吳麗軍 李雙鈴 韓鎖義 夏晗 遲玉成 任艷 石延茂 尹亮 王興軍 袁美
摘要:花生晚斑病是一種世界性病害,可導(dǎo)致花生減產(chǎn)和品質(zhì)降低,防治該病害最經(jīng)濟(jì)有效的方法是抗病品種的應(yīng)用。本文介紹了花生晚斑病的危害和防治途徑,對(duì)花生晚斑病的抗性種質(zhì)資源挖掘、抗性遺傳及抗病基因、分子標(biāo)記、抗病品種的培育等多個(gè)方面的最新研究進(jìn)展進(jìn)行了綜述,同時(shí)對(duì)加強(qiáng)花生晚斑病研究提出了一些建議。
關(guān)鍵詞:花生;晚斑病;病害防治;抗病育種
中圖分類(lèi)號(hào):S565.203.4 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1001-4942(2019)09-0177-08
Advances in Peanut Breeding for Resistance to Late Leaf Spot
Wu Lijun Li Shuangling Han Suoyi2, Xia Han3, Chi Yucheng Ren Yan Shi Yanmao
Yin Liang Wang Xingjun3, Yuan Mei1
(1.Shandong Peanut Research Institute/Key Laboratory of Peanut Biology and Genetic Improvement, Ministry of Agriculture,
Qingdao 266100, China; 2. Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002,
China; 3.Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China)
Abstract Late leaf spot (LLS) disease is one of the most important leaf diseases in peanut (Arachis hypogaea L.), which could cause substantial yield losses and reduce the seed quality. Application of resistant varieties is one of the most economical and effective methods for controlling this disease. In this paper, the damage and controlling ways of LLS were summarized. The recent research progress on identification of resistant germplasm resources, resistance inheritance and disease resistant genes, molecular markers, breeding of disease-resistant varieties and so on were reviewed. Moreover, some suggestions were put forward for strengthening LLS research.
Keywords Peanut; Late leaf spot; Disease management; Disease resistant breeding
花生是世界上重要的經(jīng)濟(jì)和油料作物之一,在食用植物油及休閑食品中占有舉足輕重的地位?;ㄉ~斑病在所有花生產(chǎn)區(qū)均有發(fā)生或流行,是造成花生減產(chǎn)的重要因素之一?;ㄉ~斑病包括褐斑病和黑斑病。褐斑病又叫“早斑病”(early leaf spot),黑斑病又稱(chēng)“晚斑病”(late leaf spot),其中晚斑病是花生生產(chǎn)中最常見(jiàn)、危害最大的病害之一[1]。花生晚斑病主要危害葉片,破壞葉綠素,造成光合作用效能下降,大量病斑造成葉片枯死、脫落,嚴(yán)重影響干物質(zhì)積累和莢果成熟。在印度,晚斑病流行較重[2];我國(guó)北方花生產(chǎn)區(qū)以晚斑病流行為主,南方產(chǎn)區(qū)早斑病和晚斑病常交替發(fā)生,多數(shù)年份以晚斑病危害為主[3-5]?;ㄉ戆卟】墒够ㄉ鷾p產(chǎn)10% ~ 20%,嚴(yán)重的可達(dá)50%以上,每年對(duì)全球花生生產(chǎn)造成的損失達(dá)6億美元[ 6-9]。
1 花生晚斑病病原菌
花生晚斑病病原菌為短胖孢[Cercosporidium personatum(Beck & Curtis) Deighton],無(wú)性階段為半知菌類(lèi)短胖孢屬落花生短胖孢,有性階段為子囊菌綱球腔菌屬伯克利球腔菌(Mycosphaerella berkeleyi)。晚斑病菌侵染后,花生葉正面產(chǎn)生較小的黑褐色、圓形或近圓形病斑,背面通常產(chǎn)生許多黑色小點(diǎn),即病菌分生孢子梗和分生孢子。晚斑病病菌主要以分生孢子座和菌絲體在病株殘?bào)w上越冬,或以分生孢子黏附在莢果、莖稈表面越冬。分生孢子萌生芽管直接從花生葉片表皮或氣孔侵入。22 ~ 23℃時(shí),3 ~ 4 d顯病,1周開(kāi)始產(chǎn)孢。翌年借風(fēng)雨傳播進(jìn)行初侵染和再侵染[5,10]。
2 花生晚斑病的主要防治途徑
花生晚斑病主要防治途徑有:殺菌劑的應(yīng)用、生物防治、綜合管理措施等[5]。殺菌劑的推廣應(yīng)用是當(dāng)前田間防治晚斑病的重要措施,但對(duì)花生葉斑病的防治效果僅在60%左右[10],且化學(xué)農(nóng)藥的不合理施用會(huì)引起人畜中毒、環(huán)境破壞和植物藥害等一系列環(huán)境、社會(huì)問(wèn)題。目前,生物防治措施的研究報(bào)道較少,直接應(yīng)用于花生大規(guī)模生產(chǎn)實(shí)踐中的更少。綜合管理措施主要通過(guò)創(chuàng)造不利于晚斑病發(fā)病的微生態(tài)環(huán)境或在發(fā)病前期盡早預(yù)報(bào)預(yù)防晚斑病的發(fā)生發(fā)展。培育和利用抗病品種是經(jīng)濟(jì)、安全且最有效的防控病害的途徑。在同樣病原菌壓力的情況下,抗病品種比感病品種發(fā)病慢、感病輕??共∑贩N的應(yīng)用可以減少殺菌劑的使用、降低生產(chǎn)成本、減輕環(huán)境污染壓力和由于農(nóng)藥殘留導(dǎo)致的食品安全風(fēng)險(xiǎn)。
3 花生晚斑病抗病種質(zhì)資源
抗病種質(zhì)資源,即抗源,是植物抗病育種的原始材料,也是選育優(yōu)良抗病品種的遺傳物質(zhì)基礎(chǔ),系統(tǒng)地搜集、保存、評(píng)價(jià)和研究抗源是抗病育種研究最重要的基礎(chǔ)工作。種質(zhì)資源主要包括地方品種、改良品種、近緣植物和通過(guò)種內(nèi)雜交、遠(yuǎn)緣雜交、誘發(fā)變異獲得的抗病中間材料等。各國(guó)科學(xué)家一直致力于發(fā)掘花生晚斑病的抗病種質(zhì)資源。
3.1 花生野生種抗晚斑病種質(zhì)資源的篩選
花生不同種質(zhì)間抗、感病程度存在一定差異,尤其是花生野生種存在著優(yōu)異的抗病基因。與栽培種相比,野生種花生具有較高的遺傳多樣性,能夠適應(yīng)一系列復(fù)雜環(huán)境,是抵抗生物脅迫和非生物脅迫的重要基因來(lái)源[11-13]。梁炫強(qiáng)等從34份花生野生種中發(fā)掘出24份高抗晚斑病材料,1份中抗材料[14]。Abdou等對(duì)南美洲和非洲不同地區(qū)花生的不同亞種、野生變種和栽培品種進(jìn)行抗病鑒定,發(fā)現(xiàn)Arachis cardenasii對(duì)晚斑病免疫[15]?;ㄉ鷧^(qū)組的A. duranensis、A. spegazzini、A. correntina、A. stenosperma、A. diogoi(=A. chacoense),直立區(qū)組的A. paraguriensis,三籽粒區(qū)組的A. pussila,圍脈區(qū)組的A. villosulicarpa,根莖區(qū)組的A. hagenbeckii、A. glabrata、A. burkartii,大根區(qū)組的A. repens等野生種以及一些未定名的野生材料對(duì)晚斑病均表現(xiàn)出高抗或免疫[16]。
3.2 花生栽培種抗晚斑病種質(zhì)的篩選與創(chuàng)制
國(guó)內(nèi)外花生育種工作者致力于抗晚斑病種質(zhì)資源的篩選與創(chuàng)制,篩選獲得的抗性種質(zhì)部分已經(jīng)應(yīng)用到花生育種實(shí)踐中。Hassan等從16個(gè)不同種質(zhì)材料中篩選出可作為葉斑病抗性育種最有優(yōu)勢(shì)的親本品種NC 3033、NC 5和AC 3139[17]。Kornegay等研究發(fā)現(xiàn)NC 3033和NC-GP 343在篩選的6個(gè)花生品系中抗性最高,是花生晚斑病抗性育種最具潛力的品系[18]。Cook從12份花生栽培種中鑒定出PI 259747和PI 341879高抗晚斑病[19]。1986年,Chiteka等從116個(gè)花生基因型中檢測(cè)到對(duì)晚斑病抗性最強(qiáng)的基因型為UF81206-1、UF81206-2.72 × 32b-3-2-2-2-2-2-l-b3-b和US 29-b3-B(85701)[20]。Anderson等從500份引進(jìn)花生種質(zhì)篩選出33份對(duì)晚斑病表現(xiàn)部分抗性[21]。Dwivedi等從15份種間雜交材料中篩選出ICGV 9006、99013、99004、9903和99001共5個(gè)晚斑病抗病育種親本材料[22]。2001年,國(guó)際半干旱研究所(ICRISAT)鑒定發(fā)現(xiàn)ICGV# 99001和99004種質(zhì)系抗晚斑病[23]。Chapin等評(píng)價(jià)了47個(gè)弗吉尼亞型育種系和8個(gè)品種對(duì)晚斑病的抗性,發(fā)現(xiàn)栽培種Bailey、三個(gè)姊妹系(N03088T、N03089T和N03090T)和N03091T始終不容易被晚斑病侵染[24]。美國(guó)的Southern runner屬于中抗晚斑病品種[25],玻利維亞地方品種Bayo grande以及其他一系列的育種系也具有較好的葉斑病抗性[26],澳大利亞新品種Sutherland對(duì)晚斑病表現(xiàn)高抗[27],ICG11337在抗晚斑病育種中是一個(gè)很好的抗性供體[28]。
我國(guó)科研工作者對(duì)國(guó)外引種的花生種質(zhì)和國(guó)內(nèi)育成品種也開(kāi)展了葉斑病抗性鑒定。黎穗臨從981份國(guó)外花生資源中鑒定出抗葉斑病品種722份,其中高抗276份,高抗早斑病和晚斑病的品種144份,同時(shí)從333份廣東省花生資源中篩選鑒定出57份抗葉斑病品種,如遂溪勾鼻、頂子細(xì)粒等[29]。董煒博等研究發(fā)現(xiàn)引進(jìn)品種UF91108對(duì)晚斑病高抗,可作為花生育種的抗源材料[30]。袁虹霞等篩選出對(duì)花生早斑病和晚斑病抗性較好的開(kāi)農(nóng)31、濮花8030和豫花15號(hào)等系列品種[31]。
4 花生晚斑病的抗性遺傳、QTL定位及分
子標(biāo)記與抗性相關(guān)基因[BT)]
4.1 花生晚斑病的抗性遺傳
花生晚斑病抗性遺傳較為復(fù)雜,有研究表明葉斑病抗性由2對(duì)以上核隱性基因控制,而且早斑病和晚斑病抗性遺傳是分別獨(dú)立的[3, 32]。Nevill在前人研究的基礎(chǔ)上進(jìn)一步得出花生晚斑病抗性是由5對(duì)隱性基因控制[33]。Soriano等發(fā)現(xiàn)花生葉斑病突變體的抗性由2個(gè)突變基因IS-1和IS-2控制,這2個(gè)突變基因編碼的蛋白主要通過(guò)抑制病原菌的生長(zhǎng)從而對(duì)病原菌產(chǎn)生抗性抑制[34]。Pasupuleti等研究表明花生栽培種與野生種種間雜交衍生系ICG11317和ICG13919對(duì)晚斑病的抗性受細(xì)胞核基因和細(xì)胞質(zhì)基因的共同控制[28]。夏友霖等的研究認(rèn)為ICGV86699對(duì)花生晚斑病的抗性受 2 對(duì)加性-上位性主基因 + 加性-上位性多基因控制[35]。
4.2 花生晚斑病的QTL定位及分子標(biāo)記
近年來(lái),花生晚斑病QTL及分子標(biāo)記陸續(xù)被篩選、鑒定。早期主要以AFLP分子標(biāo)記和SSR分子標(biāo)記為主。2007年,夏友霖等以中花5號(hào) × ICGV 86699的F2群體為材料,利用AFLP分析結(jié)合BSA法,鑒定出與晚斑病抗性緊密連鎖的三個(gè)AFLP標(biāo)記:E35/M51、E37/M48和E41/M47[36]。Leal-Bertioli等以二倍體野生種間雜交的F2群體為材料鑒定出5個(gè)晚斑病抗性QTLs和34個(gè)序列特定的候選基因片段[37]。Khedikar等以來(lái)自雜交組合TAG24 × GPBD4的268份RIL群體為材料,利用SSR標(biāo)記構(gòu)建了14個(gè)遺傳連鎖群,鑒定出11個(gè)晚斑病抗性QTLs,可解釋晚斑病1.70%~6.50%的表型變異[38]。Sujay等利用分別來(lái)自?xún)蓚€(gè)組合TAG24 × GPBD和TG 26 × GPBD4的RIL群體,鑒定出15個(gè)晚斑病抗性QTLs[39]。Shoba等利用TMV 2 × COG 0437的F2群體和SSR標(biāo)記技術(shù),篩選出與晚斑病抗性相關(guān)的SSR標(biāo)記PM 384-100[40]。Wang等利用SSR分子標(biāo)記技術(shù)及組合Tifrunner × GT-C20構(gòu)建的群體,在F2圖譜(5.3 cM/位點(diǎn))中鑒定出54個(gè)QTLs,其中37個(gè)為葉斑病QTLs,在F5圖譜(5.7 cM/位點(diǎn))中鑒定出23個(gè)QTLs,其中13個(gè)為葉斑病QTLs[41]。Pandey等利用相同的RIL群體共鑒定出42個(gè)QTLs,其中抗早斑病9個(gè),抗晚斑病22個(gè)[42]。Khera等利用SunOleic 97R和NC94022的重組自交系群體,構(gòu)建了包含248個(gè)標(biāo)記位點(diǎn)的群體遺傳連鎖圖譜,鑒定出48個(gè)QTLs,其中22個(gè)抗早斑病QTLs,20個(gè)抗晚斑病QTLs,并發(fā)現(xiàn)共有6個(gè)主要的基因組區(qū)域包含的QTLs控制不止一種抗病性[43]。
隨著測(cè)序技術(shù)的進(jìn)步及測(cè)序成本的降低,SNP標(biāo)記用于花生分子遺傳圖譜的構(gòu)建和QTL定位。2014年,Zhou等利用簡(jiǎn)化基因組測(cè)序技術(shù)構(gòu)建了來(lái)自中花5號(hào) × ICGV 86699組合的RIL群體高密度遺傳圖[44],鑒定出20個(gè)晚斑病抗性QTLs,并發(fā)現(xiàn)2個(gè)QTLs(qLLSB6-7和qLLSB1)位于編碼NB-LRR的兩個(gè)基因簇中[45]。Pandey等利用基于全基因組重測(cè)序(WGRS)的QTL-seq方法分析來(lái)自RIL群體(TAG24 × GPBD)的抗池/感池,鑒定出A03上的一個(gè)2. 98 Mb的基因組區(qū)(131.67 ~ 134.65 Mb)同時(shí)負(fù)責(zé)銹病和晚斑病抗性,開(kāi)發(fā)了1個(gè)抗晚斑病SNP診斷標(biāo)記[46]。Clevenger等也利用QTL-seq方法對(duì)來(lái)自組合Florida-07 × GP-NC WS的重組自交系群體的抗池/感池開(kāi)展測(cè)序分析,鑒定出3個(gè)分別位于A05、B05和B03染色體上花生晚斑病QTLs[47];Chu等利用花生58 K SNP芯片數(shù)據(jù)分析該群體,構(gòu)建了一個(gè)基于SNP的包含855個(gè)位點(diǎn)的連鎖圖譜,鑒定出三個(gè)晚斑病抗性QTLs(qLLSA05、qLLSB03和qLLSB05)[48],其中qLLSA05、qLLSB03與用QTL-seq策略[47]獲得的相同。Liang等利用品種Tamrun OL07和高抗葉斑病育種系Tx964117構(gòu)建的F2∶6重組自交系(RIL)群體,共鑒定出6個(gè)與花生葉斑病相關(guān)的QTLs[49]。Lu等通過(guò)構(gòu)建一個(gè)包含5 874個(gè)位點(diǎn)的遺傳圖譜,在A05連鎖群約0.38 cM的區(qū)域發(fā)現(xiàn)了一個(gè)抗晚斑病的主效QTL,該區(qū)域包含26個(gè)候選基因,其中一些被注釋與其它物種的抗病性調(diào)節(jié)有關(guān)[50]。Han等利用分布于20個(gè)連鎖群的2 753個(gè)SNP標(biāo)記構(gòu)建了一張標(biāo)記平均間距為1.34 cM的高分辨率圖譜,將一個(gè)主效晚斑病抗性QTL定位在B05染色體上[51]。Agarwal等利用重組自交系群體的WGRS數(shù)據(jù),建立基于SNP的高密度遺傳圖譜,共鑒定出35個(gè)主要效應(yīng)QTLs,其中2個(gè)晚斑病QTLs分別在A05(PVE 47.63%)和B03(34.03%)上,并開(kāi)發(fā)驗(yàn)證了相關(guān)KASP標(biāo)記[52]。這些鑒定出的QTLs、分子標(biāo)記和抗病基因豐富的基因組區(qū)域?qū)⒂兄诨ㄉ共』虻目寺『头肿訕?biāo)記輔助抗病品種的培育。
4.3 花生晚斑病抗性相關(guān)基因
關(guān)于花生晚斑病抗性相關(guān)基因的研究近年有較多報(bào)道。Luo等通過(guò)分析不同抗性花生品種在接種晚斑病菌后384個(gè)轉(zhuǎn)錄本的變化情況,尋找抗性基因片段,結(jié)果檢測(cè)到代表56個(gè)功能類(lèi)別基因的112個(gè)基因上調(diào)表達(dá),并驗(yàn)證了其中的17個(gè)基因[53]。二倍體野生種A. diogoi接種晚斑病菌48 h后部分cDNA上調(diào)表達(dá),其中一個(gè)編碼類(lèi)環(huán)膦素蛋白基因AdCyp,該基因受病原菌和植物激素的上調(diào)表達(dá)影響,轉(zhuǎn)AdCyp的煙草對(duì)青枯菌的抗性增強(qiáng)、對(duì)寄生疫霉菌的感病性降低[54]。Guimares等對(duì)接種晚斑病菌后的野生種進(jìn)行轉(zhuǎn)錄組學(xué)分析,獲得多個(gè)響應(yīng)晚斑病侵染的差異表達(dá)基因,并通過(guò)qRT-PCR對(duì)5個(gè)抗性基因類(lèi)似物和4個(gè)逆轉(zhuǎn)錄轉(zhuǎn)座子序列進(jìn)行了驗(yàn)證,同時(shí)開(kāi)發(fā)了多個(gè)特異性抗性分子標(biāo)記[55]。病原菌相關(guān)蛋白PR-5和防御素屬于植物抗真菌蛋白,轉(zhuǎn)SniOLP(Solanum nigrum osmotin-like protein,龍葵滲調(diào)蛋白)和RsAFP2(Raphanus sativus antifungal protein-2,蘿卜抗真菌蛋白-2)雙基因的花生對(duì)晚斑病的抗性明顯增強(qiáng)[56]。另外,來(lái)自水稻和煙草的幾丁質(zhì)酶基因、芥菜生物防御素基因轉(zhuǎn)化到花生后均能提高花生對(duì)葉斑病的抗性[57-59]。
5 抗花生晚斑病品種的培育
常規(guī)抗病品種選育的主要途徑包括引種、系統(tǒng)選種、常規(guī)雜交育種、遠(yuǎn)緣雜交育種和誘變育種等。研究表明,高抗病可以與產(chǎn)量、品質(zhì)因素相結(jié)合,其中一些品系可能在生產(chǎn)中發(fā)揮很好的作用[60]。美國(guó)農(nóng)業(yè)部農(nóng)業(yè)研究服務(wù)部和佐治亞大學(xué)農(nóng)業(yè)與環(huán)境科學(xué)院聯(lián)合選育的花生新品種Tifrunner,對(duì)早、晚斑病均具有中等抗性[61],F(xiàn)loridaMDR98、C-99R和York等均為抗葉斑病品種[23, 62]。佐治亞大學(xué)海岸平原實(shí)驗(yàn)站將PI 203396和品種AgraTech GK 7雜交育成了高抗早、晚斑病的Georganic[63]。
從20世紀(jì)90年代開(kāi)始,我國(guó)開(kāi)展了大量花生晚斑病抗病育種研究,并育成了一些抗或耐晚斑病的花生品種[16],對(duì)葉斑病或晚斑病的抗性品種進(jìn)行匯總,見(jiàn)表1。山東省主要推廣花生品種有72個(gè),其中抗晚斑病或葉斑病的有3個(gè);河南省主要推廣品種有61個(gè),其中抗晚斑病或葉斑病的有5個(gè);廣東省主要推廣品種有42個(gè),其中抗晚斑病或葉斑病的有17個(gè);湖北省主要推廣品種有22個(gè),其中抗晚斑病或葉斑病的有3個(gè);遼寧省主要推廣品種有45個(gè),其中抗晚斑病或葉斑病的有2個(gè);湖南省主要推廣品種有11個(gè),其中抗晚斑病或葉斑病的有1個(gè);臺(tái)灣主要推廣品種約有22個(gè),其中抗葉斑病的有2個(gè);北京市主要推廣品種約有23個(gè),其中抗晚斑病或葉斑病的有2 個(gè)。
6 存在的問(wèn)題與展望
花生是我國(guó)重要的油料作物之一,在保障我國(guó)食用油供給方面具有重要作用。晚斑病防治是花生生產(chǎn)的重要環(huán)節(jié)之一。運(yùn)用分子標(biāo)記技術(shù)可以縮短育種年限,將多個(gè)抗性基因聚合到同一個(gè)材料中,已經(jīng)成為花生育種的一個(gè)重要方向。全面闡明花生晚斑病抗性遺傳機(jī)制,并根據(jù)生產(chǎn)需要定向培育綜合性狀優(yōu)良、高抗花生晚斑病的新品種是花生科研工作者面臨的重要課題之一。
目前,對(duì)花生晚斑病抗病機(jī)理和抗病育種的研究相對(duì)較少,例如,花生晚斑病抗病機(jī)理目前仍未闡明;花生抗晚斑病的分子標(biāo)記開(kāi)發(fā)雖然取得了一定成效,但在品種選育中真正發(fā)揮作用的極少,花生抗晚斑病的育種主要還是以傳統(tǒng)的常規(guī)育種方式為主;多數(shù)育成的抗病品種還是依賴(lài)栽培種之間的雜交選育,很多野生種質(zhì)材料對(duì)多種病害高抗甚至免疫,但由于倍性差異和雜交親和性低等原因,野生資源的利用還非常有限。因此,對(duì)花生晚斑病應(yīng)加強(qiáng)以下幾個(gè)方面的研究:(1)結(jié)合栽培花生和野生花生全基因組測(cè)序的研究成果,通過(guò)比較基因組學(xué),鑒定晚斑病抗性關(guān)鍵基因,深入研究花生晚斑病抗病分子機(jī)理;(2)充分挖掘抗病花生種質(zhì)的遺傳多樣性,將分子標(biāo)記輔助選擇與常規(guī)育種相結(jié)合,聚合多個(gè)抗性基因,開(kāi)展多抗優(yōu)質(zhì)花生新品種的培育;(3)通過(guò)基因工程改良、種間雜交、人工四倍體的合成等途徑,將野生資源中的抗病基因漸滲到栽培種中,創(chuàng)造大量栽野漸滲系,為晚斑病抗性育種奠定基礎(chǔ)。
參 考 文 獻(xiàn):
[1]Miller I L, Norden A J, Knauft D A, et al. Influence of maturity and fruit yield on susceptibility of peanut to Cercosporidium personatum(late leaf spot pathogen)[J].Peanut Science, 1990, 17(2): 52-58.
[2]Mcdonald D, Subrahmanyam P, Gibbons R W, et al. Early and late leaf spots of groundnut[M].International Crops Research Institute for the Semi-Arid Tropics, 1985.
[3]趙守賢. 花生的抗病育種[J].花生科技, 1993(2): 25-27.
[4]沈一, 劉永惠, 陳志德. 花生葉斑病研究概述[J].花生學(xué)報(bào), 2014, 43(2): 42-46.
[5]韓鎖義, 張新友, 朱軍, 等. 花生葉斑病研究進(jìn)展[J].植物保護(hù), 2016, 42(2): 14-18.
[6]萬(wàn)書(shū)波. 中國(guó)花生栽培學(xué)[M].上海: 上??茖W(xué)技術(shù)出版社, 2003.
[7]Zhang S, Reddy M S, Kokalis-Burelle N, et al. Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors[J].Plant Disease, 200 85(8): 879-884.
[8]Dwivedi S L, Crouch J H, Nigam S N, et al. Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges[J].Advances in Agronomy, 2003, 80(4): 153-221.
[9]Ogwulumba S I, Ugwuoke K I, Iloba C. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the incidence of foliar myco-pathogens of groundnut (Arachis hypogaea L.) in Ishiagu, Nigeria[J].African Journal of Biotechnology, 2008, 7(16): 2878-2880.
[10]鄢洪海, 張茹琴. 環(huán)境因子對(duì)花生黑斑病菌生長(zhǎng)發(fā)育的影響[J].湖北農(nóng)業(yè)科學(xué), 2009, 48(9): 2145-2148.
[11]Mallikarjuna N, Jadhav D R, Reddy K, et al. Screening new Arachis amphidiploids, and autotetraploids for resistance to late leaf spot by detached leaf technique[J].European Journal of Plant Pathology, 2012, 132(1): 17-21.
[12]朱琳, 靳秋生, 郭鳳丹, 等. 花生野生種在花生抗病中的利用[J].中國(guó)油料作物學(xué)報(bào), 2019, 41(3): 469-477.
[13]Singh A K, Mehan V N S. Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal[M].International Crops Research Institute for the Semi-Arid Tropics, 1997.
[14]梁炫強(qiáng), 黎穗臨, 葉維霖, 等. 國(guó)外花生種質(zhì)資源的引進(jìn)、鑒定和利用[J].花生科技, 1999(S1): 130-135.
[15]Abdou Y A, Gregory W C, Cooper W E. Sources and nature of resistance to Cercospora arachidicola Hori and Cercosporidium personatum (Beck & Curtis) Deighton in Arachis species[J].Peanut Science, 1974, 1(1): 6-11.
[16]禹山林. 中國(guó)花生品種及其系譜[M].上海: 上??茖W(xué)技術(shù)出版社, 2008.
[17]Hassan H N, Beute M. Evaluation of resistance to Cercospora leaf spot in peanut germplasm potentially useful in a breeding program[J].Peanut Science, 1977, 4(2): 78-83.
[18]Kornegay J L, Beute M K, Wynne J C. Inheritance of resistance to Cercospora arachidicola and Cercosporidium personatum in six Virginia-type peanut lines[J].Peanut Science, 1980, 7(1): 4-9.
[19]Cook M. Susceptibility of peanut leaves to Cercosporidium personatum[J].Phytopathology, 198 71(8): 787-791.
[20]Chiteka Z A, Gorbet D W, Shokes F M, et al. Components of resistance to late leafspot in peanut. Ⅰ. levels and variability-implications for selection[J].Peanut Science, 1988, 15(1): 25-30.
[21]Anderson W F, Holbrook C C, Brenneman T B. Resistance to Cercosporidium personatum within peanut germplasm[J].Peanut Science, 1993, 20(1): 53-57.
[22]Dwivedi S L, Pande S, Rao J N, et al. Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.)[J].Euphytica, 2002, 125(1): 81-88.
[23]Singh A K, Dwivedi S L, Pande S, et al. Registration of rust and late leaf spot resistant peanut germplasm lines[J].Crop Science, 2003, 43(1): 440-442.
[24]Chapin J W, Thomas J S, Isleib T G, et al. Field evaluation of Virginia-type peanut cultivars for resistance to tomato spotted wilt virus, late leaf spot, and stem rot[J].Peanut Science, 2010, 37(1): 63-69.
[25]Singh M P, Erickson J E, Boote K J, et al. Late leaf spot effects on growth, photosynthesis, and yield in peanut cultivars of differing resistance[J].Agronomy Journal, 201 103(1): 85-91.
[26]Gremillion S, Culbreath A, Gorbet D, et al. Response of progeny bred from Bolivian and North American cultivars in integrated management systems for leaf spot of peanut (Arachis hypogaea)[J].Crop Protection, 201 30(6): 698-704.
[27]Kelly L A, Ryley M J, Trevorrow P R, et al. Reduced fungicide use on a new Australian peanut cultivar, highly resistant to the late leaf spot and rust pathogens[J].Australasian Plant Pathology, 2012, 41(4): 359-373.
[28]Pasupuleti J, Ramaiah V, Rathore A, et al. Genetic analysis of resistance to late leaf spot in interspecific groundnuts[J].Euphytica, 2013, 193(1): 13-25.
[29]黎穗臨. 廣東省花生品種資源研究概述[J].花生科技, 1999(S1): 179-184.
[30]董煒博, 石延茂, 趙志強(qiáng),等. 花生品種(系)葉部病害綜合抗性鑒定[J].中國(guó)油料作物學(xué)報(bào), 2000(3): 72-75.
[31]袁虹霞, 孫炳劍, 李洪連, 等. 花生品種(系)對(duì)葉斑病的抗性鑒定[J].河南農(nóng)業(yè)科學(xué), 2004(12): 35-38.
[32]Sharief Y, Rawlings J O, Gregory W C. Estimates of leaf spot resistance in three interspecific hybrids of Arachis[J].Euphytica, 1978, 27(3): 741-751.
[33]Nevill D J. Inheritance of resistance to Cercosporidium personatum in groundnuts: a genetic model and its implications for selection[J].Oleagineux, 1982, 37(7): 355-363.
[34]Soriano J D, Villanueva A C, Calaguas A M, et al. Gene expression in peanut mutants resistant to leaf spot disease[J].Cell Biology International Reports, 1990, 14: 180.
[35]夏友霖, 敬昱霖, 毛金雄, 等. 花生晚斑病抗性遺傳分離分析[J].中國(guó)油料作物學(xué)報(bào), 2015, 37(2): 134-140.
[36]夏友霖, 廖伯壽, 李加納, 等. 花生晚斑病抗性AFLP標(biāo)記[J].中國(guó)油料作物學(xué)報(bào), 2007(3): 318-321.
[37]Leal-Bertioli S C M, Jose A C V F, Alves-Freitas D M T, et al. Identification of candidate genome regions controlling disease resistance in Arachis[J].BMC Plant Biology, 2009, 9:112.
[38]Khedikar Y P, Gowda M V C, Sarvamangala C, et al. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.)[J].Theoretical and Applied Genetics, 2010, 121(5): 971-984.
[39]Sujay V, Gowda M V C, Pandey M K, et al. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.)[J].Molecular Breeding, 2012, 30(2): 773-788.
[40]Shoba D, Manivannan N, Vindhiyavarman P, et al. SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.)[J].Euphytica, 2012, 188(2): 265-272.
[41]Wang H, Pandey M K, Qiao L, et al. Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘TifrunnerבGT-C20 in peanut[J].Plant Genome, 2013, 6(3):1-10.
[42]Pandey M K, Wang H, Khera P, et al. Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.)[J].Frontiers in Plant Science, 2017, 8: 1-12.
[43]Khera P, Pandey M K, Wang H, et al. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022[J].PLoS ONE, 2016, 11(7): 1-17.
[44]Zhou X, Xia Y, Ren X, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next generation double-digest-restriction-site-associated DNA sequencing (ddRADseq)[J].BMC Genomics, 2014, 15: 351.
[45]Zhou X, Xia Y, Liao J, et al. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments[J].PLoS ONE, 2016, 11(11): e0166873.
[46]Pandey M K, Khan A W, Singh V K, et al. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)[J].Plant Biotechnology Journal, 2017, 15(8): 927-941.
[47]Clevenger J, Chu Y, Chavarro C, et al. Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection[J].Frontiers in Plant Science, 2018, 9: 83.
[48]Chu Y, Chee P, Culbreath A, et al. Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in peanut (Arachis hypogaea)[J].Frontiers in Plant Science, 2019, 10: 883.
[49]Liang Y, Baring M, Wang S, et al. Mapping QTLs for leaf spot resistance in peanut using SNP-based next-generation sequencing markers[J].Plant Breeding and Biotechnology, 2017, 5(2): 115-122.
[50]Lu Q, Liu H, Hong Y, et al. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.)[J].BMC Genomics, 2018, 19(1): 887-897.
[51]Han S, Yuan M, Clevenger J P, et al. A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut (Arachis hypogaea L.)[J].Frontiers in Plant Science, 2018, 9: 1-9.
[52]Agarwal G, Clevenger J, Pandey M K, et al. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut[J].Plant Biotechnology Journal, 2018, 16(11): 1954-1967.
[53]Luo M, Dang P, Bausher M G, et al. Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea)[J].Phytopathology, 2005, 95(4): 381-387.
[54]Kumar K R R, Kirti P B. Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin[J].Plant Molecular Biology, 201 75(4/5): 497-513.(下轉(zhuǎn)第188頁(yè))
[55]Guimar[KG-*3]a[DD(-*2]~[][DD)][KG-*6]es P M, Brasileiro A C, Morgante C V, et al. Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection[J].BMC Genomics, 2012, 13(1): 1-15.
[56]Vasavirama K, Kirti P B. Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes[J].Functional & Integrative Genomics, 2012, 12(4): 625-634.
[57]Anuradha T S, Divya K, Jami S K, et al. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens[J].Plant Cell Reports, 2008, 27(11): 1777-1786.
[58]Iqbal M M, Nazir F, Ali S, et al. Overexpression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot[J].Molecular Biotechnology, 2012, 50(2): 129-136.
[59]Rohini V K, Rao K S. Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease[J].Plant Science, 200 160(5): 889-898.
[60]Tallury S P, Isleib T G, Stalker H T. Comparison of virginia-type peanut cultivars and interspecific hybrid derived breeding lines for leaf spot resistance, yield, and grade[J].Peanut Science, 2009, 36(2): 144-149.
[61]Holbrook C C, Culbreath A K. Registration of ‘Tifrunner peanut[J].J. Plant Regist., 2007, 1(2): 24-58.
[62]Holbrook C C, Stalker H T. Peanut breeding and genetic resources[J].Plant Breeding Reviews, 2010, 22: 297-356.
[63]Holbrook C C, Culbreath A K. Registration of ‘Georganic peanut[J].J. Plant Regist., 2008, 2(1): 17.
收稿日期:2019-08-11
基金項(xiàng)目:國(guó)家自然科學(xué)基金-國(guó)際合作項(xiàng)目(3181101550);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018GNC110036);山東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新工程項(xiàng)目(CXGC2016B02);河南省科技攻關(guān)計(jì)劃項(xiàng)目(182102110137)
作者簡(jiǎn)介:吳麗軍(1987—),女,助理研究員,主要從事分子生物學(xué)研究。E-mail: wljd126@126.com
通訊作者: 袁美(1972—),女,博士,研究員,主要從事花生生物技術(shù)育種研究。E-mail: yuanbeauty@126.com
王興軍(1966—),男,博士,研究員,主要從事作物分子育種研究。E-mail: xingjunw@hotmail.com