胡云飛
(江蘇省溧陽(yáng)市教師發(fā)展中心 213300)
高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)的重點(diǎn)是落實(shí)數(shù)學(xué)學(xué)科核心素養(yǎng),高中數(shù)學(xué)教學(xué)應(yīng)以發(fā)展學(xué)生數(shù)學(xué)學(xué)科核心素養(yǎng)為導(dǎo)向.
近期,本市組織了高中青年教師優(yōu)質(zhì)課評(píng)比活動(dòng),上課課題是“直線與圓的位置關(guān)系”.活動(dòng)過(guò)程中暴露出教師對(duì)課程標(biāo)準(zhǔn)理解不到位,教學(xué)目標(biāo)不準(zhǔn)確,教學(xué)設(shè)計(jì)不科學(xué)等問(wèn)題.這些問(wèn)題,也是當(dāng)前課程改革中存在的突出問(wèn)題.作為優(yōu)質(zhì)課評(píng)比的總結(jié),在賽課結(jié)束以后,本市組織了一次青年教師研修活動(dòng),優(yōu)質(zhì)課評(píng)比的前兩名教師仍然以本課題另選授課班級(jí)進(jìn)行了課堂教學(xué)展示.為了更好地通過(guò)課堂教學(xué)實(shí)例來(lái)表達(dá)對(duì)課程標(biāo)準(zhǔn)和核心素養(yǎng)的理解,筆者也與這兩位老師進(jìn)行了同課異構(gòu)教學(xué)展示活動(dòng),活動(dòng)促進(jìn)了青年教師對(duì)新課標(biāo)和核心素養(yǎng)的認(rèn)識(shí).本文以“直線與圓的位置關(guān)系”為例,就課堂教學(xué)中落實(shí)核心素養(yǎng)的實(shí)踐與思考與同仁交流.
“直線與圓的位置關(guān)系”是初中和高中都有的教學(xué)內(nèi)容.初中已經(jīng)學(xué)習(xí)了直線和圓的三種位置關(guān)系的相關(guān)概念,會(huì)通過(guò)圓心到直線的距離d與圓的半徑r的數(shù)量關(guān)系來(lái)判斷直線與圓的位置關(guān)系(建立在給出d與r的數(shù)值或能用幾何方法判斷的情況下).那么,高中的“直線與圓的位置關(guān)系”又學(xué)習(xí)什么?《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)》指出:能用直線和圓的方程解決一些簡(jiǎn)單的數(shù)學(xué)問(wèn)題與實(shí)際問(wèn)題.[1]高中的學(xué)習(xí)突出了“方程”,也就是突出“代數(shù)方法解決幾何問(wèn)題”的方法.“數(shù)形結(jié)合”是“平面解析幾何初步”這一章重要的數(shù)學(xué)思想,在研究幾何圖形的性質(zhì)時(shí),既要體現(xiàn)“形”的直觀性,還要體現(xiàn)“數(shù)”的嚴(yán)謹(jǐn)性.直線和圓是重要的基本圖形,學(xué)生已經(jīng)知道從“形”的角度分析它們的位置關(guān)系,如何從“數(shù)”的角度刻畫它們之間的位置關(guān)系就顯得十分必要和重要.教材采用通過(guò)方程組求交點(diǎn)的方法,也采用比較d與r大小關(guān)系來(lái)判斷的方法.因此,直線與圓的位置關(guān)系的教學(xué)目標(biāo),不能僅僅是會(huì)判斷直線與圓的位置關(guān)系,而是“代數(shù)方法解決幾何問(wèn)題”的解析法的體驗(yàn)、感悟與生成.
問(wèn)題1.最近學(xué)的什么內(nèi)容???
學(xué)生搶答:圓,圓的方程.
問(wèn)題2.為什么要學(xué)習(xí)圓的方程?
學(xué)生回答不上來(lái).
師:那我們把這個(gè)問(wèn)題放一放?防止待會(huì)忘掉,把這個(gè)問(wèn)題寫在這兒(教師把這個(gè)問(wèn)題寫在黑板右側(cè)上方).
問(wèn)題3.在平面解析幾何里面,我們只是研究了圓嗎?
學(xué)生搶答:還有直線.
問(wèn)題4.我們研究了直線的哪些方面?
學(xué)生搶答(搶答的人數(shù)變少了):直線的方程,直線的位置關(guān)系.
問(wèn)題5.我們是怎么研究直線的位置關(guān)系的?
學(xué)生不再搶答,大部分學(xué)生面面相覷,少部分學(xué)生小聲嘀咕,教師指定學(xué)生回答,第一個(gè)學(xué)生回答不出,第二個(gè)學(xué)生小心翼翼地回答出了問(wèn)題.
生1:……
生2:建立直角坐標(biāo)系,通過(guò)直線的方程來(lái)研究.
多數(shù)學(xué)生恍然大悟,教師進(jìn)行肯定.
問(wèn)題6.在平面解析幾何里,我們?cè)谘芯苛酥本€以后,又出現(xiàn)了一種幾何圖形:圓.我們也把圓放到了直角坐標(biāo)系里,得到了圓的方程.接下來(lái),我們?cè)撗芯渴裁茨兀?/p>
學(xué)生不再搶答,思考后小聲交流,等待一些時(shí)間后教師點(diǎn)有回答欲望的學(xué)生回答.
生3:直線與圓的位置關(guān)系,圓與圓的位置關(guān)系.
師追問(wèn):你為什么這么認(rèn)為呢?
生3:我們前面學(xué)習(xí)直線的時(shí)候就是這樣做的.
師:很好!我們前面研究直線的時(shí)候就是先建立坐標(biāo)系產(chǎn)生直線的方程,然后研究了直線與直線的位置關(guān)系.數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的一門科學(xué),你講的都是我們接下來(lái)要研究的,我們就選直線與圓的位置關(guān)系吧.
問(wèn)題7.判斷圖中直線與圓的位置關(guān)系.(幾何畫板顯示圖1,只有圖形,沒(méi)有坐標(biāo)系,也沒(méi)有方程,看上去是相切的,實(shí)際上是相離的.)
圖1
生4:相切.
師:你怎么知道相切的呢?
生4:看出來(lái)的.
師:你教教我怎么看.
生4:一個(gè)交點(diǎn)么!
師:哦,看交點(diǎn)個(gè)數(shù).
學(xué)生開(kāi)始小聲交流討論.
師:有問(wèn)題嗎?
生5:我感覺(jué)通過(guò)眼睛看的方式來(lái)確定它們的位置關(guān)系不大靠得住.
師:不大靠得住?
生5:因?yàn)檠劬Σ皇秋@微鏡,老師你能不能把圖再放大一些.
教師慢慢把圖放大.
學(xué)生一片嘩然:相離,相離!
師:看來(lái)就這樣看看還真靠不住,有沒(méi)有靠得住的辦法啊?大家思考一下.
學(xué)生思考后開(kāi)始小聲交流,教師指定一個(gè)有表達(dá)欲望的學(xué)生回答.
生6:我們可以算出圓心到直線的距離,再跟圓的半徑進(jìn)行比較.
學(xué)生表示贊同.
師:這真是一個(gè)好辦法,算出的數(shù)值是精確的!大家會(huì)算嗎?
學(xué)生爭(zhēng)說(shuō):要直線和圓的方程!
師:沒(méi)方程啊!
學(xué)生爭(zhēng)說(shuō):建立坐標(biāo)系!
師:你打算怎么建坐標(biāo)系呢?
生7:以這個(gè)圓的圓心為原點(diǎn),向右為橫軸,向上為縱軸.
師:好的,這樣一來(lái)我們就可以確定直線和圓的方程了,我們通過(guò)幾何畫板顯示出來(lái).(教師點(diǎn)擊顯示直線與圓的方程)
師:接下來(lái)請(qǐng)大家給出嚴(yán)格的判斷過(guò)程.
學(xué)生書寫,交流,展示(包括點(diǎn)評(píng),教師的點(diǎn)評(píng)就是小結(jié)三種位置關(guān)系,黑板板書,通過(guò)板書呈現(xiàn)出如下表格.)
相離相切相交無(wú)公共點(diǎn)有且只有一個(gè)公共點(diǎn)有兩個(gè)公共點(diǎn)d>rd=rd 問(wèn)題8.我們通過(guò)建立坐標(biāo)系,確定直線和圓的方程,求出圓心到直線的距離并與圓半徑比較大小的方法判斷直線與圓是相離的位置關(guān)系.你還有其他方法來(lái)判斷它倆是相離的嗎? 學(xué)生思考并小聲交流后,有一些學(xué)生有了想法,教師讓學(xué)生回答. 生8:有了直線和圓的方程以后,我們還可以聯(lián)立方程組,判斷方程組的解的個(gè)數(shù)來(lái)確定直線與圓的交點(diǎn)個(gè)數(shù),從而判斷直線與圓的位置關(guān)系. 師:為什么方程組的解是交點(diǎn)的坐標(biāo)呢? 生8:既然是交點(diǎn),就是既在直線上又在圓上,應(yīng)該同時(shí)滿足兩個(gè)方程.前面求直線的交點(diǎn)也是這樣做的. 師:很好,我把這位同學(xué)的想法寫了出來(lái),大家看.(幾何畫板展示預(yù)設(shè)的解題過(guò)程) 學(xué)生看了一會(huì)就開(kāi)始小聲交流. 師:有問(wèn)題嗎? 生9:如果只是判斷位置關(guān)系的話,我感覺(jué)不必把方程組解出來(lái),只要判斷消元以后的那個(gè)一元二次方程的根的情況就可以了,用判別式來(lái)判斷. 師:可以嗎? 學(xué)生:可以! (注:這個(gè)地方備課的時(shí)候預(yù)設(shè)了兩種情況,一種是學(xué)生能回答出來(lái),還有一種是學(xué)生回答不出來(lái),如果回答不出來(lái)就把這個(gè)問(wèn)題放一放,通過(guò)下一個(gè)問(wèn)題的解答再回頭來(lái)看.) 活動(dòng)過(guò)程:學(xué)生試解,教師巡視,要求速度快的同學(xué)一題多解;學(xué)生陳述解決問(wèn)題的思路;教師板演解題過(guò)程;教師題后小結(jié).(學(xué)生大多數(shù)使用的是d與r的大小關(guān)系,有少數(shù)學(xué)生使用了方程組的方法,兩種方法都板演,解題結(jié)束以后進(jìn)行題后反思,提煉方法原理,并對(duì)兩種不同方法進(jìn)行對(duì)比.) 問(wèn)題9-2.求弦長(zhǎng)AB.(注:課堂預(yù)設(shè)了“求交點(diǎn)坐標(biāo)”,目的是引導(dǎo)學(xué)生感悟通過(guò)方程組來(lái)求交點(diǎn)從而判斷直線與圓的位置關(guān)系.因?yàn)閷W(xué)生在前面已經(jīng)想到了用方程組來(lái)解決位置關(guān)系,此處在幾何畫板上呈現(xiàn)題目的時(shí)候隱藏了“求交點(diǎn)坐標(biāo)”,直接求弦長(zhǎng)了.) 活動(dòng)過(guò)程:學(xué)生試解,教師巡視,要求速度快的同學(xué)一題多解;展示學(xué)生的解題并組織學(xué)生點(diǎn)評(píng).部分學(xué)生使用了“垂徑定理”和“勾股定理”,有少數(shù)學(xué)生使用了方程組的方法.兩種方法并舉. (課堂預(yù)設(shè)了第3個(gè)小問(wèn)題:?jiǎn)栴}9-3.自點(diǎn)P(2,1)作圓O的切線PA,求切線PA的方程.用意是強(qiáng)化解析法解決直線與圓的位置關(guān)系的問(wèn)題,特別是待定系數(shù)法求直線方程時(shí)點(diǎn)斜式方程的缺陷,培養(yǎng)學(xué)生思維的嚴(yán)密性.因?yàn)榻璋嗌险n,師生之間教與學(xué)的習(xí)慣比較生疏,課堂留下的時(shí)間不多,所以幾何畫板上沒(méi)有顯示這個(gè)問(wèn)題,留下的時(shí)間進(jìn)行下一個(gè)問(wèn)題,也就是課堂小結(jié)環(huán)節(jié),課堂小結(jié)是課堂教學(xué)不可缺少的環(huán)節(jié).) 問(wèn)題10.說(shuō)一下這一節(jié)課的主要收獲和感悟吧. 待學(xué)生思考片刻后指定學(xué)生回答,學(xué)生比較順利地概括了課堂的主要知識(shí),隨著學(xué)生的陳述教師點(diǎn)擊顯示幾何畫板上的預(yù)設(shè)內(nèi)容,有先后次序地呈現(xiàn): 相離相切相交無(wú)公共點(diǎn)有且只有一個(gè)公共點(diǎn)有兩個(gè)公共點(diǎn)d>rd=rd 師:也就是說(shuō)我們有兩種方法來(lái)判斷直線與圓的位置關(guān)系,一種是通過(guò)比較d與r的大小關(guān)系,另一種是通過(guò)判斷方程組的解的個(gè)數(shù),前一種利用了幾何關(guān)系,后一種則是“代數(shù)方法解決幾何問(wèn)題”,當(dāng)然前一種方法里面求d與r仍然是代數(shù)方法,因此,“代數(shù)方法解決幾何問(wèn)題”是解析幾何的本質(zhì),我們整個(gè)這一章都貫穿著這種思想. 師:我們現(xiàn)在來(lái)回答前面遺留的問(wèn)題吧,來(lái),還在黑板這兒.(黑板右上角問(wèn)題2.為什么要學(xué)習(xí)圓的方程?) 生:通過(guò)圓的方程來(lái)解決直線與圓的位置關(guān)系的問(wèn)題. 師:用代數(shù)方法解決幾何問(wèn)題,這正是我們解析幾何的本質(zhì).再聯(lián)想前面我們研究的直線,我們可以發(fā)現(xiàn)解析幾何研究問(wèn)題的一般方法:建立坐標(biāo)系,將幾何問(wèn)題代數(shù)化,用代數(shù)方法解決幾何問(wèn)題.(幾何畫板上展示下圖) 師:“通過(guò)比較d與r的大小關(guān)系”與“通過(guò)判斷方程組的解的個(gè)數(shù)”這兩種方法里面你喜歡哪一種? 學(xué)生搶答:第一種!第二種太繁了! 師(微笑說(shuō)):那我如果改動(dòng)一下這個(gè)圓的方程,你再看看呢?(把圓的方程改成了x2+2y2=4) 大部分學(xué)生在思考的時(shí)候,已經(jīng)有學(xué)生在插嘴了:這已經(jīng)不是圓的方程了! 師:既然不是圓了,那么“通過(guò)比較d與r的大小關(guān)系”的方法還行嗎? 學(xué)生搖頭. 師:下課時(shí)間要到了,這個(gè)問(wèn)題我們?cè)诮馕鰩缀蔚暮罄m(xù)學(xué)習(xí)中會(huì)碰到,就留給我們以后去研究了. (花絮:筆者下課后準(zhǔn)備離開(kāi)的時(shí)候,有3位學(xué)生追上來(lái)跟老師討論這個(gè)遺留問(wèn)題,認(rèn)為不管是不是圓都可以“通過(guò)判斷方程組的解的個(gè)數(shù)”來(lái)解決.這種解析幾何觀念的形成是本課的重要目標(biāo),本課顯然是達(dá)成了.) 課堂教學(xué)的設(shè)計(jì)與實(shí)施,不外乎教學(xué)目標(biāo)的設(shè)定和教學(xué)過(guò)程的實(shí)施,也就是“教什么”和“怎么教”的問(wèn)題.這是課堂教學(xué)落實(shí)核心素養(yǎng)的關(guān)鍵維度,促進(jìn)核心素養(yǎng)發(fā)展的課堂教學(xué)應(yīng)該從這兩個(gè)方面去思考. 課堂教學(xué)的目標(biāo),既有顯性的知識(shí)目標(biāo),也有隱性的能力和素養(yǎng)目標(biāo),教師常常忽視隱性的目標(biāo)。數(shù)學(xué)學(xué)科核心素養(yǎng)是數(shù)學(xué)課程目標(biāo)的集中體現(xiàn),教師在制定教學(xué)目標(biāo)時(shí)要充分關(guān)注數(shù)學(xué)學(xué)科核心素養(yǎng)的達(dá)成.[1]教學(xué)目標(biāo),不能僅僅停留在知識(shí)技能層面,更要關(guān)注數(shù)學(xué)素養(yǎng)的發(fā)展.“直線與圓的位置關(guān)系”對(duì)高中學(xué)生來(lái)說(shuō),就知識(shí)而言不是新的東西,它的教學(xué)價(jià)值在于解析幾何“解析法”的體驗(yàn).本節(jié)課,就知識(shí)而言是位置關(guān)系,就方法而言是“解析法”,就素養(yǎng)而言是解析幾何思想意識(shí)的形成.解析幾何的意識(shí),不能等到未來(lái)“圓錐曲線”這一章再來(lái)形成,而是在直線與圓的研究中形成并升華,為后續(xù)的直線和圓錐曲線的位置關(guān)系的學(xué)習(xí)奠定基礎(chǔ).因此,這一堂課的教學(xué)目標(biāo)不應(yīng)該定位在位置關(guān)系的知識(shí)再現(xiàn),而應(yīng)該定位在解決問(wèn)題的方法提升,解析幾何思想意識(shí)的形成. 需要注意的是,顯性目標(biāo)是知識(shí)層面的,隱性目標(biāo)是素養(yǎng)層面的,知識(shí)是冰山一角,素養(yǎng)才是冰山淹沒(méi)在水下的部分,知識(shí)的暫缺可以彌補(bǔ),素養(yǎng)的缺少會(huì)阻止能力的提升.要處理好“知識(shí)”、“能力”和“素養(yǎng)”之間的關(guān)系,讓知識(shí)的獲取在能力提升和素養(yǎng)發(fā)展的過(guò)程中自然生成.高立意的課堂不是僅僅瞄準(zhǔn)知識(shí)的,一定是透過(guò)知識(shí)瞄準(zhǔn)了能力和素養(yǎng). 就學(xué)科教學(xué)而言,發(fā)展學(xué)生核心素養(yǎng)的基礎(chǔ)目標(biāo)是改善學(xué)生的思維品質(zhì),提高學(xué)生的學(xué)習(xí)能力,讓學(xué)生學(xué)會(huì)學(xué)習(xí).發(fā)展學(xué)生核心素養(yǎng)的根據(jù)地是課堂,課堂教學(xué)應(yīng)從“知識(shí)”核心向“素養(yǎng)”核心轉(zhuǎn)移.[2] 核心素養(yǎng)要求下的課堂教學(xué),要追求高位的教學(xué)目標(biāo),既要有知識(shí)目標(biāo)也要有素養(yǎng)目標(biāo),要站在課程目標(biāo)和章節(jié)目標(biāo)的高度來(lái)確定課堂教學(xué)目標(biāo). 教學(xué)目標(biāo)確定以后就是教學(xué)過(guò)程的實(shí)施了.在教學(xué)活動(dòng)中,教師應(yīng)準(zhǔn)確把握課程目標(biāo)、課程內(nèi)容、學(xué)業(yè)質(zhì)量的要求,合理設(shè)計(jì)教學(xué)目標(biāo),并通過(guò)相應(yīng)的教學(xué)實(shí)施,在學(xué)生掌握知識(shí)技能的同時(shí),促進(jìn)數(shù)學(xué)學(xué)科核心素養(yǎng)的提升及水平的達(dá)成.[1]核心素養(yǎng)目標(biāo)的達(dá)成,是基于學(xué)生學(xué)習(xí)能力的提升,這種能力,不是通過(guò)知識(shí)記憶和技能訓(xùn)練能達(dá)成的.素養(yǎng)的達(dá)成,在于學(xué)生在學(xué)習(xí)過(guò)程中,是否真實(shí)地進(jìn)入學(xué)習(xí)狀態(tài),是否深入地進(jìn)行思維活動(dòng).因此,教學(xué)過(guò)程對(duì)學(xué)生核心素養(yǎng)的發(fā)展起到極其重要的作用.在課堂教學(xué)過(guò)程中,教師不能成為“講師”,不能采取簡(jiǎn)單易操作的“我講你聽(tīng)”的教學(xué)方式,這一種教學(xué)方式會(huì)因?yàn)閷W(xué)生缺乏自主構(gòu)建與深入的過(guò)程,缺少必需的思維參與,不利于數(shù)學(xué)素養(yǎng)的發(fā)展. “直線與圓的位置關(guān)系”的教學(xué)過(guò)程中,教師要通過(guò)引導(dǎo),使學(xué)生經(jīng)歷下列過(guò)程:首先建立坐標(biāo)系,將幾何問(wèn)題代數(shù)化,用代數(shù)語(yǔ)言描述幾何要素及其相互關(guān)系;進(jìn)而,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;處理代數(shù)問(wèn)題;分析代數(shù)結(jié)論的幾何含義,最終解決幾何問(wèn)題.通過(guò)上述活動(dòng),使學(xué)生感受到解析法研究問(wèn)題的一般程序.[3]本課的導(dǎo)入并沒(méi)有用復(fù)雜的情境,在前課學(xué)習(xí)的基礎(chǔ)上進(jìn)行回顧,這種回顧是整章知識(shí)的建構(gòu):通過(guò)直線學(xué)習(xí)的一般方法,類比產(chǎn)生圓的學(xué)習(xí)的一般過(guò)程,讓學(xué)生自己發(fā)現(xiàn)研究“直線與圓的位置關(guān)系”的新問(wèn)題,進(jìn)而在位置關(guān)系的判斷中,從直觀到嚴(yán)謹(jǐn),產(chǎn)生建立坐標(biāo)系的坐標(biāo)法思想,并逐步從部分代數(shù)化到全部代數(shù)化.這樣,解析幾何的“創(chuàng)造”過(guò)程就自然呈現(xiàn),學(xué)生在這個(gè)過(guò)程中發(fā)現(xiàn)、探究,知識(shí)的得來(lái)會(huì)更深刻,能力的提升會(huì)更真實(shí),素養(yǎng)的發(fā)展會(huì)更自然.課堂教學(xué)選取了基于學(xué)生主動(dòng)探究的“問(wèn)題解決教學(xué)”,注重引導(dǎo)學(xué)生“發(fā)現(xiàn)問(wèn)題,提出問(wèn)題”“分析問(wèn)題,解決問(wèn)題”,“會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界,會(huì)用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界,會(huì)用數(shù)學(xué)的語(yǔ)言表達(dá)現(xiàn)實(shí)世界”的課程目標(biāo)得到了充分的體現(xiàn). 高品位的課堂教學(xué),要追求高效的教學(xué)過(guò)程,課堂教學(xué)中教師要精于設(shè)計(jì)問(wèn)題,通過(guò)“問(wèn)題解決教學(xué)”組織學(xué)生探究,通過(guò)對(duì)問(wèn)題的探究在解決問(wèn)題的過(guò)程中獲得新知,獲得感受,獲得解決問(wèn)題的方法和思想,從而獲得核心素養(yǎng)的發(fā)展,獲得能力的提升.[2] 《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)》提出:在問(wèn)題解決的過(guò)程中,理解數(shù)學(xué)內(nèi)容的本質(zhì),促進(jìn)學(xué)生數(shù)學(xué)學(xué)科核心素養(yǎng)的形成和發(fā)展.[1]核心素養(yǎng)目標(biāo)下,教師不僅僅要關(guān)注學(xué)生知識(shí)的掌握,更要關(guān)注學(xué)生素養(yǎng)的發(fā)展.數(shù)學(xué)教育應(yīng)該是指向“人的發(fā)展”的教育,站在“立德樹(shù)人”的高度,以課堂為主陣地,通過(guò)發(fā)展學(xué)生核心素養(yǎng)來(lái)達(dá)到數(shù)學(xué)育人的目的,這是當(dāng)前數(shù)學(xué)教學(xué)改革的需要.3 “教什么”和“怎么教”是課堂教學(xué)落實(shí)核心素養(yǎng)的關(guān)鍵維度
3.1 教什么:追求高位的教學(xué)目標(biāo)
3.2 怎么教:追求高效的教學(xué)過(guò)程
4 結(jié)束語(yǔ)