié)果為優(yōu)或良的濕地在曲線上升段、下降段、上升段起始點(diǎn)、下降段穩(wěn)定點(diǎn)、峰值點(diǎn)均擬合的很好。評(píng)價(jià)結(jié)果為中的2號(hào)濕地僅僅是在上升段擬合不佳,且模擬值比試驗(yàn)值整體偏大,這可能是由于試驗(yàn)過程中示蹤劑被濕地植物或基質(zhì)截留導(dǎo)致回收率偏差,體現(xiàn)在評(píng)價(jià)結(jié)果上即顯示相對(duì)誤差值較大。評(píng)價(jià)結(jié)果為差的3個(gè)濕地中,有2個(gè)濕地(4號(hào)和6號(hào))的試驗(yàn)示蹤曲線都表現(xiàn)為上升段起始時(shí)間很小,上升段十分陡峭,斜率接近90°。這說明示蹤劑在濕地中存在短路,即有1個(gè)快速通道使得示蹤劑團(tuán)很快到達(dá)出口,并使?jié)舛瓤焖俚竭_(dá)峰值。而造成短路現(xiàn)象的原因很多,例如風(fēng)的影響,中部植物種植疏于兩側(cè)植物等[35-37]。

      圖2 率定和驗(yàn)證組濕地示蹤劑濃度模擬結(jié)果

      由表5知,水動(dòng)力模型模擬評(píng)價(jià)結(jié)果為中等及以上,即相關(guān)系數(shù)>0.7、納什系數(shù)>0.4、相對(duì)誤差<20%,的有7組,僅1組評(píng)價(jià)結(jié)果為差,且評(píng)價(jià)結(jié)果為差的主要原因是相對(duì)誤差值較大。驗(yàn)證期示蹤劑濃度模擬結(jié)果(圖2i~圖2l)顯示,評(píng)價(jià)結(jié)果為差的15號(hào)濕地,其示蹤曲線出現(xiàn)了濃度異常升高和降低且存在雙峰的現(xiàn)象,這與試驗(yàn)常識(shí)不符,分析可能的原因是YSI水質(zhì)監(jiān)測儀在試驗(yàn)過程中發(fā)生了位移,造成示蹤劑濃度監(jiān)測不靈敏,試驗(yàn)數(shù)據(jù)有誤。

      以上結(jié)果表明,構(gòu)建的水動(dòng)力模型可以用于表面流人工濕地水動(dòng)力過程模擬。

      2.2 水質(zhì)模塊率定及驗(yàn)證結(jié)果

      水質(zhì)模塊模型參數(shù)率定值如表6所示,率定組濕地的模擬和實(shí)測值的評(píng)價(jià)結(jié)果見表7。

      表6 水質(zhì)模塊模型參數(shù)率定值

      同水動(dòng)力模塊一樣,用1~8號(hào)濕地的水質(zhì)數(shù)據(jù)率定,13~16號(hào)濕地水質(zhì)數(shù)據(jù)驗(yàn)證模型。從表7可見,水質(zhì)模型模擬評(píng)價(jià)結(jié)果為中等及以上有10組,即相對(duì)誤差<20%。評(píng)價(jià)結(jié)果為差的濕地是4號(hào)及7號(hào)。其中4號(hào)濕地的實(shí)測去除率比模擬去除率高,且誤差較大。這可能是由于濕地水流短路造成進(jìn)入人工濕地的污染物快速到達(dá)出口,沒有足夠的時(shí)間被藻類或植物吸收、截留,或沉積到底部。而7號(hào)濕地的實(shí)測進(jìn)出口去除率為負(fù)值,明顯偏離實(shí)際情況,故將7號(hào)濕地的率定結(jié)果排除。參考前面的結(jié)果,4、7號(hào)濕地在水動(dòng)力模塊的率定中表現(xiàn)也很差,可能的原因也是由于短路造成水動(dòng)力條件與預(yù)想的不符。這說明水動(dòng)力模塊率定結(jié)果中表現(xiàn)不佳的4、7號(hào)濕地在水質(zhì)模塊的率定中表現(xiàn)也很差,進(jìn)一步證實(shí)了模擬值與實(shí)測值產(chǎn)生偏差是由于水流短路造成的。

      綜上,率定和驗(yàn)證的12組結(jié)果中,水動(dòng)力模型模擬評(píng)價(jià)結(jié)果為中等及以上的有7組,水質(zhì)模型模擬評(píng)價(jià)結(jié)果為中等及以上有10組,滿足精度要求,故環(huán)境流體動(dòng)力學(xué)模型可以用于表面流人工濕地水動(dòng)力過程和水質(zhì)過程的模擬。

      2.3 不同情景的模擬分析

      以模型濕地1為例闡述得到適宜隔長比的過程,4個(gè)水力指標(biāo)有效容積率、短路指標(biāo)10、莫里爾離散指數(shù)和矩指數(shù)和2個(gè)凈化效果指標(biāo)總氮濃度去除率TN和總磷濃度去除率TP作為模擬結(jié)果,模型濕地1共設(shè)置了14種不同的隔長比,根據(jù)每種隔長比下的模擬結(jié)果得到了14組模擬結(jié)果,見表8。

      表7 水質(zhì)模塊率定和驗(yàn)證結(jié)果

      實(shí)際濕地7的模擬結(jié)果為:=0.895、10=0.512、 MDI=2.669、MI=0.789、TP=33.59%、TN=35.56%。其中使得0.5最小的隔長比為適宜隔長比,即0.675(表8)。隨著隔長比增大,有效容積率逐漸增大,并逐漸趨于穩(wěn)定;10和MI逐漸增大,MDI逐漸減小。這說明4個(gè)指標(biāo)具有較好的一致性,均反映了隔長比的增大能促進(jìn)濕地水力性能的提升。此外,隨著隔長比的增大,TP和TN逐漸增大,但是增幅很小,說明增大隔板長度對(duì)于提高濕地凈化能力的效果不明顯。對(duì)比1號(hào)濕地(長寬比1,面積16 m2)和5號(hào)濕地(長寬比4,面積16 m2)的水質(zhì)指標(biāo)也可得,改變長寬比對(duì)凈化效果無明顯影響。同樣,郭長強(qiáng)等認(rèn)為長寬比對(duì)濕地凈化效果無顯著影響[38]。Jong-Hwa等的試驗(yàn)也表明2:1和0.8:1長寬比的濕地對(duì)去除污染物磷的效果無明顯差異[39]。

      表8 模型濕地1不同隔長比下的水力及水質(zhì)指標(biāo)

      注:由于各指標(biāo)值不存在拐點(diǎn),因此省去隔長比小于0.425和大于0.75的情況。

      Note: Since there is no inflection point in each index value, we omitted results of obstruction length-to-wetland length ratio less than 0.425 and greater than 0.75.

      同理得到其他5種模型濕地的適宜隔長比及適宜隔長比下的水力指標(biāo)及水質(zhì)指標(biāo)值,見表9。

      表9 各模型濕地的適宜隔長比及水力及水質(zhì)指標(biāo)值

      對(duì)于相同長寬比不同面積的濕地(情景1、2,情景3、4,情景5、6),觀察水力指標(biāo)可得,面積對(duì)濕地水力性能的影響不大;觀察凈化效果指標(biāo)可得,隨著濕地面積增大,凈化效果有著顯著提升,這主要是由于面積的增大提高了濕地的水力停留時(shí)間,而足夠的水力停留時(shí)間使得污染物能在水體中充分混合、反應(yīng)、被吸收和利用。

      傳統(tǒng)試驗(yàn)設(shè)計(jì)或工程應(yīng)用中,常常通過在濕地寬邊中部設(shè)置長度為-0.5的隔板,來達(dá)到寬減小一半,長增大一倍,長寬比/增至4倍的效果。按照這樣的設(shè)計(jì)方法,長寬比為1、2、4的濕地分別應(yīng)設(shè)置的隔長比為0.5,0.75,0.875。而由表9知長寬比1、2、4下適宜隔長比分別為0.675、0.850、0.938,均比傳統(tǒng)設(shè)計(jì)方法的取值要大,這說明采用長度為-0.5的隔板還不足以充分調(diào)動(dòng)濕地的有效容積,使短路和混合處于較低值,從而達(dá)到長寬比增至4倍的效果。由表9可得,隨著長寬比增大,適宜隔長比也增大,而相同長寬比不同面積的濕地的適宜隔長比差異很小,幾乎可以忽略。故可得適宜隔長比的大小與長寬比有關(guān),與面積無關(guān),且適宜隔長比隨著濕地邊界長寬比的增大而增大。

      3 結(jié) 論

      在試驗(yàn)場地限制無法增大長寬比的情況下,通過增加隔板長度也能達(dá)到類似的效果。本文將環(huán)境流體動(dòng)力學(xué)模型(environmental fluid dynamics code,EFDC)模型用于表面流人工濕地水動(dòng)力過程及水質(zhì)過程的模擬,通過示蹤試驗(yàn)及水質(zhì)凈化效果試驗(yàn)的數(shù)據(jù)對(duì)模型參數(shù)進(jìn)行率定和驗(yàn)證,在此基礎(chǔ)上探究了不同邊界長寬比的表面流人工濕地的適宜隔長比,得到以下結(jié)論:

      1)影響表面流人工濕地水力性能的敏感參數(shù)為背景值/常數(shù)的渦流黏度、無量綱水平擴(kuò)散系數(shù)、邊壁糙率和底部粗糙度;影響表面流人工濕地水質(zhì)凈化效果的敏感參數(shù)為最大硝化反應(yīng)速率、硝化作用最適溫度和底泥對(duì)磷酸根的吸收/釋放通量。率定和驗(yàn)證的12組結(jié)果中,水動(dòng)力模型模擬評(píng)價(jià)結(jié)果為中等及以上,即相關(guān)系數(shù)>0.7、納什系數(shù)>0.4、相對(duì)誤差<20%,的有7組,水質(zhì)模型模擬評(píng)價(jià)結(jié)果為中等及以上有10組,即相對(duì)誤差<20%,滿足精度要求,故環(huán)境流體動(dòng)力學(xué)模型可以用于表面流人工濕地水動(dòng)力過程和水質(zhì)過程的模擬。本文研究對(duì)象為層流,故模型參數(shù)背景值/常數(shù)的渦流黏度和無量綱水平擴(kuò)散系數(shù)的取值相較于江河湖海等一般紊流水體要小。

      2)在表面流人工濕地中,隨著隔長比的增大,有效容積率、短路指標(biāo)和矩指數(shù)增大,莫里爾離散指數(shù)減小,即濕地的水力性能隨著隔長比的增大而提升。

      3)在濕地表面積相同時(shí),增加隔長比并不能明顯提升凈化效果指標(biāo)總磷濃度去除率和總氮濃度去除率。

      4)增大面積對(duì)表面流人工濕地的水力性能幾乎沒有影響,但卻能顯著提升濕地的凈化效果。

      5)適宜隔長比的大小隨邊界長寬比的增大而增大,且與表面流人工濕地的面積無關(guān)。從長寬比1、2、4的濕地變?yōu)殚L寬比4、8、16的濕地時(shí),適宜隔長比分別為0.675、0.850和0.938,均比傳統(tǒng)試驗(yàn)設(shè)計(jì)或工程應(yīng)用中取值0.5、0.75、0.875偏大,這說明傳統(tǒng)的設(shè)計(jì)方法還不足以充分調(diào)動(dòng)濕地的有效容積,使短路和混合處于較低值,從而達(dá)到長寬比增至4倍的效果。

      [1] 吳曉磊. 人工濕地廢水處理機(jī)理[J]. 環(huán)境科學(xué),1995(3):83-86.

      Wu Xiaolei. Mechanism of wastewater treatment in constructed wetlands[J]. Chinese Journal of Enviromental Science, 1995(3): 83-86. (in Chinese with English abstract)

      [2] 萬玉文,郭長強(qiáng),茆智,等. 多級(jí)串聯(lián)表面流人工濕地凈化生活污水效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):220-227.

      Wan Yuwen, Guo Changqiang, Mao Zhi, et al. Sewage purification effect of multi-series surface flow constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 220-227. (in Chinese with English abstract)

      [3] Guo C, Cui Y, Dong B, et al. Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland[J]. Bioresource Technology, 2017, 238: 461-471.

      [4] 潘樂,茆智,董斌,等. 塘堰濕地減少農(nóng)田面源污染的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(4):130-135.

      Pan Le, Mao Zhi, Dong Bin, et al. Experimental research on reduction of agricultural non-point source pollution using pond wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 130-135. (in Chinese with English abstract)

      [5] Ji Z G, Jin K R. An integrated environmental model for a surface flow constructed wetland: Water quality processes[J]. Ecological Engineering, 2016, 86: 247-261.

      [6] Persson J, Somes N L G, Wong T H F. Hydraulics efficiency of constructed wetlands and ponds[J]. Water Science & Technology, 1999, 40(3): 291-300.

      [7] Thackston E L, Shields F D, Schroeder P R. Residence time distributions of shallow basins[J]. Journal of Environmental Engineering, 1987, 113(6): 1319-32.

      [8] Koskiaho J. Flow velocity retardation and sediment retention in two constructed wetland ponds[J]. Ecological Engineering, 2003, 19(5): 325-337.

      [9] 朱永青. 人工濕地凈化機(jī)制數(shù)學(xué)模型模擬及應(yīng)用[D]. 上海:東華大學(xué),2006.

      Zhu Yongqing. Simulation and Application of Constructed Wetlands Pollutant Removal Mechanism Mathematical Model[D]. Shanghai: Donghua University, 2006. (in Chinese with English abstract)

      [10] 蒲紅杰,許士國,蘇廣宇. 濱庫帶多級(jí)表面流濕地水污染控制[J]. 東北水利水電,2016,34(9):25-27.

      Pu Hongjie, Xu Shiguo, Su Guangyu. Multi-level surface flow wetland water pollution control in Bin Kuta[J]. Water Resources & Hydropower of Northeast China,2016, 34(9): 25-27. (in Chinese with English abstract)

      [11] Worman A, Kronnas V. Effect of pond shape and vegetation heterogeneity on flow and treatment performance of constructed wetlands[J]. Journal of Hydrology, 2005, 301(1/2/3/4): 0-138.

      [12] German J, Jansons K, Svensson G, et al. Modelling of different measures for improving removal in a storm pond[J]. Water Science and Technology, 2005, 52: 105-112.

      [13] Su T, Yang S, Shih S, et al. Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands[J]. Ecological Engineering, 2009, 35(8): 1200-1207.

      [14] Cui L, Ouyang Y, Yang W, et al. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands[J]. Journal of Environmental Management, 2015, 153: 33-39.

      [15] 馬震,崔遠(yuǎn)來,郭長強(qiáng),等. 基于水力性能和凈化效果的表面流人工濕地設(shè)計(jì)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):157-164.

      Ma Zhen, Cui Yuanlai, Guo Changqiang, et al. Optimization of design parameters of surface flow constructed wetland based on hydraulic performance and pollutant purification effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 157-164. (in Chinese with English abstract)

      [16] 季振剛. 水動(dòng)力學(xué)和水質(zhì)—河流、湖泊及河口數(shù)值模擬[M]. 北京:海洋出版社,2012.

      [17] 江春波,張明武,楊曉蕾. 華北衡水湖濕地的水質(zhì)評(píng)價(jià)[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2010,50(6):848-851.

      Jiang Chunbo, Zhang Mingwu, Yang Xiaolei. Water quality evaluation for the Hengshui Lake wetland in northern China[J]. Journal of Tsinghua University: Science and Technology, 2010, 50(6): 848-851. (in Chinese with English abstract)

      [18] 賴秋英,李一平,張文一,等. 基于EFDC模型的濕地生物塘水質(zhì)凈化效果模擬與優(yōu)化設(shè)計(jì)[J]. 四川環(huán)境,2017,36(1):6-10.

      Lai Qiuying, Li Yiping, Zhang Wenyi, et al. Study on the purification effect and optimization design of biological ponds in wetland based on EFDC Model[J]. Sichuan Environment, 2017, 36(1): 6-10. (in Chinese with English abstract)

      [19] Meng X, Craig P M, Wallen C M, et al. Numerical simulation of salinity and dissolved oxygen at perdido bay and adjacent coastal ocean[J]. Journal of Coastal Research, 2011, 27(1): 73-86.

      [20] 李一平,逄勇,丁玲. 太湖富營養(yǎng)化控制機(jī)理模擬[J]. 環(huán)境科學(xué)與技術(shù),2004,27(3):1-3.

      Li Yiping, Pang Yong, Ding Ling. Ecological simulation of eutrophication for Taihu lake[J]. Environmental Science and Technology, 2004, 27(3): 1-3. (in Chinese with English abstract)

      [21] 涂佳敏. 生態(tài)溝渠處理農(nóng)田氮磷污水的實(shí)驗(yàn)與模擬研究[D]. 天津:天津大學(xué),2014.

      Tu Jiamin. Experiment and Simulation on Nitrogen and Phosphorus Removal of Ecological Ditch[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)

      [22] 劉俊杰,董斌,郭長強(qiáng),等. 人工濕地水力效率指標(biāo)一致性與穩(wěn)定性分析[J]. 灌溉排水學(xué)報(bào),2014,33(Z1):331-337.

      Liu Junjie, Dong Bin, Guo Changqiang, et al.Analysis oil consistency and stability of hydraulic index in constructed wetland[J].Journal of Irrigation and Drainage, 2014, 33(Z1): 331-337. (in Chinese with English abstract)

      [23] Wahl M D, Brown L C, Soboyejo A O, et al. Quantifying the hydraulic performance of treatment wetlands using the moment index[J]. Ecological Engineering, 2010, 36(12): 1691-1699.

      [24] Guo C Q, Dong B, Liu J J, et al. The best indicator of hydraulic short-circuiting and mixing of constructed wetlands[J]. Water Practice and Technology, 2015, 10(3): 505-516.

      [25] 程聲通. 環(huán)境系統(tǒng)分析[M]. 北京:化學(xué)工業(yè)出版社,1990:18-20.

      [26] Moriasi D N, Arnold J G, Liew M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 3(50): 885-900.

      [27] Hamrick J M. A Three-dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects[D]. Williamsburg: Virginia Institute of Marine Science, 1992.

      [28] Wu G Z, Xu Z X. Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake[J]. Ecological Modelling, 2011, 222(6): 1245-1252.

      [29] 郭元裕. 農(nóng)田水利學(xué)[M]. 北京:中國水利水電出版社,2007:108-111.

      [30] 雒文生,宋新元. 水環(huán)境分析及預(yù)測[M]. 武漢:武漢大學(xué)出版社,2000:28-30.

      [31] Fathi-Moghadam M, Emamgholizadeh S. Drag coefficient of unsubmerged rigid vegetation stems in open channel flows[J]. Journal of Hydraulic Research, 2009, 47(6): 691-699.

      [32] Zhou J, Falconer R A, Lin B. Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary[J]. Renewable Energy, 2014, 62(3): 490-505.

      [33] 李一平,王靜雨,滑磊. 基于EFDC模型的河道型水庫藻類生長對(duì)流域污染負(fù)荷削減的響應(yīng):以廣東長潭水庫為例[J]. 湖泊科學(xué),2015,27(5):811-818.

      Li Yiping, Wang Jingyu, Hua Lei.Response of algae growth to pollution reduction of drainage basin based on EFDC model or channel reservoirs: A case of channel reservoir, Guangdong Province[J].Journal of Lake Sciences, 2015, 27(5): 811-818. (in Chinese with English abstract)

      [34] Li X, Zhang S L, Wang L X, et al. Coupling the EFDC and CE-QUAL-ICM models to simulate water quality of shallow lake in Inner Mongolia, China[C]// Sustainable Development: Proceedings of the 2015 International Conference on Sustainable Development (ICSD2015). 2015.

      [35] Guo C, Cui Y, Dong B. Tracer study of the hydraulic performance of constructed wetlands planted with three different aquatic plant species [J]. Ecological Engineering, 2017, 102: 433-442.

      [36] Jenkins G A, Greenway M. The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands [J]. Ecological Engineering, 2005, 25(1): 61-72.

      [37] Sabokrouhiyeh N, Bottacin-Busolin A, Nepf H, et al. Effects of vegetation density and wetland aspect ratio variation on hydraulic efficiency of wetlands[M]//Hydrodynamic & Mass Transport at Freshwater Aquatic Interfaces. Switzerland: Springer Nature, 2016: 101-113.

      [38] Guo C Q, Cui Y L, Shi Y Z, et al. Improved test to determine design parameters for optimization of free surface flow constructed wetlands [J]. Bioresource Technology, 2019, 280: 199-212.

      [39] Jong-Hwa H, Yoon C G, Won-Seok K, et al. The effect of physical design parameters on the constructed wetland performance[J]. Journal of the Korean Society of Agricultural Engineers, 2005, 47(5): 87-97.

      Appropriate design for obstruction length-to-wetland length ratio in free-water-surface constructed wetlands based on environmental fluid dynamics code

      Wan Di1, Cui Yuanlai1※, Guo Changqiang2, Ma Zhen1

      (1.,,430072,; 2.,,310058,)

      In practical engineering design, obstruction baffles are usually used in free-water-surface constructed wetlands (FWS CWs) to cut the width in half and double the length, thus the aspect ratio (length/width) increased fourfold. The length of the obstruction is often set to difference between boundary length and half the boundary width. In order to explore the design method’s reasonability and get an optimal value, the tests of FWS CWs under different aspect ratios are needed. In this study, we explored the influence of obstruction length-to-wetland length ratio (OL/WL) and aspect ratio on the hydraulic performance of FWS CWs. The environmental fluid dynamics code (EFDC) was used to establish the hydrodynamic model and water quality model of FWS CWs. Based on the tracer data and pollutant data of 12 FWS CWs, the calibration and verification of model parameters were carried out through sensitivity analysis and manual parameter adjustment. 2 kinds of wetlands named model wetlands and actual wetlands were established. 6 different areas and aspect ratios were set for the model wetlands, and the same as the actual wetlands. Each model wetland was provided with an obstruction, while the actual wetlands had no obstruction. The actual wetland corresponded to the model wetland one by one, that was, the aspect ratio of actual wetland was 4 times of the corresponding model wetland. The purpose of the simulation was to find an appropriate OL/WL that increased the aspect ratio of the model wetland to 4 times by comparing the hydraulic and treatment performance of the model wetlands and actual wetlands. The model wetland was simulated with multiple OL/WL to find the ratio that could make the model wetland and the actual wetland had the closest hydraulic and treatment performance. In addition, the hydraulic index,namelyeffective volume ratio, short circuit indicator, Morril dispersion index and moment index, were used to evaluate the similarity between the hydraulic performance of the 2 kinds wetlands. Similarly, the removal rates of total nitrogen and total phosphorous were used to evaluate the treatment performance’s similarity. The results showed that: 1) The sensitive parameters affecting the hydraulic performance were background horizontal eddy viscosity, dimensionless horizontal momentum diffusion, wall roughness and bottom roughness, and those affecting the treatment performance were maximum nitrification rate, reference temperature for nitrification and constant benthic flux rate of phosphorous. Among the 12 groups, 7 groups were satisfactory or better in hydrodynamic model with correlation coefficient higher than 0.7, Nash-Suttcliffe higher than 0.4, and relative error smaller than 20%; and 10 groups were satisfactory or better in water quality model. The calibrated and verified EFDC model could be used to simulate the hydrodynamic process and purification process of FWS CWs. 2) The 4 hydraulic index had good consistencies. As the increase of OL/WL, effective volume ratio, short circuit indicator and moment index increased and Morril dispersion index decreased. The larger the effective volume ratio, short circuit indicator and moment index would lead to smaller morril dispersion index and better hydraulic performance, which indicated the hydraulic performance increased with the increase of OL/WL. 3) The removal rate of total nitrogen and the phosphorous didn’t change greatly as the OL/WL increased. 4) Changing the area had great impact on the treatment performance. 5) When the aspect ratio ranged from 1, 2, 4 to 4, 8, 16, the appropriate OL/WL was 0.675, 0.850, 0.938, which was different from the values of 0.5, 0.75, 0.875 in the traditional test design or engineering application.

      hydraulic performance; treatment effects; optimization; free-water-surface constructed wetlands; obstruction length-to-wetland length ratio; aspect ratio; EFDC model

      萬 荻,崔遠(yuǎn)來,郭長強(qiáng),馬 震. 環(huán)境流體動(dòng)力學(xué)模擬優(yōu)選人工濕地設(shè)計(jì)中隔板濕地長度比[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):62-69.doi:10.11975/j.issn.1002-6819.2019.18.008 http://www.tcsae.org

      Wan Di, Cui Yuanlai, Guo Changqiang, Ma Zhen. Appropriate design for obstruction length-to-wetland length ratio in free-water-surface constructed wetlands based on environmental fluid dynamics code[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 62-69. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.008 http://www.tcsae.org

      2019-03-27

      2019-08-10

      國家自然科學(xué)基金項(xiàng)目(51779181);江西省水利科技項(xiàng)目(KT201737)

      萬 荻,主要從事農(nóng)田水環(huán)境修復(fù)技術(shù)模擬研究。Email:DiWan1995@whu.edu.cn

      崔遠(yuǎn)來,教授,博士,主要從事節(jié)水灌溉和農(nóng)業(yè)面源污染治理研究。Email:YLCui@whu.edu.cn

      10.11975/j.issn.1002-6819.2019.18.008

      S156.8

      A

      1002-6819(2019)-18-0062-08

      猜你喜歡
      隔板水力凈化
      水力全開
      基于有限元分析的隔板工藝支撐技術(shù)研究
      壓力容器隔板的一種設(shè)計(jì)方法
      這條魚供不應(yīng)求!蝦蟹養(yǎng)殖戶、垂釣者的最愛,不用投喂,還能凈化水質(zhì)
      橫隔板參數(shù)對(duì)裝配式箱梁寬橋受力的影響
      雙頻帶隔板極化器
      電子測試(2017年15期)2017-12-18 07:18:51
      肌膚凈化大掃除START
      Coco薇(2017年7期)2017-07-21 16:49:50
      球墨鑄鐵管的水力計(jì)算
      陶色凈化
      金色年華(2016年23期)2016-06-15 20:28:28
      水力噴射壓裂中環(huán)空水力封隔全尺寸實(shí)驗(yàn)
      南雄市| 呼玛县| 湄潭县| 营山县| 成都市| 鄄城县| 禄劝| 新丰县| 洪洞县| 景洪市| 探索| 灵丘县| 都江堰市| 邵武市| 贡觉县| 曲沃县| 丰宁| 三都| 安溪县| 沙雅县| 永清县| 全州县| 盐边县| 安平县| 长汀县| 云梦县| 明溪县| 萍乡市| 桂阳县| 太仓市| 松滋市| 白河县| 舟山市| 富蕴县| 江门市| 高淳县| 张家港市| 新建县| 石家庄市| 南溪县| 巴林右旗|