李麗娟 師鳳華 譚木秀 劉鳳鳴
[摘要] 腸道菌群失調(diào)與多種系統(tǒng)疾病的發(fā)生發(fā)展密切相關(guān),研究證明膳食纖維在腸道菌群結(jié)構(gòu)和功能方面具有重要調(diào)節(jié)作用,有利于維持腸道菌群動(dòng)態(tài)平衡。膳食纖維為腸道菌群提供生長(zhǎng)代謝底物,且優(yōu)化了菌群代謝,腸道菌群通過酵解在小腸中不能被消化吸收的膳食纖維,產(chǎn)生的代謝產(chǎn)物參與機(jī)體多種信號(hào)調(diào)節(jié)機(jī)制,從而影響宿主生理病理改變。本文將對(duì)近段時(shí)間關(guān)于膳食纖維調(diào)節(jié)腸道菌群的作用機(jī)制進(jìn)行綜述,以期為更有效利用膳食纖維,優(yōu)化腸道菌群代謝,防治疾病提供更多的參考依據(jù)。
[關(guān)鍵詞] 膳食纖維;腸道菌群;短鏈脂肪酸;機(jī)制
[中圖分類號(hào)] R151? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2020)36-0188-05
[Abstract] Intestinal flora imbalance is closely related to the occurrence and development of a variety of systemic diseases. Studies have shown that dietary fiber plays an important regulatory role in the structure and function of intestinal flora, which is conducive to maintaining the dynamic balance of intestinal flora. Dietary fiber provides growth and metabolism substrate for intestinal flora, and optimizes its metabolism. Intestinal flora produces dietary fiber that cannot be digested and absorbed in the small intestine through fermentation, and the metabolites produced participate in various signal regulation mechanisms of the body, thus affecting physiological and pathological changes of the host. This paper will review the mechanism of dietary fiber regulating intestinal flora in recent years to provide more references for more effective use of dietary fiber, optimize intestinal flora metabolism, and provide more references for disease prevention and treatment.
[Key words] Dietary fiber; Intestinal flora; Short-chain fatty acids; Mechanism
冠心病、腦卒中、糖尿病等慢性疾病是影響人群健康的主要因素,雖然藥物、手術(shù)等治療手段在不斷進(jìn)步,能在一定程度上延緩疾病發(fā)展,但其過程所消耗的人力財(cái)力物力是影響人們生活水平、造成經(jīng)濟(jì)負(fù)擔(dān)和心理負(fù)擔(dān)的主要原因[1-2],因此,提高人們未病先防的意識(shí),以及尋找治療疾病經(jīng)濟(jì)有效的方法具有深遠(yuǎn)意義,而從膳食層面干預(yù)是一種行之有效的方法[3-4]。膳食纖維作為膳食結(jié)構(gòu)的重要組成部分,被稱為“第七類營(yíng)養(yǎng)素”,有益于健康以及疾病防治,膳食纖維抗內(nèi)源性酶的特性,需要通過腸道菌群的代謝作用來影響宿主的健康狀態(tài),但目前膳食纖維對(duì)腸道菌群的作用機(jī)制仍未完全明了,通過對(duì)兩者具體作用機(jī)制進(jìn)行深入研究,可為促進(jìn)健康、防治疾病特別是慢性疾病提供更多科學(xué)有效的方案。
1 膳食纖維調(diào)節(jié)腸道菌群在疾病中的作用
膳食纖維是具有10個(gè)或以上單體單位的碳水化合物聚合物,且不能被內(nèi)源性酶水解。研究表明,增加膳食纖維的攝入有利于降低患病風(fēng)險(xiǎn)[5-6],輔助藥物提高疾病治療效果[7],還能減輕抑郁癥狀[8]等。膳食纖維攝入作為一種可改變的干預(yù)因素,對(duì)身心健康的有利影響,主要依賴于腸道菌群的中介作用。腸道菌群是寄居在腸道內(nèi)的微生物群,腸道菌群的組成除受宿主遺傳基因型的影響外,后天生活方式是影響腸道菌群組成和代謝的主要因素,又以膳食結(jié)構(gòu)影響顯著。以腸道菌群為干預(yù)靶點(diǎn),在疾病的治療方面也取得了積極效果,如改善慢性放射性腸炎患者的腸道癥狀[9],輔助抗擊癌細(xì)胞[10],以及在藥物治療疾病中增強(qiáng)藥效[11],降低毒副作用和減少不良反應(yīng)等[12-13]。而越來越多的研究證明了膳食纖維通過調(diào)節(jié)腸道菌群代謝發(fā)揮防治疾病的作用。通過補(bǔ)充膳食纖維可以調(diào)節(jié)高脂飲食(High-fat diet,HFD)小鼠腸道菌群和脂肪酸代謝,預(yù)防肥胖[14];膳食纖維還可通過調(diào)節(jié)大鼠腸道菌群組成和提高腸道短鏈脂肪酸(Short-Chain Fatty Acids,SCFAs)含量來減輕腸道炎癥[15]。膳食纖維通過調(diào)節(jié)腸道菌群代謝還有利于預(yù)防肺部炎癥和哮喘發(fā)作[16]、抑制肥胖[17]、提高2型糖尿病(Type 2 Diabetes Mellitus,T2DM)治療效果[18]、降低血壓[19]、改善尿毒癥透析患者癥狀和合并癥[20]等。
2 膳食纖維調(diào)節(jié)腸道菌群的作用機(jī)制
2.1 膳食纖維對(duì)腸道菌群結(jié)構(gòu)、多樣性的影響
腸道中約90%的菌群由硬壁菌屬和擬桿菌屬構(gòu)成,且硬壁菌屬與擬桿菌屬的比值被作為腸道菌群平衡與否的標(biāo)志。膳食纖維為菌群生長(zhǎng)代謝提供底物,有利于腸道菌群多樣性和(或)豐度的增加[21],So等[22]薈萃分析發(fā)現(xiàn),膳食纖維干預(yù),特別是涉及果聚糖和低聚半乳糖的干預(yù),增加了雙歧桿菌和乳酸桿菌屬等腸道益生菌的豐度。Zhai等[14]也發(fā)現(xiàn)了同時(shí)補(bǔ)充不溶性纖維和可溶性纖維混合物可顯著增加腸道菌群的相對(duì)豐度和多樣性,調(diào)節(jié)HFD小鼠的脂肪酸代謝,從而預(yù)防肥胖。菊粉是一種可溶性膳食纖維,研究發(fā)現(xiàn)[23],與正常對(duì)照大鼠相比,糖尿病大鼠中硬壁菌的比例升高,擬桿菌的比例降低,而對(duì)照組和菊粉處理組大鼠腸道菌群特征相似,此外,乳酸桿菌和產(chǎn)生SCFAs的菌群在菊糖治療的糖尿病組中顯著多于未治療的糖尿病組,說明菊粉治療可使糖尿病大鼠腸道菌群結(jié)構(gòu)趨于平衡,且增加腸道益生菌數(shù)量。因此,膳食纖維可優(yōu)化腸道菌群結(jié)構(gòu),增加菌群多樣性,有利于代謝平衡。
2.2 膳食纖維對(duì)腸道菌群代謝產(chǎn)物的影響
膳食纖維經(jīng)腸道菌群酵解后,主要的代謝產(chǎn)物是SCFAs,包括乙酸鹽、丙酸鹽、丁酸鹽等,SCFAs能為宿主腸壁細(xì)胞提供能量來源,也可通過門靜脈轉(zhuǎn)運(yùn)至外周循環(huán),作為信號(hào)分子,調(diào)節(jié)宿主體內(nèi)多種信號(hào)機(jī)制[24],高膳食纖維飲食對(duì)健康的益處,很大程度上與腸道菌群代謝的SCFAs作用機(jī)制有關(guān)。Lin等[25-26]的研究發(fā)現(xiàn),與正常對(duì)照組相比,結(jié)直腸癌患者糞便代謝產(chǎn)物中如乙酸鹽、丁酸鹽、丙酸鹽等物質(zhì)水平降低,而增加膳食纖維攝入提高了腸道菌群的產(chǎn)丁酸鹽活性,提供大量丁酸鹽,降低結(jié)直腸癌風(fēng)險(xiǎn)[27]。因此,通過補(bǔ)充富含膳食纖維的食物,調(diào)節(jié)SCFAs產(chǎn)量及組分,是改善宿主健康狀態(tài)的有效途徑,特別是增加丁酸鹽含量,來改善大鼠的肥胖前事件,包括肝脂肪變性、血清總膽固醇水平升高等[28]。果膠是一種重要的水溶性膳食纖維,存在于水果和蔬菜的細(xì)胞壁中,研究發(fā)現(xiàn)[29],與單獨(dú)使用長(zhǎng)雙歧桿菌BB-46干預(yù)相比,長(zhǎng)雙歧桿菌BB-46和果膠結(jié)合干預(yù)的大鼠,在增加丁酸鹽產(chǎn)生菌方面更有效。而果膠發(fā)酵產(chǎn)生的丁酸鹽可以抑制載脂蛋白E缺乏小鼠腸道膽固醇吸收以及動(dòng)脈粥樣硬化的進(jìn)展[30]。腸道菌群的另一種主要代謝產(chǎn)物是三甲胺氮氧化物(Trimethylamine N-oxide,TMAO),循環(huán)中TMAO水平升高被認(rèn)為是多種疾病的危險(xiǎn)因素,如癌癥[31]、糖尿病[32]、心血管疾病[33]等。雖然TMAO不是直接由膳食纖維經(jīng)腸道菌群酵解而來,但通過膳食纖維調(diào)節(jié)腸道菌群和膽堿利用途徑,可降低循環(huán)TMAO濃度。Li等[34]發(fā)現(xiàn),可溶性膳食纖維通過調(diào)節(jié)腸道菌群減少了三甲胺代謝,抑制TMAO產(chǎn)生。β-葡聚糖是一種可溶性纖維,添加β-葡聚糖的飲食可降低慢性腎臟疾病患者血清TMAO濃度,且安全有效[35]。TMAO是由膽堿類化合物轉(zhuǎn)化而來,但膳食纖維的調(diào)節(jié)作用或許比膽堿本身的轉(zhuǎn)化作用更顯著,Leal-Witt等[36]在研究中觀察到,TMAO水平變化與膽堿攝入量的差異不相關(guān),但與纖維攝入量呈負(fù)相關(guān)。因此,膳食纖維通過調(diào)節(jié)腸道菌群多種代謝產(chǎn)物的水平,有利于維持機(jī)體動(dòng)態(tài)平衡,防治疾病。
3 SCFAs對(duì)細(xì)胞信號(hào)通路的調(diào)節(jié)機(jī)制
3.1 乙酸鹽
乙酸鹽也稱醋酸鹽,是最豐富的SCFAs,乙酸鹽可通過影響脂質(zhì)代謝和葡萄糖穩(wěn)態(tài)在體重控制和胰島素敏感性中發(fā)揮重要調(diào)節(jié)作用[37]。乙酸鹽在調(diào)節(jié)宿主免疫功能的相關(guān)機(jī)制也被日益挖掘,炎癥小體是免疫穩(wěn)態(tài)的關(guān)鍵組成部分,其失調(diào)可導(dǎo)致各種炎癥反應(yīng),Xu等[38]研究發(fā)現(xiàn),乙酸鹽通過與短鏈脂肪酸受體(G protein-coupled receptor 43,GPR43)結(jié)合,降低Ca2+動(dòng)員,進(jìn)而促進(jìn)Nod樣受體蛋白3(Nod-like receptor protein 3,NLRP3)炎癥小體泛素化,并最終通過自噬誘導(dǎo)NLRP3降解,從而減輕NLRP3炎癥小體相關(guān)炎癥反應(yīng)。在體內(nèi)研究中,乙酸鹽可保護(hù)小鼠免受NLRP3炎性小體依賴性腹膜炎和脂多糖誘導(dǎo)的內(nèi)毒素血癥的侵害;還降低了促炎性細(xì)胞因子和趨化因子的水平,下調(diào)肺組織中絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)磷酸化水平,通過其抗炎和抗氧化活性作用,保護(hù)小鼠免受脂多糖誘導(dǎo)的急性肺損傷[39]。腫瘤微環(huán)境中,免疫細(xì)胞T細(xì)胞與腫瘤細(xì)胞競(jìng)爭(zhēng)葡萄糖,使T細(xì)胞的代謝受到限制,導(dǎo)致其在癌癥期間的低反應(yīng)性,有利于腫瘤的發(fā)展[40]。Qiu等[41]的研究發(fā)現(xiàn),低反應(yīng)性T細(xì)胞可以被乙酸鹽表觀遺傳重塑和激活,提高其產(chǎn)生干擾素-γ(Interferon-γ,IFN-γ)能力,增強(qiáng)抗腫瘤能力。另外,Pandey等[42]發(fā)現(xiàn),乙酸鹽干預(yù)腫瘤細(xì)胞后,可升高細(xì)胞存活調(diào)節(jié)因子以及細(xì)胞胞漿細(xì)胞色素c的表達(dá),抑制腫瘤細(xì)胞的存活。
3.2 丙酸鹽
丙酸鹽已被證明與肝脂肪變性和糖異生有關(guān)[43,44]。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是肝糖代謝的主要調(diào)節(jié)因子,丙酸鹽與肝臟GPR43受體結(jié)合,通過增加細(xì)胞內(nèi)的Ca2+濃度,誘導(dǎo)鈣離子/鈣調(diào)蛋白依賴性蛋白激酶激酶β(Ca2+/calmodulin-dependent protein kinase kinaseβ,CaMKKβ)依賴性的AMPK激活,下調(diào)葡萄糖-6-磷酸酶(Glucose-6-phosphatase,G6Pase)和磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxyl kinase,PEPCK)表達(dá),抑制糖異生[45]。丙酸鹽還有抑制肥胖的潛力,Wang等[46]研究發(fā)現(xiàn),使用菊粉和丙酸鹽處理小鼠后,其空腸和回腸甘油三酯含量降低,脂解基因表達(dá)升高,其體外研究證明,丙酸鹽通過激活A(yù)MPK和賴氨酸特異性組蛋白去甲基化酶1(Lysine specific demethylase 1,LSD1)的磷酸化,升高腸上皮細(xì)胞脂肪甘油三酯脂肪酶、激素敏感脂肪酶、溶酶體酸性脂肪酶等脂解基因表達(dá),促進(jìn)脂肪分解和代謝。丙酸鹽也參與癌細(xì)胞的信號(hào)調(diào)控,生存素(Survivin)是一種抗凋亡蛋白,在多種癌癥中高表達(dá),Survivin基因敲除通過增加Bcl-2相關(guān)細(xì)胞死亡因子(Bcl-2 related cell death factor,Bad)和Bcl-2相關(guān)X蛋白(Bcl-2 related X protein,Bax)的表達(dá)及誘導(dǎo)G2/M期阻滯致細(xì)胞凋亡[47],Kim等[48]研究發(fā)現(xiàn),丙酸鈉處理后,分別下調(diào)和上調(diào)Survivin和細(xì)胞周期抑制因子p21(cell cycle inhibitor p21,p21)的表達(dá)誘導(dǎo)H1299和H1703肺癌細(xì)胞G2/M期阻滯和細(xì)胞凋亡,抑制肺癌細(xì)胞株的生長(zhǎng)。
[11] Sivan A,Corrales L,Hubert N,et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science,2015,350(6264):1084-1089.
[12] Taylor MR,F(xiàn)lannigan KL,Rahim H,et al. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity[J]. Sci Adv,2019,5(8):eaax2358.
[13] Reis FM,HJN A,Mohammed K,et al. Microbiota-and Radiotherapy-Induced Gastrointestinal Side-Effects(MARS)Study:A Large Pilot Study of the Microbiome in Acute and Late-Radiation Enteropathy[J]. Clin Cancer Res,2019,25(21):6487-6500.
[14] Zhai X,Lin D,Zhao Y,et al. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet[J]. J Agric Food Chem,2018,66(48):12706-12718.
[15] Fei Y,Wang Y,Pang Y,et al. Xylooligosaccharide Modulates Gut Microbiota and Alleviates Colonic Inflammation Caused by High Fat Diet Induced Obesity[J]. Front Physiol,2019,10:1601-1603.
[16] Lewis G,Wang B,Shafiei JP,et al. Dietary Fiber-Induced Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway Inflammation[J]. Front Immunol,2019,10:2051-2065.
[17] Zhan J,Liang Y,Liu D,et al. Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota:A case study of p,p'-DDE[J]. Environ Int,2019,130:104861-104873.
[18] Zhao L,Zhang F,Ding X,et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151-1156.
[19] Marques FZ,Nelson E,Chu PY,et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice[J]. Circulation,2017,135(10):964-977.
[20] Camerotto C,Cupisti A,D'Alessandro C,et al. Dietary Fiber and Gut Microbiota in Renal Diets[J]. Nutrients,2019,11(9):2149-2164.
[21] Jefferson A,Adolphus K. The Effects of Intact Cereal Grain Fibers,Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults:A Systematic Review[J]. Front Nutr,2019,6:33-79.
[22] So D,Whelan K,Rossi M,et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis[J]. Am J Clin Nutr,2018,107(6):965-983.
[23] Zhang Q,Yu H,Xiao X,et al. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats[J]. Peer J,2018,6:e4446.
[24] Koh A,De Vadder F,Kovatcheva-Datchary P,et al. From Dietary Fiber to Host Physiology:Short-Chain Fatty Acids as Key Bacterial Metabolites[J]. Cell,2016, 165(6):1332-1345.
[25] Lin Y,Ma C,Liu C,et al. NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer[J]. Oncotarget,2016,7(20):29454-29464.
[26] Lin Y,Ma C,Bezabeh T,et al. 1H NMR-based metabolomics reveal overlapping discriminatory metabolites and metabolic pathway disturbances between colorectal tumor tissues and fecal samples[J]. Int J Cancer,2019,145(6):1679-1689.
[27] Ocvirk S,Wilson AS,Appolonia CN,et al. Fiber,F(xiàn)at,and Colorectal Cancer: New Insight into Modifiable Dietary Risk Factors[J]. Curr Gastroenterol Rep,2019,21(11):62-69.
[28] Liu HY,Walden TB,Cai D,et al. Dietary Fiber in Bilberry Ameliorates Pre-Obesity Events in Rats by Regulating Lipid Depot,Cecal Short-Chain Fatty Acid Formation and Microbiota Composition[J]. Nutrients,2019,11(6):1350-1367.
[29] Bianchi F,Larsen N,Tieghi TM,et al. In vitro modulation of human gut microbiota composition and metabolites by Bifidobacterium longum BB-46 and a citric pectin[J]. Food Res Int,2019,120:595-602.
[30] Chen Y,Xu C,Huang R,et al. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice[J]. J Nutr Biochem,2018,56:175-182.
[31] Cwh C,Bmh L,Mmy W,et al. Trimethylamine-N-oxide as One Hypothetical Link for the Relationship between Intestinal Microbiota and Cancer-Where We Are and Where Shall We Go?[J]. J Cancer,2019,10(23):5874-5882.
[32] Zhuang R,Ge X,Han L,et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes:A systematic review and dose-response meta-analysis[J]. Obes Rev,2019,20(6):883-894.
[33] Li XS,Obeid S,Wang Z,et al. Trimethyllysine,a trimethylamine N-oxide precursor, provides near-and long-term prognostic value in patients presenting with acute coronary syndromes[J]. Eur Heart J,2019,40(32):2700-2709.
[34] Li Q,Wu T,Liu R,et al. Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways[J]. Mol Nutr Food Res,2017,61(12):473-484.
[35] Hill E,Sapa H,Negrea L,et al. Effect of Oat β-Glucan Supplementation on Chronic Kidney Disease:A Feasibility Study[J]. J Ren Nutr,2020,30(3):208-215.
[36] Leal-Witt MJ,Llobet M,Samino S,et al. Lifestyle Intervention Decreases Urine Trimethylamine N-Oxide Levels in Prepubertal Children with Obesity[J]. Obesity(Silver Spring),2018,26(10):1603-1610.
[37] Mag H,Canfora EE,Jwe J,et al. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity[J]. Nutrients,2019,11(8):1943-1975.
[38] Xu M,Jiang Z,Wang C,et al. Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination[J]. Exp Mol Med,2019, 51(7):83-96.
[39] Xu M,Wang C,Li N,et al. Intraperitoneal Injection of Acetate Protects Mice Against Lipopolysaccharide(LPS)-Induced Acute Lung Injury Through Its Anti-Inflammatory and Anti-Oxidative Ability[J]. Med Sci Monit,2019, 25:2278-2288.
[40] Chang CH,Qiu J,O'Sullivan D,et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression[J]. Cell,2015,162(6):1229-1241.
[41] Qiu J,Villa M,Sanin DE,et al. Acetate Promotes T Cell Effector Function during Glucose Restriction[J]. Cell Rep,2019,27(7):2063-2074.
[42] Pandey SK,Yadav S,Goel Y,et al. Cytotoxic action of acetate on tumor cells of thymic origin:Role of MCT-1,pH homeostasis and altered cell survival regulation[J]. Biochimie,2019,157:1-9.
[43] Zhang Q,Koser SL,Bequette BJ,et al. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle[J]. J Dairy Sci,2015,98(12):8698-8709.
[44] Chambers ES,Byrne CS,Rugyendo A,et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease[J]. Diabetes Obes Metab,2019, 21(2):372-376.
[45] Yoshida H,Ishii M,Akagawa M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway[J]. Arch Biochem Biophys,2019,672:108057-108070.
[46] Wang D,Liu CD,Tian ML,et al. Propionate promotes intestinal lipolysis and metabolic benefits via AMPK/LSD1 pathway in mice[J]. J Endocrinol,2019,243(3):187-197.
[47] Li Y,Liu D,Zhou Y,et al. Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells[J]. J Cancer,2015,6(11):1187-1194.
[48] Kim K,Kwon O,Ryu TY,et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer[J]. Mol Med Rep,2019,20(2):1569-1574.
[49] Marinelli L,Martin-Gallausiaux C,Bourhis JM,et al. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells[J]. Sci Rep,2019,9(1):643-657.
[50] Kaden-Volynets V,Günther C,Zimmermann J,et al. Deletion of the Casp8 gene in mice results in ileocolitis,gut barrier dysfunction,and malassimilation, which can be partially attenuated by inulin or sodium butyrate[J]. Am J Physiol Gastrointest Liver Physiol,2019,317(4):G493-G507.
[51] Lin R,Sun Y,Mu P,et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production,protecting against deoxynivalenol exposure in nude mice[J]. Biochem Pharmacol,2020,175:113868-113881.
[52] Chen J,Vitetta L. Inflammation-Modulating Effect of Butyrate in the Prevention of Colon Cancer by Dietary Fiber[J].Clin Colorectal Cancer,2018,17(3):e541-e544.
[53] Chen D,Jin D,Huang S,et al. Clostridium butyricum,a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett,2020,469:456-467.
(收稿日期:2020-06-04)