• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      考慮攻角范圍的垂直軸風(fēng)力機(jī)葉片翼型優(yōu)化設(shè)計(jì)

      2020-03-05 04:50:14楊書(shū)益王環(huán)均
      關(guān)鍵詞:垂直軸風(fēng)力機(jī)攻角

      汪 泉,甘 笛,楊書(shū)益,王環(huán)均

      考慮攻角范圍的垂直軸風(fēng)力機(jī)葉片翼型優(yōu)化設(shè)計(jì)

      汪 泉,甘 笛,楊書(shū)益,王環(huán)均

      (湖北工業(yè)大學(xué)機(jī)械工程學(xué)院,武漢 430068)

      為解決目前垂直軸風(fēng)力機(jī)葉片翼型都是在單一攻角下進(jìn)行設(shè)計(jì)而忽略運(yùn)行時(shí)葉片攻角變化范圍大的問(wèn)題,該研究提出一定攻角范圍下垂直軸風(fēng)力機(jī)葉片翼型廓線優(yōu)化方法。首先采用類函數(shù)與B樣條函數(shù)相結(jié)合的方法來(lái)表征翼型氣動(dòng)外形,以一定攻角范圍下的切向力系數(shù)之和作為葉片翼型優(yōu)化的目標(biāo)函數(shù)。進(jìn)一步利用粒子群算法和翼型氣動(dòng)性能預(yù)測(cè)軟件RFOIL對(duì)H型垂直軸風(fēng)力機(jī)葉片翼型氣動(dòng)外形進(jìn)行優(yōu)化設(shè)計(jì)。最后從功率系數(shù)、力矩系數(shù)、渦量分布和速度分布這4個(gè)方面討論優(yōu)化翼型較初始翼型的優(yōu)越性。結(jié)果表明:相比原始垂直軸風(fēng)力機(jī),優(yōu)化后的垂直軸風(fēng)力機(jī)翼型能有效提高風(fēng)力機(jī)的力矩系數(shù)及功率系數(shù),其最大功率系數(shù)為0.362,提高了8.45%。研究結(jié)果對(duì)于設(shè)計(jì)高性能垂直軸風(fēng)力機(jī)翼型具有很好的借鑒意義。

      風(fēng)力機(jī),優(yōu)化,葉片,類函數(shù),功率系數(shù),力矩系數(shù)

      0 引 言

      風(fēng)能作為一種無(wú)污染、儲(chǔ)量豐富、可再生的清潔能源越來(lái)越受到人們的關(guān)注和青睞。因此,提高風(fēng)力機(jī)的產(chǎn)能輸出一直是各國(guó)研究學(xué)者所關(guān)注的重點(diǎn)。由于H型垂直軸風(fēng)力機(jī)(H-type Vertical Axis Wind Turbine,H-VAWT)具有結(jié)構(gòu)簡(jiǎn)單,便于安裝和維修,適應(yīng)性高,無(wú)需偏航裝置,葉片制造簡(jiǎn)單等優(yōu)點(diǎn),其研究近年成為風(fēng)力發(fā)電領(lǐng)域的研究熱點(diǎn)[1]。H-VAWT主要靠葉片捕捉風(fēng)能,葉片的外形結(jié)構(gòu)直接影響整個(gè)風(fēng)力機(jī)產(chǎn)能輸出,所以翼型氣動(dòng)外形優(yōu)化設(shè)計(jì)顯得至關(guān)重要。Ferreira等[2]研究了垂直軸風(fēng)力機(jī)翼型表達(dá)方法,并應(yīng)用了遺傳算法耦合軟件XFOIL對(duì)VAWT翼型進(jìn)行優(yōu)化設(shè)計(jì),在不影響葉片氣動(dòng)性能的情況下有效減少了葉片重量。Lin等[3]將波浪狀的葉片應(yīng)用于VAWT葉片后緣,發(fā)現(xiàn)與直葉片相比,增大葉片尾緣的振幅和波長(zhǎng)可使葉片最大推力提高2.31%,風(fēng)力機(jī)功率系數(shù)提高16.4%。Peng等[4]提出了一種基于攻角-氣動(dòng)力系數(shù)的混合動(dòng)力學(xué)模型,與現(xiàn)有的動(dòng)力學(xué)模型相比,能更準(zhǔn)確的預(yù)測(cè)作用在葉片上的氣動(dòng)力。Macphee等[5]研究探討了柔性葉片的VAWT可行性,研究結(jié)果表明柔性葉片在提高風(fēng)力機(jī)功率系數(shù)上更有優(yōu)勢(shì),尤其在部分負(fù)載情況下,柔性葉片可提高風(fēng)力機(jī)的自啟動(dòng)性能。Wang等[6]設(shè)計(jì)了一種可自動(dòng)形成理想幾何形狀的新型VAWT葉片,并發(fā)現(xiàn)可變形葉片的低實(shí)度風(fēng)力機(jī)能增幅最大功率系數(shù)約14.56%。Ferreira等[7-8]發(fā)現(xiàn)了葉片動(dòng)態(tài)失速渦有順時(shí)針旋向和逆時(shí)針旋向2種,葉片吸力面前緣產(chǎn)生順時(shí)針失速渦,逆時(shí)針失速渦發(fā)生在吸力面與壓力面的邊界層中,并發(fā)現(xiàn)在葉片攻角較小時(shí),失速渦在尾跡中產(chǎn)生,在葉片攻角較大時(shí),動(dòng)態(tài)失速渦在葉片內(nèi)側(cè)產(chǎn)生。Arab等[9]針對(duì)渦輪慣性對(duì)渦輪瞬態(tài)啟動(dòng)運(yùn)動(dòng)的影響,提出一種計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics,CFD)方法來(lái)研究考慮渦輪轉(zhuǎn)動(dòng)慣量的VAWT自啟動(dòng)特性,發(fā)現(xiàn)隨著轉(zhuǎn)子轉(zhuǎn)動(dòng)慣量的增加,風(fēng)力機(jī)達(dá)到最終轉(zhuǎn)速需要較長(zhǎng)時(shí)間,隨著轉(zhuǎn)動(dòng)慣量的減小,風(fēng)力機(jī)轉(zhuǎn)速的振蕩幅度增大。Abdolrahim等[10]研究了槳距角對(duì)垂直軸風(fēng)力機(jī)性能的影響,研究表明當(dāng)槳距角為-2°時(shí),風(fēng)力機(jī)功率系數(shù)能夠提高6.6%。Li等[11]提出了垂直軸風(fēng)力機(jī)葉片槳距角控制優(yōu)化方法,發(fā)現(xiàn)在大范圍葉尖速比情況下平均功率系數(shù)為0.177,并且能夠有效抑制流體分離。Tavernier等[12]考慮垂直軸風(fēng)力機(jī)葉片的氣動(dòng)性能與結(jié)構(gòu)特性,利用遺傳算法優(yōu)化了在不同槳距角條件下翼型形狀,性能較初始翼型有顯著提高。在國(guó)內(nèi),楊秋萍等[13]研究了不同翼型、葉尖速比和實(shí)度組合狀態(tài)下的垂直軸風(fēng)力機(jī)性能影響,發(fā)現(xiàn)最佳安裝角在1°~3°,并且可以通過(guò)改變翼型或增加翼型厚度來(lái)提高功率系數(shù)。張立軍等[14]提出垂直軸風(fēng)力機(jī)葉片分風(fēng)區(qū)的方法來(lái)研究實(shí)時(shí)高效攻角調(diào)節(jié)規(guī)律,發(fā)現(xiàn)與原始風(fēng)輪相比,調(diào)節(jié)攻角后的垂直軸風(fēng)力機(jī)的風(fēng)能利用率提高了11.03%。徐文浩等[15]提出雙層反轉(zhuǎn)構(gòu)型的垂直軸風(fēng)力機(jī),發(fā)現(xiàn)與傳統(tǒng)的垂直軸風(fēng)力相比,新構(gòu)型下的葉片時(shí)均扭矩系數(shù)提高了43.92%。向斌等[16]提出了葉片尾緣布置動(dòng)態(tài)格尼襟翼的流動(dòng)控制方法,該方法可有效提高風(fēng)能利用率,當(dāng)動(dòng)態(tài)格柵保持在壓力面時(shí),整機(jī)最大風(fēng)能利用率可提高27.9%。張旭等[17]提出了多種載荷作用下的H型垂直軸風(fēng)力機(jī)葉片的結(jié)構(gòu)優(yōu)化。優(yōu)化后風(fēng)輪的質(zhì)量、最大位移、最大應(yīng)力、最大應(yīng)變和強(qiáng)度比倒數(shù)最大值減少了7.51%、1.9%、8.5%、20.2%及16.1%。劉陳等[18]利用CFD方法計(jì)算分析了增強(qiáng)型垂直軸風(fēng)力機(jī)和開(kāi)放型垂直軸風(fēng)力機(jī)的特性,發(fā)現(xiàn)與開(kāi)放型VAWT相比,增強(qiáng)型VAWT的功率系數(shù)和扭矩系數(shù)有明顯增加。李錦義[19]基于Joukowshi變形法和Trefftz構(gòu)圖法結(jié)合弦線迎合運(yùn)動(dòng)軌跡的思想,提出了一種VAWT葉片翼型設(shè)計(jì)的新方法,基于此設(shè)計(jì)出的一系列翼型具有良好的氣動(dòng)特性。張健宇[20]依據(jù)VAWT運(yùn)行過(guò)程中葉片翼型的氣動(dòng)特性變化規(guī)律提出翼型尾緣高壓面切開(kāi)和弦線彎曲的優(yōu)化方法,發(fā)現(xiàn)這2種翼型優(yōu)化方法都可以提高風(fēng)能利用率,且在低風(fēng)速下切口翼型要優(yōu)于彎曲翼型。甘洋[21]通過(guò)翼型改型的方法,分析了不同改型后的翼型的風(fēng)力機(jī)的空氣動(dòng)力學(xué)性能。發(fā)現(xiàn)翼型采用3/2改型方法時(shí),VAWT的空氣動(dòng)力學(xué)特性顯著提高,最大風(fēng)能利用率為0.384,較原翼型提高了16%。劉小紅[22]對(duì)VAWT翼型進(jìn)行動(dòng)態(tài)分析,并根據(jù)多流管理論得出變槳距風(fēng)力發(fā)電機(jī)的變槳規(guī)律,發(fā)現(xiàn)與定槳距風(fēng)力機(jī)相比,變槳距風(fēng)力機(jī)不僅具有良好的自啟動(dòng)性能,而且風(fēng)能利用率更高。以上研究從不同的角度,研究了垂直軸風(fēng)力機(jī)結(jié)構(gòu)參數(shù)、翼型形狀及流體特性等對(duì)VAWT的風(fēng)能利用率的影響。然而,針對(duì)VAWT翼型優(yōu)化設(shè)計(jì),大多是基于單攻角或者較小攻角情況下設(shè)計(jì)而來(lái)。而垂直軸風(fēng)力機(jī)運(yùn)行攻角范圍大,流場(chǎng)分布及湍流更復(fù)雜,使得單攻角情況下設(shè)計(jì)出來(lái)的翼型不能最大限度的提高風(fēng)能利用率。

      因此,本文提出大攻角范圍內(nèi)垂直軸風(fēng)力機(jī)葉片翼型氣動(dòng)形狀優(yōu)化方法,采用一種類函數(shù)與B樣條結(jié)合的方法表征翼型氣動(dòng)外形,選用NACA0015對(duì)稱翼型作為原始翼型,考慮3組攻角范圍,分別建立以力矩系數(shù)極大作為目標(biāo)函數(shù)的風(fēng)力機(jī)翼型優(yōu)化數(shù)學(xué)模型,編制粒子群算法優(yōu)化程序并耦合RFOIL軟件對(duì)垂直軸風(fēng)力機(jī)翼型進(jìn)行優(yōu)化設(shè)計(jì),從風(fēng)力功率系數(shù)、力矩系數(shù)及渦量分別對(duì)優(yōu)化結(jié)果進(jìn)行評(píng)價(jià)。

      1 H型垂直軸風(fēng)力機(jī)建模及驗(yàn)證

      1.1 H型垂直軸風(fēng)力機(jī)建模

      1.1.1 CFD模型建立

      本文參照McLaren[23]風(fēng)洞試驗(yàn)的試驗(yàn)?zāi)P徒-VAWT二維數(shù)模型,使用的翼型為NACA0015對(duì)稱翼型,模型的詳細(xì)參數(shù)如表1所示。

      表1 垂直軸風(fēng)力機(jī)模型參數(shù)

      注:A為固定區(qū)域;B為旋轉(zhuǎn)區(qū)域;R為風(fēng)力機(jī)旋轉(zhuǎn)半徑。

      1.1.2 網(wǎng)格劃分

      本文采用結(jié)構(gòu)化網(wǎng)格對(duì)H-VAWT進(jìn)行網(wǎng)格劃分,整個(gè)計(jì)算域網(wǎng)格如圖2a所示。固定區(qū)域與旋轉(zhuǎn)區(qū)域之間的交界面的節(jié)點(diǎn)網(wǎng)格增長(zhǎng)率設(shè)為1.05,翼型近壁面處網(wǎng)格增長(zhǎng)率為1.05,旋轉(zhuǎn)區(qū)域網(wǎng)格劃分如圖2b,翼型附近網(wǎng)格劃分如圖2c。網(wǎng)格數(shù)量約為50萬(wàn),通過(guò)網(wǎng)格無(wú)關(guān)解研究,滿足計(jì)算精度要求。

      圖2 計(jì)算域網(wǎng)格

      1.1.3 湍流模型與求解器設(shè)置

      1.1.4 計(jì)算模型邊界條件設(shè)置

      如圖1所示,將計(jì)算域左邊設(shè)為速度入口(Velocity-intlet),來(lái)流風(fēng)速大小為10 m/s,方向從左到右,湍流強(qiáng)度為1%。右邊設(shè)為壓力出口(Pressure-outlet)。上邊界和下邊界設(shè)為對(duì)稱邊界(Symmetry)。旋轉(zhuǎn)區(qū)域與固定區(qū)域設(shè)置為交界面(Interface),便于數(shù)值模擬時(shí)旋轉(zhuǎn)區(qū)域與固定區(qū)域之間的數(shù)據(jù)傳遞。翼型邊界設(shè)置為移動(dòng)壁面(Moving-wall,no-slip)。

      1.2 模型修正

      1.2.1 H型垂直軸風(fēng)力機(jī)功率計(jì)算方法

      在FLUENT數(shù)值計(jì)算中,監(jiān)測(cè)的對(duì)象為風(fēng)力機(jī)旋轉(zhuǎn)過(guò)程中力矩系數(shù)曲線。在數(shù)值計(jì)算的前幾個(gè)周期中由于風(fēng)力機(jī)處于非穩(wěn)定狀態(tài),其力矩系數(shù)曲線變化不規(guī)律。待垂直軸風(fēng)力機(jī)穩(wěn)定過(guò)后,力矩系數(shù)呈現(xiàn)周期性變化。為保證計(jì)算結(jié)果的準(zhǔn)確性,待垂直軸風(fēng)力機(jī)處于穩(wěn)定狀態(tài)過(guò)后,取最后一個(gè)周期的力矩系數(shù)數(shù)據(jù)進(jìn)行分析計(jì)算,本文取葉片旋轉(zhuǎn)10圈后的力矩系數(shù)作為分析計(jì)算值。

      需要注意的是,監(jiān)測(cè)到的力矩系數(shù)和彎矩系數(shù)之間必須有一個(gè)轉(zhuǎn)換,轉(zhuǎn)化后的彎矩系數(shù)用來(lái)計(jì)算風(fēng)力機(jī)的功率系數(shù),其計(jì)算公式如下:

      1.2.2 氣動(dòng)力系數(shù)修正模型

      由于數(shù)值計(jì)算所得的功率系數(shù)隨葉尖速比變化比風(fēng)洞實(shí)驗(yàn)值大,如圖3所示。因此,需進(jìn)行理論模型修正,借鑒McLaren[23]的修正模型:

      圖3 功率修正后數(shù)值模擬與風(fēng)洞試驗(yàn)結(jié)果對(duì)比

      2 翼型優(yōu)化設(shè)計(jì)

      2.1 翼型氣動(dòng)外形參數(shù)化表達(dá)

      翼型是葉片重要的組成部分,其氣動(dòng)特性直接影響整個(gè)風(fēng)力機(jī)的空氣動(dòng)力學(xué)特性。從某種意義上來(lái)講,翼型可以理解成一個(gè)封閉的曲面,當(dāng)來(lái)流繞過(guò)曲面,翼型的上下翼面因風(fēng)速大小的不同而產(chǎn)生壓力差,故而產(chǎn)生氣動(dòng)力。翼型主要幾何參數(shù)有前緣、尾緣、弦長(zhǎng)、弦線、翼型上下翼面和翼型最大厚度等,如圖4所示。

      圖4 NAVA0015翼型幾何參數(shù)示意圖

      常用的翼型氣動(dòng)外形參數(shù)化表達(dá)方法有解析函數(shù)線性疊加法(Hicks-Henne參數(shù)化方法等)和樣條擬合法(如B樣條法和三次樣條插值方法等)。在翼型的優(yōu)化設(shè)計(jì)中,翼型氣動(dòng)外形參數(shù)化表達(dá)方法對(duì)優(yōu)化結(jié)果有直接的影響,簡(jiǎn)單的插值方法對(duì)優(yōu)化設(shè)計(jì)過(guò)程中翼型曲線變化缺乏調(diào)控能力。而且由于H-VAWT翼型尾緣處都較為平滑,影響了翼型的氣動(dòng)特性。而B(niǎo)樣條曲線能較好的實(shí)現(xiàn)翼型曲線的局部調(diào)控。考慮到翼型尾緣處輪廓線比較平滑以及尾緣結(jié)構(gòu)特征對(duì)翼型氣動(dòng)特性的影響,為更好地實(shí)現(xiàn)一定攻角情況下風(fēng)力機(jī)翼型廓線優(yōu)化,以獲取更好性能的H-VAWT葉片,本文提出類函數(shù)與B樣條結(jié)合的翼型氣動(dòng)外形參數(shù)化表達(dá)方法。翼型的上翼面和下翼面參數(shù)化表達(dá)式為

      2.2 H-VAWT葉片翼型優(yōu)化設(shè)計(jì)

      2.2.1 設(shè)計(jì)變量

      表2 設(shè)計(jì)變量控制范圍

      2.2.2 目標(biāo)函數(shù)

      2.2.3 約束條件

      翼型最大相對(duì)厚度對(duì)翼型結(jié)構(gòu)特性和氣動(dòng)特性有至關(guān)重要的影響[26],翼型最大相對(duì)厚度約束范圍為

      翼型相對(duì)彎度約束條件為

      2.2.4 優(yōu)化流程

      注:pbest為個(gè)體最優(yōu);gbest為全局最優(yōu)。

      3 翼型優(yōu)化結(jié)果及性能分析

      3.1 優(yōu)化結(jié)果

      3.2 翼型優(yōu)化性能分析

      3.2.1 功率系數(shù)

      圖6 翼型優(yōu)化過(guò)程迭代圖()

      圖7 不同攻角范圍優(yōu)化翼型與初始翼型對(duì)比

      3.2.2 力矩系數(shù)

      根據(jù)式(1)~(4)可知翼型力矩系數(shù)決定了風(fēng)力機(jī)功率系數(shù)的大小。選取有效葉尖速比為0.4、0.7、1.4和1.9工況下,優(yōu)化的3個(gè)翼型在一個(gè)旋轉(zhuǎn)周期內(nèi)的力矩系數(shù)進(jìn)行對(duì)比分析。修正后的力矩系數(shù)曲線如圖9所示。從力矩系數(shù)曲線波動(dòng)的幅值來(lái)分析,葉尖速比較小時(shí),4條力矩系數(shù)曲線波動(dòng)較大,尤其是下風(fēng)區(qū),如圖9a所示。這是由于風(fēng)力機(jī)在低速下運(yùn)行時(shí),葉片攻角變化范圍大,風(fēng)力機(jī)葉片處于失速狀態(tài),從而預(yù)測(cè)的力矩系數(shù)曲線變化雜亂無(wú)章。但隨著風(fēng)力機(jī)轉(zhuǎn)速增加,可以看出力矩系數(shù)曲線漸漸趨于平穩(wěn)。從圖9b、9c、9d可以看出,翼型在下風(fēng)區(qū)的力矩系數(shù)曲線趨于水平。

      此外,在比較不同葉尖速比下的力矩系數(shù)變化時(shí),發(fā)現(xiàn)2個(gè)變化規(guī)律:一方面,力矩系數(shù)的峰值位置隨葉尖速比的增加而向右移動(dòng);另一方面,H-VAWT產(chǎn)生功率的工作方位角在上風(fēng)區(qū),葉片在下風(fēng)區(qū)時(shí)幾乎不做功。當(dāng)風(fēng)力機(jī)葉片在上風(fēng)區(qū)時(shí),在大攻角范圍下優(yōu)化翼型opt3所產(chǎn)生的力矩系數(shù)整體較大,且在上風(fēng)區(qū)的開(kāi)口角度較也較寬。而對(duì)于下風(fēng)區(qū)而言,力矩系數(shù)曲線均在零線上下波動(dòng),對(duì)風(fēng)力機(jī)氣動(dòng)性能的影響較小。綜上所述,相比于優(yōu)化翼型opt1和opt2,優(yōu)化翼型opt3對(duì)于提高垂直軸風(fēng)力機(jī)氣動(dòng)性能具有一定的優(yōu)越性。

      注:NACA0015為初始翼型;opt1、opt2、opt3分別表示攻角范圍在、、下的優(yōu)化翼型。下同。

      圖9 優(yōu)化翼型不同葉尖速比下的單個(gè)葉片力矩系數(shù)曲線

      圖10中展示了初始翼型與優(yōu)化翼型opt3在一個(gè)周期內(nèi)的合力矩系數(shù)變化情況??梢悦黠@看出:在一個(gè)周期內(nèi),優(yōu)化葉片力矩系數(shù)曲線明顯高于初始翼型,這意味著H型垂直軸風(fēng)力機(jī)在運(yùn)行過(guò)程中,每秒鐘的功率系數(shù)都能得到提高。在一個(gè)旋轉(zhuǎn)周期內(nèi),配備3個(gè)優(yōu)化葉片的垂直軸風(fēng)力機(jī)力矩系數(shù)峰值出現(xiàn)的方位角分別在101°、221°和341°。即當(dāng)單個(gè)葉片的力矩系數(shù)達(dá)到峰值時(shí)的同時(shí),3個(gè)葉片的合力矩系數(shù)同樣達(dá)到峰值。

      圖10 = 1.9時(shí)葉片合力矩系數(shù)曲線(3葉片)

      3.2.3 渦量及速度分布

      風(fēng)力機(jī)葉片周?chē)乃俣确植挤治鲇兄谶M(jìn)一步分析風(fēng)力機(jī)葉片動(dòng)態(tài)失速的特性。圖12為葉尖速比為1.9時(shí)的風(fēng)力機(jī)葉片附近速度分布,圖12a所示,葉片方位角在0°時(shí),初始葉片前緣出現(xiàn)脫落渦,而優(yōu)化葉片前緣出現(xiàn)脫落渦的程度較??;從30°開(kāi)始,翼型前緣和尾緣速度不斷增大,直到方位角為120°時(shí),前緣速度開(kāi)始逐漸減??;當(dāng)葉片方位角在240°時(shí),初始葉片尾流處出現(xiàn)較大的漩渦,優(yōu)化葉片尾流出也相應(yīng)出現(xiàn)漩渦,但其程度明顯較初始葉片小。這些分離渦會(huì)導(dǎo)致葉片出現(xiàn)動(dòng)態(tài)失速,使葉片喪失部分力矩。優(yōu)化葉片雖然不能完全抑制葉片動(dòng)態(tài)失速的現(xiàn)象,但能改善葉片動(dòng)態(tài)失速的程度,這樣葉片的氣動(dòng)特性也得到了有效的提高。從速度流場(chǎng)的梯度變化范圍上看,優(yōu)化葉片附近速度分布梯度在下風(fēng)區(qū)明顯較初始葉片弱。由動(dòng)量守恒定理來(lái)判斷,來(lái)流風(fēng)經(jīng)過(guò)上風(fēng)區(qū)一部分能量被風(fēng)力機(jī)吸收,另一部分流向下風(fēng)區(qū)。由此可推出,優(yōu)化葉片的風(fēng)力機(jī)在上風(fēng)區(qū)吸收的能量較初始葉片多。綜上所述,優(yōu)化葉片在提高風(fēng)力機(jī)空氣動(dòng)力學(xué)性能上更有優(yōu)勢(shì)。

      圖11 優(yōu)化翼型與初始翼型不同方位角下的渦量分布

      圖12 優(yōu)化翼型與初始翼型不同方位角下的速度分布

      4 結(jié) 論

      在H-VAWT葉片翼型的設(shè)計(jì)中,考慮到其運(yùn)行狀態(tài)下葉片攻角變化大這一特性,提出大攻角范圍下的葉片翼型優(yōu)化設(shè)計(jì)方法。將新型H-VAWT與初始H-VAWT氣動(dòng)性能進(jìn)行對(duì)比分析,主要結(jié)論如下:

      2)新型H-VAWT葉片尾跡得到有效改善,并且優(yōu)化的葉片翼型有效的抑制了葉片表面的渦脫落現(xiàn)象。

      [1]Ma N, Lei H, Han Z, et al. Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio[J]. Energy, 2018, 150: 236-252.

      [2]Ferreira C S , Geurts B . Aerofoil optimization for vertical‐axis wind turbines[J]. Wind Energy, 2015, 18(8):1371-1385.

      [3]Lin S Y , Lin Y Y , Bai C J , et al. Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics[J]. Renewable Energy, 2016, 99: 654-662.

      [4]Peng Y X , Xu Y L , Zhan S . A hybrid DMST model for pitch optimization and performance assessment of high-solidity straight-bladed vertical axis wind turbines[J]. Applied Energy, 2019, 250: 215-228.

      [5]Macphee D W , Beyene A . Fluid–structure interaction analysis of a morphing vertical axis wind turbine[J]. Journal of Fluids & Structures, 2016, 60:143-159.

      [6]Wang Ying, Sun Xiaojing, Dong Xiaohua, et al. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades[J]. Energy Conversion and Management, 2016, 108: 275-286.

      [7]Ferreira C J S , Bussel G J W V , Kuik G A M V , et al. On the use of velocity data for load estimation of a VAWT in dynamic stall[J]. Journal of Solar Energy Engineering, 2011, 133(1):169-175.

      [8]Ferreira C J S, Hofemann C, Dixon K, et al. 3D Wake Dynamics of the VAWT[C]. Orlando: 48th AIAA Aerospace Science Meeting, 2010: 1-33.

      [9]Arab A , Javadi M , Anbarsooz M , et al. A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia[J]. Renewable Energy, 2017, 107(7): 298-311.

      [10]Abdolrahim R, Ivo K, Bert B. et al Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine[J]. Applied Energy, 2017(197): 132-150.

      [11]Li C , Xiao Y , Xu Y L , et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212:1107-1125.

      [12]Tavernier D , Ferreira C , Van Bussel G . Airfoil optimisation for vertical-axis wind turbines with variable pitch[J]. Wind Energy, 2019, 22(4):547-562.

      [13]楊秋萍,席德科. 葉片安裝角對(duì)H型垂直軸風(fēng)力機(jī)氣動(dòng)性能的影響研究[J]. 太陽(yáng)能學(xué)報(bào),2017,38(9):2544-2551. Yang Qiuping, Xi Deke. Study on the influence of blade installation angle on the aerodynamic performance of H-type vertical axis wind turbine[J]. Acta Solar Energy, 2017, 38(9): 2544-2551. (in Chinese with English abstract)

      [14]張立軍,趙昕輝,王旱祥,等. H型垂直軸風(fēng)力機(jī)實(shí)時(shí)高效攻角調(diào)節(jié)方法研究[J]. 機(jī)械工程學(xué)報(bào),2018,54(10):173-181. Zhang Lijun, Zhao Xinhui, Wang Hanxiang, et al. Research on real-time and efficient angle of attack adjustment method of H-type vertical axis wind turbine[J]. Journal of Mechanical Engineering, 2018, 54(10): 173-181. (in Chinese with English abstract)

      [15]徐文浩,邱展,喻伯平,等. 雙層反轉(zhuǎn)垂直軸風(fēng)力機(jī)的流場(chǎng)特性數(shù)值模擬[J]. 浙江大學(xué)學(xué)報(bào):工學(xué)版,2019,53(11):2223-2230. Xu Wenhao, Qiu Zhan, Yu Boping. Numerical simulation of flow field characteristics of double-layer reverse vertical axis wind turbine[J]. Journal of Zhejiang University: Engineering Edition, 2019, 53 (11): 2223-2230. (in Chinese with English abstract)

      [16]向斌,繆維跑,李春,等. 動(dòng)態(tài)格尼襟翼對(duì)垂直軸風(fēng)力機(jī)性能影響研究[J].中國(guó)機(jī)械工程,[2020-01-20] http:// kns.cnki.net/kcms/detail/42.1294.th.20200119.1650.006.html. Xiang bin, Miao weipao, Li Chun, et al. Study on the influence of dynamic gurney flap on the performance of vertical axis wind turbine[J]. China Mechanical Engineering, [2020-01-20] http://kns.cnki.net/kcms/detail/42.1294.th.20200119. 1650.006.html. (in Chinese with English abstract)

      [17]張旭,李召暄,李偉. 多種載荷作用下H 型垂直軸風(fēng)力機(jī)葉片的結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):83-91. Zhang Xu, Li Zhaoxuan, Li Wei. Structural optimization of H-type vertical axis wind turbine blade under various loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 83-91. (in Chinese with English abstract)

      [18]劉陳,運(yùn)洪祿,呂續(xù)艦. 基于CFD的二維垂直軸風(fēng)力機(jī)性能計(jì)算[J]. 太陽(yáng)能學(xué)報(bào),2020,41(2):144-151. Liu Chen, Yun Honglu, Lu Xujian. Performance calculation of two-dimensional vertical axis wind turbine based on CFD[J]. Acta Solar Energy Sinica, 2020, 41 (2): 144-151. (in Chinese with English abstract)

      [19]李錦義. 垂直軸風(fēng)力機(jī)翼型與葉片空氣動(dòng)力穩(wěn)定性分析與優(yōu)化[D]. 南通:南通大學(xué),2018. Li Jinyi. Aerodynamic Stability Analysis and Optimization of Vertical Axis Wind Turbine Airfoil and Blade[D]. Nantong: Nantong University, 2018. (in Chinese with English abstract)

      [20]張健宇. H型垂直軸風(fēng)力機(jī)數(shù)值模擬及葉型優(yōu)化[D]. 武漢:華中科技大學(xué),2011. Zhang Jianyu. Numerical Simulation and Blade Profile Optimization of H-type Vertical Axis Wind Turbine[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese with English abstract)

      [21]甘洋. H型垂直軸風(fēng)力發(fā)電機(jī)氣動(dòng)性能優(yōu)化研究[D]. 重慶:重慶大學(xué),2017. Gan Yang. Aerodynamic Performance Optimization of H-type Vertical Axis Wind Turbine[D]. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)

      [22]劉小紅. 變槳距垂直軸風(fēng)力機(jī)氣動(dòng)性能分析[D]. 哈爾濱:哈爾濱工程大學(xué),2012. Liu Xiaohong. Aerodynamic Performance Analysis of Variable Pitch Vertical Axis Wind Turbine[D]. Harbin: Harbin Engineering University, 2012. (in Chinese with English abstract)

      [23]McLaren K W. A Numerical and Experimental Study of Unsteady Loading of High Solidity Vertical Axis Wind Turbines[D]. Hamilton: McMaster University, 2011.

      [24]Bedon G ,Betta S D, Benini E. Performance-optimized airfoil for darrieus wind turbines[J]. Renewable Energy, 2016, 94(aug.):328-340.

      [25]施法中. NURBS插值曲線(一)[J]. 計(jì)算機(jī)工程,1994(S1):522-527. Shi Fazhong. NURBS interpolation curve(1)[J]. Computer Engineering, 1994(S1): 522-527. (in Chinese with English abstract)

      [26]Wang Q , Wang J , Sun J , et al. Optimal design of wind turbine airfoils based on functional integral and curvature smooth continuous theory[J]. Aerospace Ence & Technology, 2016, 55(aug.):34-42.

      Optimized design of H-VAWT blade airfoils profile considering range of angle of attack

      Wang Quan, Gan Di, Yang Shuyi, Wang Huanjun

      (,,430068)

      Wind energy, as a green and renewable energy, has attracted increasing attention from all over the world. Currently, rapidly developed wind turbine can transfer wind energy into electricity power. A H-type vertical axis wind turbine (VAWT) has become a research focus to design new types of VAWT with high aerodynamic performance, due to its simple structure, easy installation, high adaptability, no need of yaw device, and feasible blade manufacturing. Therefore, H-type VAWT has become a focus on how to design new VAWT with high aerodynamic performance. The aerodynamic performance design of VAWT has very important influence on the power characteristics of wind station. Most previous studies on VAWTs were reported to predict accurately the energy efficiency and the effects of parameters, such as the number of blades, solidity, chord length, and pitch angle, on power coefficients using CFD simulation. As to the airfoil optimization design of H-type VAWT blade, most airfoils profile were designed based on an angle of attack or narrow range of angles of attack when determining the optimal angle of attack. In order to solve the problem that the airfoil profile of vertical axis wind turbine is designed under a single angle of attack, without considering the condition of large variation range of blade angle of attacks when the vertical axis wind turbine is working. In this study, an optimization design was proposed for the airfoil profile of VAWT blade under a certain angle of attacks. Firstly, the aerodynamic shape of blade airfoil in a VAWT was expressed in the combination of class function and B-spline function. As such, the optimal objective function of blade airfoil was set to the sum of tangential force coefficients under a certain angle of attacks. a NACA-0015 symmetric airfoil was chosen as the original airfoil when considering three ranges of angles of attack. Furthermore, the particle swarm optimization (PSO) and the aerodynamic performance prediction RFOIL software were used to optimize the aerodynamic shape of H-type VAWT blade. Finally, the optimized VAWT blade airfoil was addressed over the initial airfoil, particularly on the performance for utilization ratio of wind energy, torque coefficient, and vorticity distribution. The results showed that compared with the original vertical axis wind turbine, the new vertical axis wind turbine blade can effectively improve the torque coefficient and power coefficient of the vertical axis wind turbine. To be exactly, when the tip speed ratio is 1.9, the power coefficient reaches the peak which the maximum power coefficient of the new vertical axis wind turbine was 0.362 increased by 8.45% comparing to the original vertical axis wind turbine. In addition, the wake of the new H-type VAWT was effectively improved, which attributed to the new airfoil that could effectively suppressed the vortex shedding on the blade surface. This study has a good reference for how to the design the vertical axis wind turbine blade airfoil profile with high performance.

      wind turbine; optimization; blade; integrated function; power coefficient; moment coefficient.

      汪泉,甘笛,楊書(shū)益,等. 考慮攻角范圍的垂直軸風(fēng)力機(jī)葉片翼型優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):38-45.doi:10.11975/j.issn.1002-6819.2020.24.005 http://www.tcsae.org

      Wang Quan, Gan Di, Yang Shuyi, et al. Optimized design of H-VAWT blade airfoils profile considering range of angle of attack[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 38-45. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.005 http://www.tcsae.org

      2020-09-09

      2020-12-09

      國(guó)家自然科學(xué)基金項(xiàng)目(51975190)

      汪泉,博士,副教授,主要研究方向:機(jī)械系統(tǒng)優(yōu)化設(shè)計(jì)、風(fēng)力發(fā)電機(jī)葉片關(guān)鍵技術(shù)和機(jī)器人技術(shù)。Emaile:quan_wang2003@163.com

      10.11975/j.issn.1002-6819.2020.24.005

      TM315

      A

      1002-6819(2020)-24-0038-08

      猜你喜歡
      垂直軸風(fēng)力機(jī)攻角
      垂直軸風(fēng)力機(jī)主軸直徑對(duì)氣動(dòng)性能的影響
      風(fēng)標(biāo)式攻角傳感器在超聲速飛行運(yùn)載火箭中的應(yīng)用研究
      基于UIOs的風(fēng)力機(jī)傳動(dòng)系統(tǒng)多故障診斷
      大攻角狀態(tài)壓氣機(jī)分離流及葉片動(dòng)力響應(yīng)特性
      伸縮葉片式垂直軸風(fēng)機(jī)葉輪的數(shù)值仿真
      附加攻角效應(yīng)對(duì)顫振穩(wěn)定性能影響
      民用飛機(jī)攻角傳感器安裝定位研究
      大型風(fēng)力機(jī)整機(jī)氣動(dòng)彈性響應(yīng)計(jì)算
      小型風(fēng)力機(jī)葉片快速建模方法
      并網(wǎng)垂直軸風(fēng)力發(fā)電機(jī)組的大型化技術(shù)研究
      枣强县| 淳化县| 靖边县| 海林市| 聂荣县| 安泽县| 泾源县| 大邑县| 正宁县| 明光市| 大方县| 原平市| 庆安县| 辰溪县| 蓝田县| 平度市| 溧阳市| 苍梧县| 措勤县| 牡丹江市| 南开区| 天等县| 太湖县| 营山县| 盐城市| 延边| 且末县| 阳朔县| 阿克陶县| 涟源市| 精河县| 屏东县| 布尔津县| 大港区| 泊头市| 资兴市| 南木林县| 伊宁市| 游戏| 阿勒泰市| 湘潭县|