鄭?剛,哈?達(dá),程雪松,曾超峰,曹劍然
回灌開(kāi)啟時(shí)間對(duì)地層沉降與應(yīng)力應(yīng)變的影響
鄭?剛1,哈?達(dá)1,程雪松1,曾超峰2,曹劍然1
(1. 濱海土木工程結(jié)構(gòu)與安全教育部重點(diǎn)實(shí)驗(yàn)室(天津大學(xué)),天津 300354;2. 湖南科技大學(xué)巖土工程穩(wěn)定控制與健康監(jiān)測(cè)湖南省重點(diǎn)實(shí)驗(yàn)室,湘潭 411201)
在天津、上海等沿海地區(qū)基坑工程中,由于地下水位較高且含水層分布廣泛,當(dāng)基坑抗突涌穩(wěn)定安全系數(shù)不足時(shí),需對(duì)承壓含水層減壓抽水.根據(jù)有效應(yīng)力原則,減壓抽水可導(dǎo)致有效應(yīng)力上升,加劇基坑外沉降.在基坑施工期間,可使用回灌作為有效的沉降控制措施來(lái)保護(hù)基坑周?chē)闹匾ㄖ铮こ虒?shí)踐表明,在長(zhǎng)時(shí)間減壓抽水后回灌,僅能保證沉降不再發(fā)展,很難使沉降完全恢復(fù).針對(duì)此問(wèn)題,采用三維流固耦合有限元模型,對(duì)比分析減壓井和回灌井在先灌后抽、同灌同抽、先抽后灌3種方案下土體應(yīng)力應(yīng)變特征.研究表明,回灌井與減壓井開(kāi)啟順序?qū)Φ乇沓两涤绊戯@著,先抽后灌造成地表沉降最大,沉降值與回灌前抽水時(shí)間呈正相關(guān).造成沉降差異的主要原因是上覆弱透水層在不同方案下應(yīng)力路徑不同,從而導(dǎo)致塑性壓縮變形不同.在先抽后灌方案中,上覆弱透水層有效應(yīng)力先升后降,受前期固結(jié)壓力與回彈模量影響,上覆弱透水層可產(chǎn)生較高的壓縮變形.因此,在實(shí)際工程中應(yīng)盡量保證同抽同灌.同時(shí),當(dāng)抽水量恒定時(shí),相鄰弱透水層滲透系數(shù)也會(huì)改變土體豎向變形分布,下臥弱透水層滲透性越強(qiáng),地表沉降越小,而上覆弱透水層的滲透性對(duì)地表沉降影響較?。?/p>
回灌;沉降控制;有限元分析;土體變形
在承壓層埋深較淺地區(qū)的基坑工程中,為防止基坑施工過(guò)程中出現(xiàn)突涌等滲流破壞行為[1],會(huì)利用抽水井對(duì)基坑底部承壓含水層水頭進(jìn)行減壓降水從而減少突涌風(fēng)險(xiǎn).但隨著基坑規(guī)模日趨龐大,逐漸暴露出許多問(wèn)題[2-3]:一方面,基坑抽水量與基坑開(kāi)挖土體體積[4]及止水帷幕入土深度[5]有關(guān),大規(guī)模的基坑工程會(huì)造成地下水資源的嚴(yán)重浪費(fèi);另一方面,當(dāng)基坑內(nèi)外承壓層未完全截?cái)鄷r(shí),承壓層減壓降水會(huì)導(dǎo)致坑外出現(xiàn)大規(guī)模沉降[6-10].
針對(duì)如上問(wèn)題,工程中常用手段包括優(yōu)化止水帷幕設(shè)計(jì)及布設(shè)回灌井.通過(guò)增加止水帷幕深度[3]以及封閉基坑[11]等手段減少基坑內(nèi)外水力聯(lián)系;但對(duì)于承壓層水位較高且含水層較厚地區(qū)[12]的超深基坑來(lái)說(shuō),大深度的豎向止水帷幕會(huì)導(dǎo)致成本過(guò)高且施工難度大.所以在基坑周邊環(huán)境對(duì)沉降要求嚴(yán)格時(shí),回灌成為控制沉降、降低工程成本的有效途徑.
國(guó)內(nèi)外學(xué)者已開(kāi)展了不少現(xiàn)場(chǎng)回灌試驗(yàn)[13-16].通過(guò)控制水位,回灌過(guò)去主要應(yīng)用于解決區(qū)域大規(guī)模沉降以及提高深部含水層水儲(chǔ)量.自21世紀(jì)初,隨著基坑沉降控制日益嚴(yán)格,研究人員將該技術(shù)逐漸應(yīng)用于基坑沉降控制.針對(duì)回灌井堵塞等問(wèn)題提出了雙井回灌加壓回灌等方式保持回灌水量穩(wěn)定[3].試驗(yàn)結(jié)果表明,回灌能夠有效地抬升地下水位,從而控制地表沉降.但針對(duì)回灌實(shí)施方法,我國(guó)目前并沒(méi)有詳細(xì)規(guī)定,在《建筑基坑支護(hù)技術(shù)規(guī)程》[17]中,也僅對(duì)回灌布置方式及水質(zhì)進(jìn)行規(guī)定.
實(shí)際工程中,回灌常用于抽水引發(fā)沉降后的沉降控制,可使已發(fā)生沉降得到一定的恢復(fù).但在回灌井開(kāi)啟前,承壓層水位下降已導(dǎo)致黏土及粉質(zhì)黏土為主的弱透水層出現(xiàn)塑性變形,此類(lèi)沉降并不會(huì)隨著水位回升而變化,導(dǎo)致沉降控制效果不佳.在天津市文化中心站[18]進(jìn)行的抽水試驗(yàn)也可以發(fā)現(xiàn),抽水引發(fā)的沉降即使在水位恢復(fù)后仍然有很大殘余沉降無(wú)法?恢復(fù).
基于前人的研究[19-23],目前回灌研究中仍存在以下問(wèn)題:①現(xiàn)有研究主要集中于地表沉降與回灌水位抬升之間的關(guān)系,土體內(nèi)部變形規(guī)律少有研究:②缺少考慮回灌井、減壓井相對(duì)開(kāi)啟順序?qū)Τ两涤绊懙难芯?;③弱透水層滲透性對(duì)回灌效果影響研究仍然不足.
針對(duì)以上問(wèn)題,本文利用文獻(xiàn)[18]中已校核的三維流固耦合模型,開(kāi)展減壓、回灌時(shí)間相對(duì)關(guān)系對(duì)地表沉降影響規(guī)律研究,揭示了減壓及回灌過(guò)程中土體分層變形機(jī)理,對(duì)比回灌井及抽水井開(kāi)啟順序?qū)Φ乇沓两档挠绊懀⑼ㄟ^(guò)弱透水層參數(shù)分析,研究了不同水力聯(lián)系條件下承壓層減壓、回灌引發(fā)的變形規(guī)律.
天津市區(qū)某基坑深度21.8m.為保護(hù)歷史風(fēng)貌建筑物,基坑?xùn)|北側(cè)采用TRD地下連續(xù)墻作為止水帷幕,墻趾位于地下37m處,完全截?cái)嗟?承壓含水層.典型地質(zhì)剖面見(jiàn)圖1.為減少坑外水位降深,在此工程場(chǎng)地上進(jìn)行了為期3個(gè)月的回灌試驗(yàn)[21].圖2為回灌井、觀(guān)測(cè)井及監(jiān)測(cè)點(diǎn)位置.其中回灌井共5個(gè)(H1、H3、H4、H7、H11).同時(shí),在基坑和被保護(hù)建筑之間設(shè)置多個(gè)觀(guān)測(cè)井,以記錄水位波動(dòng),其中除第1承壓含水層觀(guān)測(cè)井A3以外,其余為第2承壓含水層觀(guān)測(cè)井.圖3與圖4是回灌期間觀(guān)測(cè)井水位和建筑物周邊測(cè)點(diǎn)沉降-時(shí)間曲線(xiàn).在回灌期間,承壓含水層的水位與監(jiān)測(cè)點(diǎn)沉降協(xié)同發(fā)展,沉降隨水位下降而發(fā)展.同時(shí),根據(jù)監(jiān)測(cè)結(jié)果,支護(hù)結(jié)構(gòu)在回灌期間位移較小.因此,可以看出,基坑外水位的下降是被保護(hù)建筑物沉降的主要原因.
圖1?典型地質(zhì)剖面圖
由實(shí)測(cè)結(jié)果可知,以粉土、粉砂為主的承壓含水層中,建筑物的沉降會(huì)隨著地下水位的下降而增大,當(dāng)水位抬升后,沉降不再顯著發(fā)展并且也不產(chǎn)生明顯回彈,但當(dāng)水位再次下降時(shí),沉降還將繼續(xù)發(fā)展.多次水位變動(dòng)會(huì)產(chǎn)生大量塑性變形,后期通過(guò)回灌僅能保持土體沉降不再繼續(xù)發(fā)展,沉降恢復(fù)效果并不理想.同時(shí)由于基坑外水位影響,被保護(hù)建筑物沉降發(fā)展極其不均勻,最大差異沉降達(dá)到10mm以上.該場(chǎng)地淺層主要以粉土以及粉質(zhì)黏土為主,其特征為滲透性差且壓縮性高,因此降水過(guò)程中,不均勻沉降更為明顯.
圖2?回灌井、觀(guān)測(cè)井及各監(jiān)測(cè)點(diǎn)平面布置
圖3?回灌期間水位變化
圖4?回灌期間沉降變化
通過(guò)本節(jié)現(xiàn)場(chǎng)試驗(yàn)可知,與上海等地規(guī)律一??致[24],在沉降已經(jīng)大量產(chǎn)生的地區(qū),回灌并不能恢復(fù)沉降,僅能保證沉降不再繼續(xù)發(fā)展.為了進(jìn)一步揭示回灌與抽水過(guò)程中的土體應(yīng)力應(yīng)變關(guān)系特性,優(yōu)化回灌控制沉降策略,需在既有研究基礎(chǔ)上開(kāi)展有限元數(shù)值研究.
根據(jù)已有研究,天津市區(qū)內(nèi)不同位置土層分布較為類(lèi)似[5],各承壓層主要以粉土、粉砂互層為主.根據(jù)天津市地下水開(kāi)采記錄顯示[3],受應(yīng)力歷史影響,其淺層承壓層(第1、2承壓含水層)主要以輕超固結(jié)土為主.同時(shí),第3承壓含水層的壓縮模量顯著大于淺層含水層.
根據(jù)文獻(xiàn)[5]可知,天津市市區(qū)地下埋深70m內(nèi)主要由潛水層和3個(gè)承壓含水層構(gòu)成,在對(duì)市區(qū)8處地質(zhì)條件對(duì)比發(fā)現(xiàn),天津市文化中心站場(chǎng)地地質(zhì)條件具有一定代表性,其地質(zhì)剖面圖見(jiàn)圖5.本文利用文獻(xiàn)[18]中已經(jīng)校核過(guò)的ABAQUS三維有限元模型對(duì)天津市回灌進(jìn)行研究.
1) 模型尺寸及單元
根據(jù)與現(xiàn)場(chǎng)抽水試驗(yàn)對(duì)比可知,有限元數(shù)值模型中平面尺寸360m×360m,滿(mǎn)足精度要求,能夠有效減少數(shù)值模擬中定水頭邊界影響[18].因此在本次計(jì)算中,模型平面尺寸仍為360m×360m,深度取80m,土層9層,并采用C3D8P孔壓?jiǎn)卧M(jìn)行土體單元的模擬.模型邊界設(shè)定為定水頭邊界,并限制水平方向位移.
圖5?文化中心典型地質(zhì)剖面圖
2) 模型本構(gòu)及參數(shù)選取
根據(jù)之前研究[18-25],天津地區(qū)淺層承壓層與上海地區(qū)的淺層承壓層變形模式類(lèi)似[26-27],該地區(qū)承壓層受開(kāi)采歷史的影響,承壓層在小范圍降深內(nèi)呈現(xiàn)彈性變形,所以本構(gòu)模型采用摩爾庫(kù)倫模型;對(duì)于以粉質(zhì)黏土為主的弱透水層,其在減壓抽水和回灌中的變形會(huì)受到應(yīng)力歷史的影響,為了更好地模擬土體在該過(guò)程中的力學(xué)特征,采用改進(jìn)的劍橋模型來(lái)模擬弱透水層.本文主要參數(shù)見(jiàn)表1~表3.
3) 減壓抽水及回灌過(guò)程
根據(jù)天津市地層特點(diǎn),對(duì)于深10m以上深基坑而言,止水帷幕的設(shè)計(jì)主要取決于第2承壓含水層的分布以及與上下承壓含水層的水力關(guān)系.根據(jù)文獻(xiàn)[28]可知,止水帷幕深度與開(kāi)挖深度基本呈線(xiàn)性關(guān)系,對(duì)于常見(jiàn)的地鐵2、3層車(chē)站,其止水帷幕主要以控制第2承壓含水層為主,因此本文主要對(duì)天津市第2承壓含水層進(jìn)行回灌研究[5].
表1?土層物理力學(xué)參數(shù)
Tab.1?Mechanical parameters of soil layers
表2?第1、2承壓含水層模型參數(shù)
Tab.2?Parameters of model in the 1st and 2nd confined aquifer
表3?土層修正劍橋模型參數(shù)
Tab.3?Parameters of modified Cam-clay models
通過(guò)設(shè)定井點(diǎn)橫截面上的等效孔隙流量[28-31],可將流量均勻分配在各節(jié)點(diǎn)以模擬井中水流.共設(shè)置回灌井與減壓井各3口,井間距10m;設(shè)置一個(gè)沉降和水位觀(guān)測(cè)點(diǎn),距回灌井連線(xiàn)的中點(diǎn)10m,代表保護(hù)建筑物位置;根據(jù)天津工程經(jīng)驗(yàn),減壓井抽水量取200m3/d,本次模擬是針對(duì)重力(無(wú)回灌壓力)下回灌研究,根據(jù)文獻(xiàn)[21],天津市單井回灌量取70m3/d,模型見(jiàn)圖6.
圖6?三維有限元流固耦合模型
共設(shè)置5個(gè)計(jì)算方案.方案1為先回灌10d后開(kāi)啟抽水井,回灌、抽水同時(shí)運(yùn)行20d;方案2為先回灌5d后開(kāi)啟抽水井,回灌、抽水同時(shí)運(yùn)行25d;方案3為同灌同抽,即同時(shí)開(kāi)啟回灌和抽水30d;方案4為先抽后灌,即對(duì)第2承壓含水層先進(jìn)行抽水5d,水位下降后再進(jìn)行回灌,回灌、抽水同時(shí)運(yùn)行25d;方案5為先抽水10d后開(kāi)啟回灌井,同時(shí)運(yùn)行20d.
如圖7所示,水位監(jiān)測(cè)點(diǎn)回灌井在運(yùn)行過(guò)程中能夠有效抬升地下承壓水位,回灌井和減壓井同時(shí)運(yùn)行后穩(wěn)定水位并不受回灌井、減壓井開(kāi)啟時(shí)間及順序?影響.
5種方案下,沉降觀(guān)測(cè)點(diǎn)處沉降變化如圖8所示.抽水開(kāi)始后1~4d,沉降發(fā)展較快.開(kāi)啟回灌井后,各方案下地表均有回彈,并在1~2d回彈發(fā)展較快.由方案1~5對(duì)比可知,穩(wěn)定后的地表沉降與回灌井開(kāi)啟時(shí)間有關(guān),當(dāng)減壓抽水開(kāi)始后,回灌井開(kāi)啟越晚,穩(wěn)定后地表沉降越大.5種方案中,方案3沉降最小,方案5最大.
減壓抽水導(dǎo)致的地表沉降主要由兩方面構(gòu)成:①承壓層壓縮變形;②上覆黏土層釋水固結(jié)[18],其他土層產(chǎn)生隨動(dòng).承壓含水層滲透系數(shù)較大,水位下降后,固結(jié)快速完成,當(dāng)水位上升后,承壓層會(huì)迅速發(fā)生回彈.而對(duì)于上覆黏土層,承壓層水位降低后,受滲透性限制,孔隙水壓力消散較慢,固結(jié)所需時(shí)間較長(zhǎng),該層沉降持續(xù)發(fā)展,直至水位抬升,有效應(yīng)力減?。詼p壓井開(kāi)啟后水位在較低水平維持時(shí)間越長(zhǎng),孔隙水壓力消散越徹底,弱透水層塑性壓縮變形越大,地表不可回彈沉降越大.對(duì)各方案中減壓井開(kāi)啟10d后土體分層沉降進(jìn)行對(duì)比,如圖9所示,各方案下地表沉降差異主要由上覆弱透水層引起.
圖7?第2承壓含水層水位時(shí)程曲線(xiàn)
圖8?不同方案下沉降隨時(shí)間變化
圖9?不同方案下抽水10 d后分層沉降對(duì)比
計(jì)算結(jié)果表明,如利用回灌井控制地表沉降,應(yīng)該盡量保證回灌井、減壓井同時(shí)開(kāi)啟.
上文通過(guò)地表沉降及水位變化,揭示了回灌井開(kāi)啟時(shí)間對(duì)地表沉降影響規(guī)律,本節(jié)通過(guò)對(duì)先灌后抽、同灌同抽及先抽后灌3種回灌開(kāi)啟時(shí)間對(duì)土體應(yīng)力應(yīng)變影響進(jìn)行細(xì)化研究.
對(duì)方案2中減壓前(5d)、減壓井開(kāi)啟后0.5d(5.5d)、1d(6d)、減壓井開(kāi)啟后2d(12d)、減壓井開(kāi)啟后5d(15d)各時(shí)間節(jié)點(diǎn)進(jìn)行計(jì)算(括號(hào)內(nèi)時(shí)間為圖7橫軸中自試驗(yàn)開(kāi)始的總時(shí)間),孔隙水壓力、豎向附加應(yīng)力及土體分層沉降結(jié)果分別如圖10~12所示,其中:D為孔隙水壓力增量,D=-ini,為各時(shí)間步孔隙水壓力,ini為初始孔隙水壓力.
1) 豎向附加應(yīng)力
如圖10和圖11所示,開(kāi)始回灌后,第2承壓含水層的孔隙壓力增加,相鄰弱透水層受補(bǔ)給影響,孔隙水壓力上升有效應(yīng)力減?。鐖D12可知,同承壓層一樣,弱透水層也會(huì)出現(xiàn)少量豎向拉伸變形.
圖10?孔隙水壓力增量沿深度變化(方案2)
圖11?附加應(yīng)力沿深度變化(方案2)
減壓井開(kāi)啟后,第2承壓含水層孔隙水壓力瞬間下降,有效應(yīng)力相應(yīng)增加,該含水層土體豎向附加應(yīng)力由拉應(yīng)力向壓應(yīng)力轉(zhuǎn)變,而上覆和下臥弱透水層在一定時(shí)間內(nèi)仍維持附加拉應(yīng)力,例如在減壓井開(kāi)啟后0.5d和1d.這是由于滲透性限制,回灌在弱透水層形成的超孔隙水壓力無(wú)法瞬間排出,如圖10所示,孔隙水壓力會(huì)隨著時(shí)間緩慢消散,豎向有效應(yīng)力雖然增加,但一段時(shí)間內(nèi)附加應(yīng)力仍維持拉應(yīng)力.隨著時(shí)間推移,例如在減壓井開(kāi)啟5d后,上覆和下臥兩弱透水層釋水,孔隙水壓力消散,土體附加應(yīng)力方向發(fā)生變化.
圖12?土體分層沉降沿深度變化(方案2)
2) 深層土體隆起、沉降分析
由圖12中可知,在僅回灌時(shí),豎向隆起變形最大值位于上覆弱透水層,此點(diǎn)的位置與圖11中附加應(yīng)力變化為0的位置接近,即上覆弱透水層頂板.此點(diǎn)下部直至承壓含水層下臥弱透水層,土體中孔隙壓力上升,出現(xiàn)附加拉應(yīng)力,均出現(xiàn)隆起變形;此點(diǎn)上部土層由于受到下部土層的隆起而受到壓縮,土體中產(chǎn)生附加壓應(yīng)力,這也導(dǎo)致了先灌后抽方案較同抽同灌方案地表沉降較大.
減壓井開(kāi)啟后,承壓層會(huì)隨著附加應(yīng)力變化由拉伸變形向壓縮變形變化,變形發(fā)展較快,減壓1d,即可完成大部分壓縮變形.針對(duì)弱透水層,滲透性較差,短時(shí)間內(nèi)仍保持附加拉應(yīng)力,存在少量拉伸變形.隨著抽水時(shí)間增長(zhǎng),土體變形繼續(xù)發(fā)展,上覆土層在重力作用下壓縮變形.
隨著抽水時(shí)間延長(zhǎng),土體應(yīng)力穩(wěn)定.由于靠近抽水井的位置沉降較大,距抽水井較遠(yuǎn)的土層沉降較小,不均勻沉降會(huì)使土體中形成豎向的“應(yīng)力拱”,限制上覆土層沉降,最終穩(wěn)定后沉降最大點(diǎn)在上覆弱透水層頂板,而在上覆弱透水層上部的土層中,由于“應(yīng)力拱”的存在,土體中形成一定量的豎向拉應(yīng)力,土層也產(chǎn)生一定的拉伸變形.
對(duì)方案3中減壓井、回灌井開(kāi)啟后各時(shí)間節(jié)點(diǎn)進(jìn)行計(jì)算,結(jié)果如圖13~圖15所示.
如圖13、圖14所示,當(dāng)減壓井及回灌井開(kāi)啟0.5d時(shí),上、下兩弱透水層及承壓層中孔隙水壓力逐漸減小,有效應(yīng)力增加,因此發(fā)生壓縮變形.同時(shí)在上覆和下臥弱透水層中,由于孔隙水壓力消散較慢,附加壓應(yīng)力增長(zhǎng)緩慢.
圖13?孔隙水壓力增量沿深度變化(方案3)
圖14?附加應(yīng)力沿深度變化(方案3)
如圖15所示,隨著弱透水層孔隙水壓力消散,壓縮變形逐漸向弱透水層發(fā)展.在上部弱透水層中,土體分層沉降最大位置隨著試驗(yàn)時(shí)間的增加而向上發(fā)展,最終與先抽后灌中的現(xiàn)象一致,最大沉降位置位于上部弱透水層頂板處,其上的土層中由于“土拱效應(yīng)”而產(chǎn)生豎向附加拉應(yīng)力,且出現(xiàn)一定的附加拉伸變形[32].
圖15?土體分層沉降沿深度變化(方案3)
該方案變形過(guò)程較為單一,由于抽水量大于回灌量,可以看作是由回灌井及減壓井共同作用下土體的承壓層及上下部弱透水層減壓固結(jié)過(guò)程.
對(duì)方案4中回灌井開(kāi)啟前(第5d)、回灌井開(kāi)啟后0.5d(第5.5d)、1d(第6d)、5d(第10d)及10d(第15d)各時(shí)間節(jié)點(diǎn)進(jìn)行計(jì)算,結(jié)果如圖16~圖18所示.
圖16?孔隙水壓力增量沿深度變化(方案4)
圖17?附加應(yīng)力沿深度變化(方案4)
圖18?土體分層沉降沿深度變化(方案4)
如圖16、圖17所示,上下兩弱透水層由于滲透性較差,土體中的孔隙水壓力及附加應(yīng)力變化滯后于承壓層中的變化,隨著回灌時(shí)間的持續(xù)增加,回灌井開(kāi)啟5d后附加應(yīng)力幾乎不發(fā)生變化.
如圖18所示,回灌井開(kāi)啟后,相鄰弱透水層未出現(xiàn)明顯回彈變形,而承壓含水層頂部隆起2.16mm(沉降由6.88mm減小為4.72mm),可見(jiàn)地表處的隆起變形主要是由承壓含水層回彈引起,上覆土層隨動(dòng)變形,甚至?xí)a(chǎn)生一定的壓縮變形(頂部隆起1.93mm),經(jīng)過(guò)減壓固結(jié)后的上覆、下臥土層在水位抬升之后幾乎不會(huì)發(fā)生回彈變形.
通過(guò)3種回灌形式計(jì)算結(jié)果可知,多種回灌方案下,最終穩(wěn)定后第2承壓含水層的穩(wěn)定水位相同,各土層的附加應(yīng)力也相同(如圖12、圖15及圖18所示),但上覆弱透水層最終沉降卻不同,這主要是由于該層在回灌井、減壓井不同順序下應(yīng)力應(yīng)變形式不同,下一節(jié)將對(duì)應(yīng)力路徑進(jìn)行詳細(xì)探討.同時(shí),與第1節(jié)中工程案例比較可知,僅針對(duì)深層含水層(第2承壓含水層)回灌減壓,由于其與潛水層及第1承壓含水層水力聯(lián)系較弱,沉降及水位發(fā)展較快.淺層各層間水力聯(lián)系較強(qiáng),孔隙壓力消散同時(shí)向水平及豎向兩個(gè)方向發(fā)展,其沉降發(fā)展也較慢且持續(xù)時(shí)間長(zhǎng)[33-34].
對(duì)不同方案中上覆弱透水層應(yīng)力、應(yīng)變變化過(guò)程進(jìn)行比較,其位置為圖6中沉降、水位監(jiān)測(cè)點(diǎn),結(jié)果見(jiàn)圖19.
如圖19(a)所示,方案2回灌階段(階段)中,上覆弱透水層孔隙水壓力上升,豎向及水平有效應(yīng)力下降,平均主應(yīng)力下降,導(dǎo)致土體發(fā)生少量回彈.之后,隨著減壓井的開(kāi)啟,孔隙水壓力顯著下降,有效應(yīng)力抬升,土體固結(jié).由圖19(a)方案2階段可知,上覆弱透水層在減壓井開(kāi)啟后,應(yīng)力路徑將逐漸與“同抽同灌”重合,這是由于回灌導(dǎo)致的孔隙水壓力的上升并不會(huì)改變土體的前期固結(jié)壓力,所以該土層的側(cè)壓力系數(shù)(K-K)幾乎不會(huì)改變.當(dāng)減壓井開(kāi)啟后,隨著孔隙水壓力的消散,方案2與方案3會(huì)沿著同樣的應(yīng)力路徑變化,平均主應(yīng)力相同,所以其豎向應(yīng)變幾乎相同.
方案4在承壓層減壓抽水的過(guò)程中(-階段),由于水位降深較大,上覆弱透水層水平、豎向應(yīng)力增量較方案2及3高,如圖19(a)所示.隨著回灌井的開(kāi)啟(-階段),穩(wěn)定后的方案4與方案2、3相比豎向有效應(yīng)力相同,但水平有效應(yīng)力較大.這是因?yàn)樵邳c(diǎn),弱透水層達(dá)到最大固結(jié)壓力,側(cè)壓力系數(shù)(K)會(huì)隨著豎向有效應(yīng)力的增大而增大.
由圖19(b)、(c)可知,共有兩個(gè)原因?qū)е路桨?弱透水層壓縮變形較大(點(diǎn)與點(diǎn)比較):①固結(jié)壓力相同,土體產(chǎn)生壓縮變形Da,這主要是由于點(diǎn)到點(diǎn),土體回彈,對(duì)于黏土,其固結(jié)線(xiàn)與回彈線(xiàn)不同,回彈模量較??;②固結(jié)壓力不同,土體變形,對(duì)于點(diǎn)與點(diǎn),雖然其豎直有效應(yīng)力相同,但由于點(diǎn)屬于超固結(jié)土,側(cè)壓力系數(shù)較大,所以平均主應(yīng)力會(huì)大于點(diǎn),因此其體應(yīng)變會(huì)大于其他方案,在該問(wèn)題研究上,土體可近似考慮為側(cè)限狀態(tài),其體應(yīng)變主要表現(xiàn)為豎向應(yīng)變.
上文基于該場(chǎng)地進(jìn)行多種回灌方案研究,而對(duì)于天津市而言,其承壓含水層間弱透水層隔水能力在不同區(qū)域差異顯著.在某一承壓層出現(xiàn)水位降深條件下,相鄰承壓層同樣可能會(huì)出現(xiàn)水位降深,但不同地區(qū)出現(xiàn)越流補(bǔ)給水頭差臨界值不同.因此本節(jié)基于前文方案2工況(先灌后抽)的有限元模型,對(duì)承壓層上覆、下臥弱透水層滲透系數(shù)進(jìn)行參數(shù)研究,以分析場(chǎng)地地質(zhì)條件差異而導(dǎo)致回灌及抽水效果的不同.
對(duì)第2承壓含水層進(jìn)行先回灌后抽水,回灌井開(kāi)啟5d后,水位穩(wěn)定時(shí),不同滲透性弱透水層情況下土體分層沉降計(jì)算結(jié)果如圖20所示.
減壓井開(kāi)啟后,經(jīng)過(guò)180d后固結(jié)穩(wěn)定,計(jì)算結(jié)果如圖21所示.
與第5.1節(jié)規(guī)律類(lèi)似,隨著上覆弱透水層滲透性增強(qiáng),水力聯(lián)系增強(qiáng),最大沉降點(diǎn)逐漸由弱透水層頂部向第1承壓含水層頂部轉(zhuǎn)移.與回灌過(guò)程不同的是,由于弱透水層滲透性增強(qiáng),弱透水層也發(fā)生了明顯的壓縮變形.
同樣,由于第3承壓層壓縮性較差,當(dāng)下臥弱透水層滲透性增強(qiáng)后,即使第3承壓含水層孔隙水壓力顯著減小,而其所發(fā)生的壓縮變形有限.而第2承壓含水層由于降深減小,壓縮變形顯著減小,因此地表沉降較?。?/p>
由以上分析可知,由于天津市淺部含水層以粉土為主,第2含水層上臥弱透水層滲透性對(duì)在減壓抽水及回灌過(guò)程中引發(fā)地表變形影響較?。S滲透性增加,最大位移點(diǎn)向上移動(dòng).而由于天津市第3承壓含水層剛度較大,其變形較淺部含水層受水位影響較?。S著下臥滲透系數(shù)增加,第2承壓含水層壓縮變形減少,地表沉降隨之減少.
圖20 回灌期間弱透水層滲透性與土體分層沉降變化關(guān)系
圖21 減壓期間弱透水層滲透性與土體分層沉降變化關(guān)系
本文利用有限元流固耦合模型,就回灌對(duì)土體應(yīng)力應(yīng)變影響規(guī)律及相應(yīng)機(jī)理進(jìn)行了計(jì)算和研究,得到如下結(jié)論.
(1) 由于回灌過(guò)程導(dǎo)致弱透水層以上土體發(fā)生少量壓縮變形,相比之下,同灌同抽下土體地表沉降最小,先灌后抽地表沉降略大于前者,先抽后灌造成地表沉降最大,且隨回灌前降水時(shí)長(zhǎng)增大而增大.因此在實(shí)際工程中,應(yīng)盡量保證同抽同灌.
(2) 不同方案之間沉降不同主要是由于上覆弱透水層變形不同導(dǎo)致,原因有兩點(diǎn):①先灌后抽、同灌同抽方案中,上覆弱透水層穩(wěn)定后應(yīng)力增量幾乎一致,而先抽后灌中,上覆弱透水層會(huì)先壓縮變形后回彈,黏土層回彈模量遠(yuǎn)大于壓縮模量,所以在最終豎向應(yīng)力相同的條件下,該層變形較大;②先減壓后回灌會(huì)導(dǎo)致弱透水層超固結(jié)比大于其他方案,相同應(yīng)力條件下側(cè)壓力系數(shù)較高,上覆荷載相同的情況下土?體固結(jié)壓力增高.所以先進(jìn)行減壓會(huì)導(dǎo)致土體沉降較高.
(3) 在僅開(kāi)啟回灌井時(shí),當(dāng)上覆弱透水層滲透系數(shù)較大時(shí),土體隆起最大值位置會(huì)隨著滲透性增強(qiáng)顯著向上發(fā)展,而當(dāng)下臥弱透水層滲透性增強(qiáng)后,下臥弱透水層由下沉向隆起過(guò)渡;當(dāng)開(kāi)啟減壓井時(shí),隨著上覆弱透水層滲透系數(shù)的增加,沉降最大點(diǎn)向上移,隨著下臥弱透水層滲透系數(shù)增加,沉降會(huì)向下傳遞.
本文對(duì)天津市回灌工程進(jìn)行了數(shù)值及實(shí)測(cè)研究,該結(jié)論可適用于典型分布的粉土、粉質(zhì)黏土地層條件,而對(duì)于其他地層仍需要進(jìn)一步研究.
[1] 楊建民,鄭?剛. 基坑降水中滲流破壞歸類(lèi)及抗突涌驗(yàn)算公式評(píng)價(jià)[J]. 巖土力學(xué),2009,30(1):261-264.
Yang Jianmin,Zheng Gang. Classification of seepage failures and opinion to formula for check bursting insatability indewatering[J]. Rock and Soil Mechanics,2009,30(1):261-264(in Chinese).
[2] 鄭?剛,張立明,王?琦,等. 基坑開(kāi)挖對(duì)坑內(nèi)工程樁影響的實(shí)測(cè)及有限元分析[J]. 天津大學(xué)學(xué)報(bào),2012,45(12):1062-1070.
Zheng Gang,Zhang Liming,Wang Qi,et al. Field observation and oinite element analysis of effect of overlying excavation on piles[J]. Journal of Tianjin University,2012,45(12):1062-1070 (in Chinese).
[3] 鄭?剛,王凡俊,孫宏賓,等. 軟土地區(qū)CFG樁群孔效應(yīng)引發(fā)的地表沉降[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(8):796-805.
Zheng Gang,Wang Fanjun,Sun Hongbin,et al. Surface settlement caused by borehole group effect of CFG piles in soft soil[J]. Journal of Tianjin University:Science and Technology,2017,50(8):796-805(in Chinese).
[4] 李?濤. 基坑工程潛水涌水量研究及雙井回灌參數(shù)化分析[D]. 天津:天津大學(xué)建筑工程學(xué)院,2014.
Li Tao. The Research of Phreatic Water Inflow in Foundation Pit and Parametric Analysis of Double Well Recharge[D]. Tianjin:School of Civil Engineering,Tianjin University,2014(in Chinese).
[5] 哈?達(dá),朱敢平,李?竹,等. 天津市深厚地下承壓含水層條件下地下連續(xù)墻深度優(yōu)化[J]. 地下空間與工程學(xué)報(bào),2018,14(2):490-499.
Ha Da,Zhu Ganping,Li Zhu,et al. Tianjin deep underground confined aquifer depth of underground continuous wall under the condition of optimization[J]. Chinese Journal of Underground Space and Engineering,2018,14(2):490-499(in Chinese).
[6] Zhang R,Zhang W,Goh A T C,et al. A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown[J]. Geomechanics and Engineering,2018,16(6):635-642.
[7] Zhang W,Wang W,Zhou D,et al. Influence of groundwater drawdown on excavation responses-A case history in Bukit Timah granitic residual soils[J]. Journal of Rock Mechanics and Geotechnical Engineering,2018,10(5):856-864.
[8] Zhang W G,Goh A T C,Goh K H,et al. Performance of braced excavation in residual soil with groundwater drawdown[J]. Underground Space,2018,3(2):150-165.
[9] 黃應(yīng)超,徐楊青. 深基坑降水與回灌過(guò)程的數(shù)值模擬分析[J]. 巖土工程學(xué)報(bào),2014,36(增2):299-303.
Huang Yingchao,Xu Yangqing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical En-gineering,2014,36(Suppl 2):299-303(in Chinese).
[10] 姚紀(jì)華,宋漢周,吳志偉,等. 基于回灌法控制深基坑降水引起地面沉降數(shù)值模擬[J]. 工程勘察,2013,41(4):30-34.
Yao Jihua,Song Hanzhou,Wu Zhiwei,et al. Numerical simulation for controlling ground settlement caused by dewatering in deep foundation pit based on recharge method[J]. Geotechnical Investigation & Surveying,2013,41(4):30-34(in Chinese).
[11] 丁洲祥,龔曉南,俞建霖,等. 止水帷幕對(duì)基坑環(huán)境效應(yīng)影響的有限元分析[J]. 巖土力學(xué),2005,26(增1):146-150.
Ding Zhouxiang,Gong Xiaonan,Yu Jianlin,et al. Finite element analysis of environmental effects of water-proof wall on foundation pit[J]. Rock and Soil Mechanics,2005,26(Suppl 1):146-150(in Chinese).
[12] 張雪嬋,張?杰,龔曉南,等. 典型城市承壓含水層區(qū)域性特性[J]. 浙江大學(xué)學(xué)報(bào):工學(xué)版,2010,44(10):1998-2004.
Zhang Xuechan,Zhang Jie,Gong Xiaonan,et al. Regional property of confined aquifer in typical cities[J]. Journal of Zhejiang University:Engineering Science,2010,44(10):1998-2004(in Chinese).
[13] Powrie W,Roberts T O L. Case history of a dewatering and recharge system in chalk[J]. Géotechnique,1995,45(4):599-609.
[14] Phien-Wej N,Giao P H,Nutalaya P. Field experiment of artificial recharge through a well with reference to land subsidence control[J]. Engineering Geology,1998,50(1/2):187-201.
[15] Wang Jianxiu,Wu Yuanbin,Zhang Xingsheng,et al. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well[J]. Journal of Hydrology,2012,464:328-343.
[16] 俞建霖,龔曉南. 基坑工程地下水回灌系統(tǒng)的設(shè)計(jì)與應(yīng)用技術(shù)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2001,22(5):70-74.
Yu Jianlin,Gong Xiaonan. Study on the design and the application of the groundwater recharge system in excavation[J]. Journal of Building Structures,2001,22(5):70-74(in Chinese).
[17] 中國(guó)建筑科學(xué)研究院. JGJ 120—2012?建筑基坑支護(hù)技術(shù)規(guī)程[S]. 北京:中國(guó)建筑工業(yè)出版社,2012.
China Academy of Building Research. JGJ 120—2012 Technical Specification for Retaining and Protection of Building Foundation Excavations[S]. Beijing: China Building Industry Press,2012(in Chinese).
[18] 鄭?剛,曾超峰,薛秀麗. 承壓含水層局部降壓引起土體沉降機(jī)理及參數(shù)分析[J]. 巖土工程學(xué)報(bào),2014,36(5):802-817.
Zheng Gang,Zeng Chaofeng,Xue Xiuli. Mechanism of settlement induced by pressure-relief of confined aqui-fer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering,2014,36(5):802-817(in Chinese).
[19] 陸建生,潘偉強(qiáng). 上海某樞紐基坑工程淺層承壓水回灌試驗(yàn)分析[J]. 地下空間與工程學(xué)報(bào),2014,10(4):810-817,828.
Lu Jiansheng,Pan Weiqiang. Test and analysis of artificial recharge to the shallow confined aquifer of deep foundation pit in Shanghai[J]. Chinese Journal of Underground Space and Engineering,2014,10(4):810-817,828(in Chinese).
[20] 黃應(yīng)超,徐楊青. 深基坑降水與回灌過(guò)程的數(shù)值模擬分析[J]. 巖土工程學(xué)報(bào),2014,36(增2):299-303.
Huang Yingchao,Xu Yangqing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical En-gineering,2014,36(Suppl 2):299-303(in Chinese).
[21] 鄭?剛,曾超峰,劉?暢,等. 天津首例基坑工程承壓含水層回灌實(shí)測(cè)研究[J]. 巖土工程學(xué)報(bào),2013,35(增2):491-495.
Zheng Gang,Zeng Chaofeng,Liu Chang,et al. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering,2013,35(Suppl 2):491-495(in Chinese).
[22] 瞿成松,陳?蔚,黃?雨. 人工回灌控制基坑工程地面沉降的數(shù)值模擬[J]. 中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2011,41(6):87-92,108.
Qu Chengsong,Chen Wei,Huang Yu. Numerical simu-lation for subsidence of deep foundation pits controlled by artifical groundwater recharge[J]. Periodical of Ocean University of China,2011,41(6):87-92,108(in Chinese).
[23] 姚懿倫. 非穩(wěn)定滲流的數(shù)值模擬在基坑降水和回灌中的研究和應(yīng)用[D]. 杭州:浙江大學(xué)建筑工程學(xué)院,2005.
Yao Yilun. Appliance and Mechanism of Numeric Simu-lation of Unsteady Seepage in Precipitation-Recirculation Foundation Pit Project[D]. Hangzhou:School of Civil Engineering and Architecture,Zhejiang University,2005(in Chinese).
[24] Zhang Y Q,Li M G,Wang J H,et al. Field tests of pumping-recharge technology for deep confined aquifers and its application to a deep excavation[J]. Engineering Geology,2017,228:249-259.
[25] 鄭?剛. 天津市地下工程中地下水的影響及控制[J]. 施工技術(shù),2010,39(9):1-7,12.
Zheng Gang. Influence and control of underground water in underground engineering of Tianjin[J]. Construction Technology,2010,39(9):1-7,12(in Chinese).
[26] 葉淑君,薛禹群,張?云,等. 上海區(qū)域地面沉降模型中土層變形特征研究[J]. 巖土工程學(xué)報(bào),2005,27(2):140-147.
Ye Shujun,Xue Yuqun,Zhang Yun,et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering,2005,27(2):140-147 (in Chinese).
[27] 張?云,薛禹群,李勤奮. 上?,F(xiàn)階段主要沉降層及其變形特征分析[J]. 水文地質(zhì)工程地質(zhì),2003,30(5):6-11.
Zhang Yun,Xue Yuqun,Li Qinfen. Current prominent subsidence layer and its deformation properties in Shanghai[J]. Hydrogeology and Engineering Geology,2003,30(5):6-11(in Chinese).
[28] Zheng Gang,Ha Da,Loaiciga Hugo,et al. Estimation of the hydraulic parameters of leaky aquifers based on pumping tests and coupled simulation/optimization:Verification using a layered aquifer in Tianjin,China[J]. Hydrogeology Journal,2019,doi:10.1007/ s10040-019-02021-z.
[29] Zeng C F,Zheng G,Xue X L,et al. Combined re-charge:A method to prevent ground settlement induced by redevelopment of recharge wells[J]. Journal of Hydrology,2019,568:1-11.
[30] Zeng C F,Xue X L,Zheng G,et al. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard sys-tem[J]. Journal of Hydrology,2018,559:609-626.
[31] Zheng G,Dai X,Diao Y,et al. Experimental and simplified model study of the development of ground settlement under hazards induced by loss of groundwater and sand[J]. Natural Hazards,2016,82(3):1869-1893.
[32] 張?zhí)炱妫鹇〔?,?剛. 砂土隧道開(kāi)挖引起的地表及深層土體變形研究[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2019,52(增1):113-119.
Zhang Tianqi,Ge Longbo,Zheng Gang. Deformation of surface and subsurface ground due to tunnel excava-tion in sand[J]. Journal of Tianjin University:Science and Technology,2019,52(Suppl 1):113-119(in Chinese).
[33] Zheng G,Ha D,Zeng C F,et al. Influence of the opening timing of recharge wells on settlement caused by dewatering in excavations[J]. Journal of Hydrology,2019,573:534-545.
[34] Ha D,Zheng G,Zhou H,et al. Estimation of hydrau-lic parameters from pumping tests in a multiaquifer system[J]. Underground Space,2019,doi:10.1016/j. undsp.2019.03.006.
Impact of Recharge Wells’ Opening Time on the Subsidence, Stress, and Strain of Soil
Zheng Gang1,Ha Da1,Cheng Xuesong1,Zeng Chaofeng2,Cao Jianran1
(1. Key Laboratory of Coast Civil Structure Safety of Ministry of Education(Tianjin University),Tianjin 300354,China;2. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring,Hunan University of Science and Technology,Xiangtan 411201,China)
For excavation engineering in Tianjin, Shanghai and other coastal areas, owing to the high head of aquifers and their wide distribution, when the safety coefficient of an excavation’s anti-uprush is lacking, confined aquifers need dewatering and relief from pore pressure. Based on the principle of effective stress, decreasing pore pressure can lead to increased effective stress, which could, in turn, increase surface subsidence. If settlement around an excavation is strictly controlled, an artificial recharge will be a utility method. After an extended period of continuous pumping, artificial recharge can only arrest the current level of settlement. Aiming at this problem, using a three-dimensional fluid-solid coupling numerical model, a comparative analysis was conducted of the different features of stress-strain under three conditions: recharge before pressure relief, simultaneous pressure relief and recharge, and pressure relief before recharge. The results of this study showed that the sequencing of opening a recharge well and a pressure relief well has a significant impact on ground settlement. Pressure relief before recharge was found to cause the most ground settlement. Meanwhile, ground settlement increased with the time of pressure relief before recharge wells opened. Through calculation, the main reason for the difference in the ground settlement was the overlying aquitard causing different compressive deformations in different stress paths. For example, under pressure relief before recharge, due to preloading and rebound moduli, effective stress of the overlying aquitard first increased, then gradually decreased, and the overlying aquitard caused more compressive deformation than under the other condition. With a specific quantity of recharge rate and pressure-relief rate, the overlying and underlying aquitard’s conductivity can change the stress-strain of soil. Ground settlement decreases an increase in the underlying aquitard’s conductivity. However, the overlying aquitard’s conductivity will have less effect on ground settlement.
artificial recharge;settlement control;finite element analysis;soil deformation
TU463
A
0493-2137(2020)02-0180-12
10.11784/tdxbz201901041
2019-01-19;
2019-03-27.
鄭?剛(1967—??),男,博士,教授,zhenggang1967@163.com.
程雪松,cheng_xuesong@163.com.
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFC0805407);天津市自然科學(xué)基金資助項(xiàng)目(18JCQNJC07900);國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(41630641).
Supported by the National Key Research and Development Program of China(No.2017YFC0805407),the Natural Science Foundation of Tianjin,China(No.18JCQNJC07900),the National Natural Science Foundation of China(No.41630641).
(責(zé)任編輯:田?軍)