陳林木,陳景光,王寧寧,張顯晨*
質(zhì)子泵在不同氮素形態(tài)調(diào)控茶樹磷素吸收的功能研究
陳林木1,陳景光2,王寧寧1,張顯晨1*
1. 安徽農(nóng)業(yè)大學(xué)茶樹生物學(xué)及資源利用國家重點(diǎn)實驗室,安徽 合肥 230036 2. 中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所,廣東 深圳 518116
磷是植物生長發(fā)育的重要礦質(zhì)營養(yǎng)元素之一,不同氮素形態(tài)均影響植物對磷素的吸收。植物細(xì)胞膜H+-ATPase在礦質(zhì)營養(yǎng)元素吸收過程中具有重要調(diào)控作用,因此不同氮素形態(tài)調(diào)控茶樹磷素吸收可能與細(xì)胞膜H+-ATPase相關(guān)。本研究采用二相分離法提取茶樹根系質(zhì)膜,并通過非損傷微測(NMT)、Western-blot等技術(shù)探究不同氮素形態(tài)對舒茶早根系磷素吸收和細(xì)胞膜H+-ATPase特征參數(shù)的影響。結(jié)果表明,銨態(tài)氮提高茶樹對磷素的吸收;其茶樹根系細(xì)胞膜電位、H+跨膜運(yùn)輸、H+-ATPase活性和蛋白表達(dá)均高于硝態(tài)氮處理;且細(xì)胞膜H+-ATPase專一抑制劑正釩酸鈉(Na3VO4)顯著減少不同氮素形態(tài)下茶樹根系對磷素的吸收和富集。由此可見,茶樹根系H+-ATPase可能參與不同氮素形態(tài)調(diào)控磷素的吸收。
銨態(tài)氮;硝態(tài)氮;磷素吸收;細(xì)胞膜H+-ATPase;茶樹
茶樹[(L.) O. Kuntze]是一種多年生經(jīng)濟(jì)類木本植物[1-2]。磷是植物生長發(fā)育過程中所必需的大量營養(yǎng)元素之一,是ATP、磷脂和核酸等許多大分子物質(zhì)的重要組成成分[3-4]。磷素參與茶樹葉部光合作用和根部有機(jī)酸的代謝[5],且調(diào)控茶樹葉部氨基酸,多酚類和黃酮類化合物的合成[6]。因此,研究茶樹磷素營養(yǎng)對探究茶樹生長發(fā)育具有重要意義。目前關(guān)于茶樹磷素吸收的研究主要集中在生理生態(tài)上。Ruan等[7]通過土培試驗研究不同氮素形態(tài)對茶籽苗(4~5葉)磷素吸收的影響,結(jié)果表明,銨態(tài)氮顯著酸化根際土壤,并促進(jìn)茶樹對磷素的吸收,而硝態(tài)氮對根際土壤pH和磷素吸收均無顯著影響。Zoysa等[8]采用土培試驗,比較斯里蘭卡3種茶樹品種(TRI2023,TRI2025和S106)的根際土壤磷素有效性和磷素吸收效率,發(fā)現(xiàn)TRI2023和TRI2025表現(xiàn)出較高的磷素吸收效率。但是關(guān)于哪些因素參與調(diào)控茶樹磷素吸收的研究目前鮮有報道。
植物細(xì)胞膜H+-ATPase(質(zhì)子泵)是重要的離子泵[9],主要利用水解ATP產(chǎn)生的能量將細(xì)胞內(nèi)的H+泵至胞外,產(chǎn)生H+電化學(xué)梯度并調(diào)控離子和小分子等物質(zhì)的跨膜運(yùn)輸[10-11]。前人研究[12]表明,通過增加白羽扇豆排根(Proteoid root)細(xì)胞膜H+-ATPase的活性,加速H+外排并酸化土壤,提高白羽扇豆根部對磷素的吸收。此外,通過藥理學(xué)試驗發(fā)現(xiàn),植物細(xì)胞膜H+-ATPase促進(jìn)劑殼梭孢素(Fusicoccin)提高大豆對磷素的吸收和富集,而抑制劑Na3VO4則相反,說明大豆根系細(xì)胞膜H+-ATPase可能參與了調(diào)控大豆根部對磷素的吸收[13];相同報道也發(fā)現(xiàn),細(xì)胞膜H+-ATPase促進(jìn)劑殼梭孢素增強(qiáng)了浮萍對磷素的吸收[14]。但是關(guān)于氮素是否通過調(diào)控茶樹根部細(xì)胞膜H+-ATPase影響磷素吸收的系統(tǒng)研究,目前尚未見相關(guān)報道。
本研究將采用二相分離法、非損傷微測技術(shù)和Western-blot等方法,探究銨態(tài)氮和硝態(tài)氮對茶樹磷素吸收和根系細(xì)胞膜H+-ATPase的影響。研究結(jié)果將為揭示茶樹調(diào)控磷素吸收的生理機(jī)制提供理論基礎(chǔ),并為茶樹栽培中的磷肥合理施用提供參考。
試驗材料為半年生舒茶早扦插苗,種植于安徽農(nóng)業(yè)大學(xué)茶樹生物學(xué)與資源利用國家重點(diǎn)實驗室農(nóng)翠園,于2018年3月中旬扦插,9月下旬取樣。
1.2.1 材料處理
扦插苗植于營養(yǎng)液中后轉(zhuǎn)移至人工氣候室。溫室條件:光照時間12?h·d-1,室溫(22±1)℃,光照強(qiáng)度約270?μmol·m-2·s-1,空氣濕度45%~50%。茶樹水培營養(yǎng)溶液大量元素濃度(mmol·L-1):NH4+(1.037)、NO3-(0.383),P(0.1)、K(0.513)、Ca(0.329)、Mg(1.029);微量元素濃度(μmol·L-1):Zn(1.53)、Cu(0.39),Mn(18.2)、B(9.25)、Mo(0.53)、Al(0.77)、Fe(6.27);pH值調(diào)節(jié)至5.00~5.50,定時供氣[15]。
茶苗培養(yǎng)2周后,挑選長勢相近的茶苗(株高25~30?cm)定植于容量為4?L的水桶中。銨態(tài)氮和硝態(tài)氮處理組:水桶中分別盛有NH4+和NO3-濃度為1.42?mmol·L-1的茶樹水培營養(yǎng)溶液,處理7?d,每組設(shè)置5個重復(fù)。
1.2.2 茶樹磷含量的測定
采用鉬銻抗比色法測定茶樣根、莖和葉中的磷含量。取0.10~0.20?g干樣于5?mL濃硫酸中靜置過夜。在石墨消解儀上300℃消解樣品,消煮液至黑色時滴加30% H2O2,重復(fù)2~3次直至消煮液呈清亮色。消煮完成后轉(zhuǎn)移樣品溶液于100?mL容量瓶中,定容搖勻。取5?mL樣品溶液于50?mL容量瓶中,調(diào)節(jié)溶液酸度,再加入鉬銻抗顯色劑5?mL,定容搖勻。室溫靜置30?min,于紫外分光光度計700?nm測定吸光值,根據(jù)標(biāo)準(zhǔn)曲線計算磷含量[16]。
1.2.3 茶樹根系細(xì)胞膜電位的測定
細(xì)胞膜電位在南京林業(yè)大學(xué)NMT(Non-invasive Micro-test Technique)服務(wù)站完成測定。取茶樹根部樣品于培養(yǎng)皿中靜置30?min,培養(yǎng)皿中含基礎(chǔ)鹽溶液:0.1?mmol·L-1CaCl2和0.5?mmol·L-1KCl,pH 5.7[17]。用微電極探測茶樹根部成熟區(qū)膜電位,待電位穩(wěn)定后,在培養(yǎng)皿中分別加入銨磷溶液和硝磷溶液,使其氮和磷濃度分別為1.42和0.1?mmol·L-1,記錄10?min內(nèi)膜電位變化,每組8個重復(fù)[17-18]。
1.2.4 茶樹根系細(xì)胞膜H+流的測定
細(xì)胞膜H+流在北京旭月公司測定。預(yù)先制備選擇性H+微電極以確保瞬時離子流速度和方向的準(zhǔn)確性。為探測茶樹根部H+跨越質(zhì)膜時電信號的真實變化,需要加入BSM溶液(0.1?mmol·L-1CaCl2和0.5?mmol·L-1KCl,pH 5.7)作為電解液[19]。將H+微電極固定于處理后茶樹根部的成熟區(qū)(5~35?μm),并將相應(yīng)的電極固定于茶苗根尖區(qū)(2?μm),待信號穩(wěn)定后記錄10?min內(nèi)離子流速,每組8個平行樣[20-21]。
1.2.5 茶樹根系細(xì)胞膜H+-ATPase的提取和酶活測定
取約3.5?g茶樹新生根系,加入18?mL預(yù)冷研磨緩沖液研磨為勻漿,緩沖液組成為:pH=7.6,25?mmol·L-1Hepes-Tris,50?mmol·L-1甘露醇,3?mmol·L-1乙二醇四乙酸,3?mmol·L-1乙二醇雙氨基乙基四乙酸,250?mmol·L-1氯化鉀,2?mmol·L-1苯甲基磺酰氟,1%(/)聚乙烯吡咯烷酮,0.1%(/)牛血清蛋白,2?mmol·L-1二硫蘇糖醇。紗布過濾后于4℃下11?500×離心10?min。取上清液在87?000×下離心45?min,沉淀為膜微囊體。采用兩相分離系統(tǒng)[6.2%(/)葡聚糖T-500和6.2%(/)聚乙二醇3350]從膜微囊體分離得到細(xì)胞質(zhì)膜[22]。分別采用細(xì)胞質(zhì)膜、液泡膜和線粒體膜的專一性抑制劑Na3VO4,硝酸鉀(KNO3)和疊氮化鈉(NaN3)驗證根系細(xì)胞膜H+-ATPase純度[23];通過測定無機(jī)磷釋放量,計算其與空白對照的差值得出細(xì)胞膜H+-ATPase酶活[24]。
1.2.6茶樹根系細(xì)胞膜H+-ATPase的凝膠電泳和免疫檢測
采用BCA法測定蛋白濃度,再調(diào)節(jié)每組蛋白濃度一致。15?μg變性蛋白樣品于電泳系統(tǒng)中進(jìn)行分離,完成后將蛋白片段轉(zhuǎn)移至PVFP膜上,5%(/)的脫脂奶粉TBST溶液室溫封閉2?h。用植物質(zhì)膜H+-ATPase抗體(AS07 260,購于瑞典Agrisera公司)將PVFP膜孵育過夜。再將PVFP膜于二抗(Anti-rabbit IgG,HRP-linked Antibody #7074,購于上海玉博生物科技有限公司)中室溫孵育2?h,最后在凝膠成像儀中顯影,用Image Lab軟件進(jìn)行結(jié)果分析[25]。
試驗數(shù)據(jù)用Excel軟件進(jìn)行分析處理;用DPS v15.10軟件作單因素方差分析;組間差異用Tukey法進(jìn)行多重性比較。
本研究通過水培體系研究發(fā)現(xiàn),銨態(tài)氮處理促進(jìn)了茶樹對磷素的吸收和富集,在整個植株富集量達(dá)到25.24?mg·g-1,與硝態(tài)氮處理相比顯著提高15.2%,且達(dá)到1%的顯著性差異(圖1)。
采用非損傷微測技術(shù)檢測銨態(tài)氮和硝態(tài)氮處理對茶樹根系成熟區(qū)細(xì)胞膜電位的影響。如圖2-A所示,外源施加銨態(tài)氮和硝態(tài)氮,膜電位均表現(xiàn)出去極化趨勢;銨態(tài)氮處理調(diào)控膜電位去極化至-86.03?mV,與硝態(tài)氮處理(-58.74?mV)相比顯著增加約46.45%(圖2-B)。
本研究采用非損傷技術(shù)探究銨態(tài)氮和硝態(tài)氮調(diào)控茶樹根系H+流的影響。如圖3-A所示,銨態(tài)氮處理條件下茶樹根系細(xì)胞膜H+流速率范圍為22.44~68.61?pmol·cm-2·s-1,H+流總量為4?481.73?pmol·cm-2·s-1,比硝態(tài)氮處理顯著增加85.31%(圖3-B)。
注:A:茶樹長勢,B:茶樹磷含量
注:A:動態(tài)變化,B:均值
注:A:H+流動態(tài)變化,B:總H+流
采用兩相體系(葡聚糖T500和聚乙二醇3350)分離茶樹根系質(zhì)膜,為驗證茶樹根系細(xì)胞膜H+-ATPase純度,分別采用細(xì)胞質(zhì)膜、液泡膜和線粒體膜的專一性抑制劑正釩酸鈉、硝酸鉀和疊氮化鈉進(jìn)行檢測[23]。
結(jié)果表明,正釩酸鈉處理茶樹根系細(xì)胞膜H+-ATPase酶活降低約80%,而硝酸鹽和疊氮化鈉處理降低幅度小于10%(圖4-A),說明從茶樹根系膜微囊體中分離得到細(xì)胞質(zhì)膜純度可滿足后續(xù)試驗[26],這與Zhang等[18]的研究結(jié)果一致;酶活試驗表明,銨態(tài)氮處理條件下,茶樹根系細(xì)胞膜H+-ATPase酶活與硝態(tài)氮處理相比顯著提高81.60%(圖4-B);進(jìn)一步驗證茶樹根系細(xì)胞膜H+-ATPase的酶活動力學(xué)特征,外源添加不同濃度ATP,結(jié)果表明,ATP濃度在2?000~4?000?μmol·L-1范圍內(nèi)時,細(xì)胞膜H+-ATPase酶活均顯著提高,且在ATP濃度為4?000?μmol·L-1時銨態(tài)氮處理的茶樹根系細(xì)胞膜H+-ATPase酶活性達(dá)到最高(3.081?4?μmol·L-1·mg-1·min-1)(圖4-C)。
Western-blot試驗結(jié)果表明,銨態(tài)氮處理條件下的根系細(xì)胞膜H+-ATPase條帶顯著深于硝態(tài)氮處理(圖5-A),且其蛋白表達(dá)量相比于硝態(tài)氮處理顯著提高約3倍,達(dá)到極顯著差異水平(圖5-B)。
如圖6所示,當(dāng)正釩酸鈉置于培養(yǎng)介質(zhì)中時,茶樹在不同氮素形態(tài)處理條件下,磷素在植株的富集均顯著減少,分別降低24.71%和26.66%。結(jié)果表明,茶樹根系細(xì)胞膜H+-ATPase可能參與了銨態(tài)氮和硝態(tài)氮調(diào)控茶樹對磷素的吸收。
注:A:抑制劑對細(xì)胞膜H+-ATPase酶相對活性的影響;B:銨態(tài)氮和硝態(tài)氮對茶樹根系細(xì)胞膜H+-ATPase酶相對活性;酶活動力學(xué)特征
注:A:蛋白表達(dá),B:相對表達(dá)量
圖6 細(xì)胞膜H+-ATPase酶抑制劑對銨態(tài)氮和硝態(tài)氮調(diào)控磷素在茶樹植株富集的影響
茶樹是我國重要的經(jīng)濟(jì)作物之一,研究其礦質(zhì)營養(yǎng)元素的吸收對茶產(chǎn)業(yè)發(fā)展具有重要指導(dǎo)意義。氮和磷是植物生長發(fā)育的重要營養(yǎng)物質(zhì),土壤中氮素可調(diào)控植物對磷素的吸收與富集[26]。茶園施用磷肥可增強(qiáng)茶樹光合作用強(qiáng)度并促進(jìn)茶樹糖代謝和多酚類化合物的形成,因此,磷素對茶樹生長發(fā)育以及茶葉品質(zhì)具有重要調(diào)控作用[27]。
本研究發(fā)現(xiàn)銨態(tài)氮能夠顯著增強(qiáng)茶樹對磷素的富集(圖1)。Zhu等[28]的研究表明,與硝態(tài)氮相比,銨態(tài)氮提高了水稻根部細(xì)胞壁中果膠甲基化酶活性和果膠含量,從而促進(jìn)磷素的再利用以及提高了根部和地上部分可溶性磷的含量。植物細(xì)胞膜H+-ATPase通過分泌胞內(nèi)質(zhì)子而極化膜電位,產(chǎn)生跨膜電動勢,調(diào)控植物對礦質(zhì)營養(yǎng)元素的吸收[29]。本研究通過對比茶樹的銨態(tài)氮和硝態(tài)氮水培處理,發(fā)現(xiàn)與硝態(tài)氮相比銨態(tài)氮能顯著提高茶樹根系細(xì)胞膜H+-ATPase活性(圖4),增強(qiáng)H+流跨膜運(yùn)輸量(圖3),提升膜電位(圖2),且增強(qiáng)茶樹根系質(zhì)膜H+-ATPase表達(dá)量(圖5)。藥理學(xué)試驗表明,質(zhì)子泵活性抑制劑正釩酸鈉削弱了不同氮素形態(tài)對磷素吸收的調(diào)控(圖6)。前人研究發(fā)現(xiàn),銨態(tài)氮能夠提高水稻根系細(xì)胞膜H+-ATPase活性和蛋白表達(dá),且增強(qiáng)植株對磷素的吸收,表明細(xì)胞膜H+-ATPase可能參與銨態(tài)氮促進(jìn)水稻根系磷素吸收[25]。類似的土培試驗研究也發(fā)現(xiàn),外源施加銨態(tài)氮可促進(jìn)玉米根部質(zhì)子的釋放,酸化土壤介質(zhì),提高玉米根部磷素的吸收效率[30]及向地上部分轉(zhuǎn)運(yùn)的效率[31]。這些與本文研究結(jié)果相似,說明不同氮素形態(tài)可能通過調(diào)控茶樹根系質(zhì)膜H+-ATPase影響磷素的吸收。
綜上可見,銨態(tài)氮促進(jìn)了茶樹對磷素的吸收;銨態(tài)氮處理的茶樹根系細(xì)胞膜電位,H+跨膜運(yùn)輸,H+-ATPase活性和蛋白表達(dá)均高于硝態(tài)氮處理,且細(xì)胞膜H+-ATPase專一抑制劑Na3VO4能顯著降低不同氮素形態(tài)下茶樹根系對磷素的吸收量和富集量。茶樹根系H+-ATPase可能參與不同氮素形態(tài)調(diào)控磷素的吸收。
[1] Zhang X C, Wu H H, Chen L M, et al. Mesophyll cells ability to maintain potassium is correlated with drought tolerance in tea () [J]. Plant Physiology and Biochemistry, 2019, 136: 196-203.
[2] Zhang X C, Wu H H, Chen L M, et al. Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration [J]. The Crop Journal, 2018, 6(6): 611-620.
[3] Liu J L, Yang L, Luan M D, et al. A vacuolar phosphate transporter essential for phosphate homeostasis in[J]. Proc Natl Acad Sci U S A, 2015, 112(47): E6571-E6578.
[4] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants [J]. Planta, 2002, 216: 23-37.
[5] Ding Z T, Jia S S, Wang Y, et al. Phosphate stresses affect ionome and metabolome in tea plants [J]. Plant Physiology and Biochemistry, 2017, 120: 30-39.
[6] Lin Z H, Qi Y P, Chen R B, et al. Effects of phosphorus supply on the quality of green tea [J]. Food Chemistry, 2012, 130: 908-914.
[7] Ruan J Y, Zhang F S, Wong M H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property ofL. [J]. Plant and Soil, 2000, 223: 63-71.
[8] Zoysa A K N, Loganathan P, Hedley M J. Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (L.) clones [J]. Nutrient Cycling in Agroecosystems, 1999, 53: 189-201.
[9] Michelet B, Boutry M. The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions [J]. Plant Physiology, 1995, 108: 1-6.
[10] Arango M, Gevaudant F, Oufattole M, et al. The plasma membrane proton pump ATPase: the significance of subfamilies [J]. Planta, 2003, 216: 355-365.
[11] Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation [J]. Biochimica et Biophysica Acta, 2000, 1465(1/2): 1-16.
[12] Yan F, Zhu Y Y, Muller C, et al. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency [J]. Plant Physiology, 2002, 129: 50-63.
[13] Shen H, Chen J H, Wang Z Y, et al. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation [J]. Journal of Experimental Botany, 2006, 57(6): 1353-1362.
[14] Ullrich-Eberius C I, Novacky A, van Bel A J. Phosphate uptake inG1: energetics and kinetics [J]. Planta, 1984, 161: 46-52.
[15] Zhang X C, Chen L M, Wu H H, et al. Root plasma membrane H+-ATPase is involved in low pH-inhibited nitrogen accumulation in tea plants (L.) [J]. Plant Growth and Regulation, 2018, 86: 423-432.
[16] 鮑時旦. 土壤農(nóng)化分析[M]. 北京: 中國農(nóng)業(yè)出版社, 2000.
[17] Chen Z H, Pottosin I I, Cuin T A, et al. Root plasma membrane transporters controlling K+/Na+homeostasis in salt-stressed barley [J]. Plant Physiology, 2007, 145(4): 1714-1725.
[18] Zhang X C, Wu H H, Chen L M, et al. Efficient iron plaque formation on tea () roots contributes to acidic stress tolerance [J]. Journal of Integrative Plant Biology, 2019, 61(2): 155-167.
[19] Wu H H, Shabala L, Zhou M X, et al. Durum and bread wheat differ in their abilityto retain potassium in leaf mesophyll: implications for salinity stress tolerance [J]. Plant Cell Physiolog, 2014, 55(10): 1749-1762.
[20] 徐金, 黃翠香, 劉青, 等. 平邑甜茶根毛細(xì)胞離子流動性對PAHs 脅迫的響應(yīng)[J]. 中國環(huán)境科學(xué), 2016, 36(10): 3107-3111.
[21] 呂杰, 苗璐, 蔡蕊, 等. 非損傷微測技術(shù)在植物根系生長發(fā)育研究中的應(yīng)用 [J]. 生物技術(shù), 2013, 23(1): 89-93.
[22] Zhang X C, Gao H J, Yang T Y, et al. Anion channel inhibitor NPPB-Inhibited fluoride accumulation in tea plant () is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential [J]. International Journal of Molecular Sciences, 2016, 17(1): 57. DOI: 10.3390/ijms17010057.
[23] Zhu Y Y, Di T J, Xu G H, et al. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition [J]. Plant Cell and Environment, 2009, 32: 1428-1440.
[24] Zhang R P, Liu G, Wu N, et al. Adaptation of plasma membrane H+-ATPase and H+pump to P deficiency in rice roots [J]. Plant Soil, 2011, 349: 3-11.
[25] Zeng H Q, Liu G, Kinoshita T, et al. Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+-ATPase in rice roots [J]. Plant Soil, 2012, 357: 205-214.
[26] Zhang X C, Gao H J, Wu H H, et al. Ca2+and CaM are involved in Al3+pretreatment-promoted fluoride accumulation in tea plants (L.) [J]. Plant Physiology and Biochemistry, 2015, 96: 288-295.
[27] Smith F W, Jackson W A. Nitrogen enhancement of phosphate transport in roots ofL: I. effects of ammonium and nitrate pretreatment [J]. Plant Physiology, 1987, 84: 1314-1318.
[28] Zhu X F, Wang Z W, Wan J X, et al. Pectin enhances rice () root phosphorus remobilization [J]. Journal of Experimental Botany, 2015, 66(3): 1017-1024.
[29] Falhof J, Pedersen J T, Fuglsang A T, et al. Plasma membrane H+-ATPase regulation in the center of plant physiology [J]. Molecular Plant, 2016, 9(3): 323-337.
[30] Jing J, Rui Y, Zhang F, et al. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification [J]. Field Crops Research, 2010, 119: 355-364.
[31] Cole C V, Grunes D L, Porter L K, et al. The effects of nitrogen on shortterm phosphorus absorption and translocation in corn () [J]. Soil Science Society of America Journal, 1963, 27(6): 671-674.
The Role of Plasma Membrane H+-ATPase on Nitrogen-regulated Phosphorus Uptake in Tea Plants
CHEN Linmu1, CHEN Jingguang2, WANG Ningning1, ZHANG Xianchen1*
1. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; 2. Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
Phosphorus is one of the most important mineral elements for plant growth and development, and different nitrogen forms can regulate phosphorus uptake. As is well-known that plant plasma membrane (PM) H+-ATPase plays an important role in nutrition uptake, it may also relate to the different nitrogen-modulated phosphorus uptake. In our study, PM H+-ATPase in tea roots were isolated by two-phase partitioning in aqueous dextranT-500 and polyethylene glycol, and the effect of different nitrogen forms on phosphorus uptake and the characteristic parameters of PM H+-ATPase in tea roots were examined by using non-invasive micro-test technique and Western-blot. It was found that ammonium significantly improved the phosphorus accumulation in tea plants as compared with nitrate nutrition. In addition, less depolarized PM potentials, higher net H+flux, PM H+-ATPase activities and protein levels were found under ammonium treatment than those under nitrate nutrition treatment. Furthermore, vanadate (the PM H+-ATPase inhibitor) significantly decreased phosphorus accumulation in tea plants under ammonium and nitrate nutrition treatments, which further suggests that PM H+-ATPase may be involved in phosphorus accumulation in tea plants regulated by different nitrogen forms.
ammoniacal nitrogen, nitrate nitrogen, phosphorus absorption, PM H+-ATPase, tea plants
S571.1;S154.1
A
1000-369X(2019)06-723-08
2018-12-30
2019-03-13
國家自然科學(xué)基金資助項目(341800583)、安徽省自然基金(KJ2017A126)
陳林木,女,碩士,主要從事茶樹栽培方面的研究,1318457907@qq.com。
zhangxianchen360@163.com