郄志紅,劉 輝,吳鑫淼,冉彥立
旋流式魚道的構(gòu)建與水力特性分析
郄志紅,劉 輝,吳鑫淼,冉彥立
(河北農(nóng)業(yè)大學(xué)城鄉(xiāng)建設(shè)學(xué)院,保定 071001)
為增強(qiáng)過(guò)魚設(shè)施的蜿蜒性和自然性,該文提出了一種采用曲線型邊壁和導(dǎo)流坎的旋流式魚道結(jié)構(gòu)。首先通過(guò)模型試驗(yàn)得到了魚道在不同工況下魚道內(nèi)兩側(cè)邊壁水流的沿壁沿程水深以及水流流態(tài),觀察了過(guò)魚效果,驗(yàn)證了數(shù)值計(jì)算的準(zhǔn)確性,通過(guò)數(shù)值計(jì)算進(jìn)一步分析了旋流式魚道的表面流速、近底流速及關(guān)鍵橫斷面流速分布。結(jié)果表明:魚道內(nèi)形成的旋流蜿蜒曲折,流態(tài)豐富。過(guò)魚通道內(nèi)主流區(qū)流速均不大于0.84 m/s,滿足過(guò)魚要求,過(guò)魚對(duì)象可以在該魚道內(nèi)順利上溯,主流兩側(cè)的緩流或回流區(qū)可為魚類休息之用,說(shuō)明了魚道體型的合理性。該文提出的魚道豐富了魚道的形式,對(duì)今后類似魚道的設(shè)計(jì)和建設(shè)具有一定的指導(dǎo)意義。
數(shù)值分析;流態(tài);流速;旋流式;魚道
魚道是一種保護(hù)生物多樣性、保障魚類順利上溯下游的專用設(shè)施[1-5]。傳統(tǒng)魚道結(jié)構(gòu)一般有豎縫式、丹尼爾式、池堰式、涵洞式、組合式等形式[6-7],其體型構(gòu)造和尺寸常常通過(guò)模型試驗(yàn)或數(shù)值模擬確定。例如,Rajaratnam等[8-11]通過(guò)室內(nèi)模型試驗(yàn)及野外觀測(cè),研究了豎縫式魚道的水流流態(tài)以及池室的底坡坡度、長(zhǎng)寬比與水流流態(tài)的關(guān)系等問(wèn)題。徐體兵等[12-14]各自對(duì)豎縫式魚道的結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì)。佟雪豐等[15]研究了丹尼爾式魚道水流的紊動(dòng)特性。Yagci等[16-17]分別對(duì)池堰式魚道水力特性進(jìn)行了試驗(yàn)和理論研究。Magura[18]對(duì)環(huán)形波紋鋼管涵洞式魚道進(jìn)行了模型試驗(yàn)研究。黃明海[19]對(duì)豎縫和潛孔組合式魚道進(jìn)行了研究。從傳統(tǒng)魚道的實(shí)際運(yùn)行看,國(guó)內(nèi)外雖然不乏成功的魚道工程,也有不少魚道建成后過(guò)魚效果不佳。如洋塘魚道自1987年至今,一直處于停運(yùn)、廢棄狀態(tài)[20]。因此,不少學(xué)者提出了一些近自然型的魚道。如日本學(xué)者根據(jù)溪流構(gòu)造建設(shè)的近自然迂回水路魚道和早瀨狀固床緩斜面魚道等[21]。孫雙科等[22]闡述了近自然魚道的設(shè)計(jì)方法和理念等。李廣寧等[23]引入水生植物元素,提出一種仿自然魚道并進(jìn)行了過(guò)魚試驗(yàn)。郄志紅等[24]將中國(guó)古代哲學(xué)思想與工程學(xué)相結(jié)合,提出了一種基于“道法自然”理念的的太極式魚道,通過(guò)池室中的太極圓盤和側(cè)壁上的八卦爻條削弱水流動(dòng)能,形成多態(tài)水流以提高多種魚類洄游的適應(yīng)性。
綜上,目前人們對(duì)魚道的研究尚不充分,故《水利水電工程魚道設(shè)計(jì)導(dǎo)則》[25]中建議魚道設(shè)計(jì)宜進(jìn)行水工模型試驗(yàn)。近自然型魚道更是需要不斷優(yōu)化和革新。太極式魚道的太極圓盤直接采用太極圖中的陰陽(yáng)魚形,起到了良好的消能作用,但對(duì)池室內(nèi)水流的陰陽(yáng)變化作用未能充分顯現(xiàn)。本文提出一種改進(jìn)型式旋流式魚道,通過(guò)物理模型試驗(yàn)和數(shù)值模擬分析其水力特性,以期優(yōu)化結(jié)構(gòu)并充分體現(xiàn)太極效果,提高過(guò)魚能力。
旋流式魚道的水池邊壁呈弧線狀,水池之間由反向弧面平滑連接,與蜿蜒形河道相似。魚道斷面的束窄和擴(kuò)張使水流從急流到緩流的變化過(guò)程中通過(guò)水躍消能,降低流速。順?biāo)鞣较騼A斜設(shè)置的導(dǎo)流坎引導(dǎo)水流,借助弧形邊壁形成旋流。池室內(nèi)流速場(chǎng)互相摩擦、碰撞進(jìn)行二次消能,從而增強(qiáng)消能效果,增加水深。與太極式魚道相比,省去了太極魚道中太極圓盤,節(jié)約投資的同時(shí),池室內(nèi)水流呈現(xiàn)急緩、深淺的明顯分區(qū)特征,可使陰陽(yáng)效果凸顯,豐富水流流態(tài)。其彎曲的逆流區(qū)可引導(dǎo)魚類上溯洄游,低流速區(qū)可為魚類提供休息場(chǎng)所,可提高過(guò)魚能力。
旋流式魚道組成主要包括魚道進(jìn)口、魚道出口、休息室、池室。池室是魚道的基本結(jié)構(gòu)單元。旋流式魚道結(jié)構(gòu)的概念圖和平面布置如圖1所示。
圖1 旋流式魚道結(jié)構(gòu)和平面布置簡(jiǎn)圖
通過(guò)數(shù)值模擬計(jì)算與物理模型試驗(yàn)結(jié)合的方式,探究旋流式魚道在典型工況中的水力學(xué)特性。通過(guò)物理模型試驗(yàn)測(cè)量沿曲線型池壁的水深變化與水流流態(tài);通過(guò)CFD數(shù)值模擬獲取完整流態(tài)分布和魚道內(nèi)不同斷面的流速場(chǎng)。通過(guò)物理模型試驗(yàn)得出的流態(tài)和部分水深數(shù)據(jù)驗(yàn)證數(shù)值模型和參數(shù)選取的正確性。
2.1.1 物理模型的設(shè)計(jì)
物理模型依據(jù)魚道設(shè)計(jì)導(dǎo)則[25]和水力設(shè)計(jì)基本要點(diǎn)[26]制作,根據(jù)重力相似準(zhǔn)則確定模型具體尺寸。尺寸如下:?jiǎn)沃~道內(nèi)寬20 cm,外寬22 cm。單個(gè)池室(即相鄰埡口間距)長(zhǎng)28 cm,寬20 cm,深15 cm。埡口寬為4 cm,坡度為10%,魚道底板厚2 cm,弧形邊壁厚1 cm。上下游水位差16.14 cm。蓄水池內(nèi)安裝2臺(tái)潛水泵為魚道系統(tǒng)供水,上層布置泄水孔調(diào)節(jié)上游水位。試驗(yàn)裝置見圖2。
圖2 試驗(yàn)裝置
2.1.2 試驗(yàn)方案
模型制作完成后進(jìn)行過(guò)水試驗(yàn),用水位測(cè)針量取測(cè)點(diǎn)的水深。測(cè)量的起點(diǎn)坐標(biāo)設(shè)置在距休息室0.15 m斷面位置處。因?yàn)轸~道結(jié)構(gòu)的非對(duì)稱性,測(cè)點(diǎn)選在魚道兩側(cè)邊壁,具體測(cè)點(diǎn)詳見圖3a。首先,進(jìn)行無(wú)導(dǎo)流坎時(shí)(以下稱初始工況)的過(guò)水試驗(yàn),從測(cè)點(diǎn)1開始依次測(cè)量?jī)蓚?cè)池壁各點(diǎn)水深;其次,在模型內(nèi)安裝不同尺寸的導(dǎo)流坎,導(dǎo)流坎安裝在埡口處,偏轉(zhuǎn)角度為33°,導(dǎo)流坎具體尺寸:長(zhǎng)4 cm,寬0.3 cm,高度為變量。分別進(jìn)行導(dǎo)流坎高度=2 cm(簡(jiǎn)稱工況1)和高度=3 cm(簡(jiǎn)稱工況2)時(shí)的過(guò)水試驗(yàn),從測(cè)點(diǎn)1開始依次測(cè)量魚道內(nèi)兩側(cè)邊壁各點(diǎn)水深。為節(jié)省篇幅,圖3b以3個(gè)池室展示3種不同工況,而試驗(yàn)時(shí)3個(gè)池室為同種工況。
圖3 測(cè)點(diǎn)位置與典型工況示意
2.2.1 數(shù)學(xué)模型
根據(jù)物理模型(初始工況、工況1、工況2),建立旋流式魚道數(shù)學(xué)模型,使用計(jì)算流體力學(xué)軟件對(duì)流場(chǎng)進(jìn)行數(shù)值模擬。計(jì)算模型選擇標(biāo)準(zhǔn)湍流模型,選擇VOF方法模擬自由液面。使用FlowSight對(duì)計(jì)算結(jié)果進(jìn)行處理,得到水力特性圖。
2.2.2 控制方程
采用RNG-紊流方程,控制方程包括連續(xù)方程(1)、Navier-Stokes()方程(2)、湍動(dòng)能方程(3)與湍動(dòng)能耗散率方程(4)[27-29]:
2.2.3 邊界條件
取魚道上下游方向?yàn)檩S方向,水池橫向?yàn)檩S,魚道進(jìn)口斷面(=0)處為坐標(biāo)原點(diǎn)。為使上游來(lái)流平穩(wěn),在=0~0.10 m之間為平底坡。進(jìn)口斷面初始水位18.14 cm,底板高程15.14 cm。魚道的進(jìn)水口、出水口均設(shè)為壓力邊界條件,頂部邊界設(shè)定為壓力邊界,相對(duì)壓強(qiáng)為0,其他設(shè)定成固壁邊界。
2.2.4 網(wǎng)格劃分設(shè)置
利用自動(dòng)劃分網(wǎng)格功能(auto mesh)處理網(wǎng)格,模型整體劃分范圍:方向0~143 cm,方向0~22 cm,方向0~30 cm,以0.22 cm×0.22 cm×0.22 cm網(wǎng)格單元?jiǎng)澐帧?/p>
3.1.1 過(guò)水試驗(yàn)結(jié)果
過(guò)水試驗(yàn)測(cè)定2個(gè)指標(biāo):水流流態(tài)、水深變化。潛水泵進(jìn)行循環(huán)供水,調(diào)整上游設(shè)置的泄水孔使進(jìn)水口水位保持穩(wěn)定。過(guò)水試驗(yàn)圖片見圖4。
圖4 過(guò)水試驗(yàn)
初始工況中,埡口束窄使過(guò)流水位涌高形成急流,池室擴(kuò)張使水流從急流過(guò)度至緩流,局部水面突然躍起,形成水躍,池室內(nèi)水位由淺及深。水躍上部回旋翻滾,參入大量氣泡,旋滾之下是擴(kuò)散的主流。表層翻滾區(qū)域和底層主流區(qū)水體質(zhì)點(diǎn)相互摻雜,消除能量,所以水流整體起伏波動(dòng)劇烈。工況1、2中仍有水躍現(xiàn)象,但導(dǎo)流坎使水躍轉(zhuǎn)移至池室一側(cè),將水流紊動(dòng)劇烈變化控制在池室右側(cè)及邊壁,產(chǎn)生較大的能量損失,而左側(cè)水流紊動(dòng)相對(duì)較小。水流在池室內(nèi)形成旋流,回流至低流速區(qū)的水體借助弧形池壁轉(zhuǎn)向,一部分與主流相悖,降低流速;另一部分融入主流,流向下級(jí)池室。
比較3個(gè)工況的兩側(cè)沿壁沿程水深(圖5),曲線趨勢(shì)整體保持一致。最大水深均分布在池室后半部分及近埡口的池壁處,初始工況最大水深相對(duì)較低。最淺水深由無(wú)導(dǎo)流坎時(shí)的1 cm增至加入導(dǎo)流坎后的2.4 cm。加坎后,上層水流雖然仍可以漫過(guò)導(dǎo)流坎進(jìn)入池室,但池室左側(cè)最淺水深比右側(cè)高0.5 cm左右,水深增長(zhǎng)更平緩。
圖5 3種工況中的測(cè)量水深
3.1.2 過(guò)魚試驗(yàn)結(jié)果
試驗(yàn)魚為草魚幼魚,草魚為半洄游性魚類。研究表明[30],在(28±1)℃水溫下,體長(zhǎng)在5.0~15.0 cm之間的草魚幼魚臨界游泳速度范圍是0.68~1.0 m/s。闡述3種工況的試驗(yàn)情況。
在進(jìn)行初始工況時(shí),將試驗(yàn)魚置于池室3中,適應(yīng)10 min,撤去攔魚柵觀察。試驗(yàn)魚沿流速較大一側(cè)靠壁向上游動(dòng),自池室3游至池室1后被主流沖回池室3中。說(shuō)明魚道中流速過(guò)大,需進(jìn)一步減小水流流速。
在工況1與工況2中(加入導(dǎo)流坎后),試驗(yàn)魚基本會(huì)靠池壁向上游動(dòng),能夠通過(guò)埡口游至上游休息室內(nèi)。通過(guò)池室期間,部分試驗(yàn)魚在池室左側(cè)進(jìn)行了休息調(diào)整。試驗(yàn)說(shuō)明,導(dǎo)流坎將池室流態(tài)和流速進(jìn)行了有效的分區(qū),減速效果明顯,降低了魚類上溯的難度。
為驗(yàn)證數(shù)值模擬的準(zhǔn)確性,將物理模型試驗(yàn)結(jié)果與數(shù)值計(jì)算進(jìn)行驗(yàn)證,對(duì)比魚道左右壁沿程水深。3種工況下沿曲線型邊壁的水深變化測(cè)量值與模擬水深值如圖6所示。初始工況中的水流為對(duì)稱結(jié)構(gòu),故左右壁水深變化基本相同。模擬的計(jì)算值和測(cè)量值表現(xiàn)出相似的變化趨勢(shì)。所有工況下,測(cè)量值和計(jì)算值的相對(duì)誤差最大值約14.2%,比允許誤差值15%低[31]。
圖6 典型工況水深模擬與實(shí)測(cè)值對(duì)比
3.3.1表面流速分布
圖7a和圖7b分別給出了工況1和工況2的自由表面流速分布情況。2種工況中均有明顯的流速分區(qū)現(xiàn)象,水流多態(tài)。主流從埡口流出后,被導(dǎo)流坎導(dǎo)向池室右側(cè),然后沿弧形池壁流向下級(jí)池室。池壁改變了部分水流方向,一部分水流由于池壁作用和水流的切應(yīng)力形成旋流,沿弧線軌跡流向池室左側(cè)區(qū)域;另一部分形成與主流方向相反的反向流速,利于降低流速。工況1、2的主流區(qū)與低流速區(qū)分界明顯,均以近靜水區(qū)域分割,二者形似太極圖,兩區(qū)如陰陽(yáng)魚環(huán)抱其中。不同的是,工況1中近靜水域與池室中心線相交角度45°,工況2中相交角度為60°,近靜水區(qū)域面積比工況1中更大。受主流偏轉(zhuǎn)影響,表層流速范圍0.11~0.84 m/s,最大流速低于0.90 m/s,出現(xiàn)在出埡口處及導(dǎo)流坎后方,最大流速區(qū)面積較小。池室內(nèi)主流區(qū)沿池室中心線非對(duì)稱分布,約占池室面積1/2,流速順?biāo)鞣较虺尸F(xiàn)先增大再減小后又增大的規(guī)律,流速范圍為0.21~0.84 m/s,最大流速0.84 m/s,出現(xiàn)在埡口后端。非主流區(qū)分布在池室左側(cè)及池室中心,面積較大,流速范圍低于0.21 m/s,流向與主流接近相反。導(dǎo)流坎后方有低速回流區(qū),池室右側(cè)存在反向流速水流,反向流速對(duì)主流有減速的作用。低流速區(qū)為魚類提供了休息區(qū)域。主流區(qū)和非主流區(qū)之間夾著近靜水區(qū)域,流速低于0.11 m/s,形似條形。對(duì)比池室1和2內(nèi)流場(chǎng),出埡口處水流最大流速在池室2內(nèi)由0.84 m/s減小至0.74 m/s,且高流速區(qū)域縮小,減速效果明顯。
3.3.2臨近底坡流速分布
選擇魚道底板上表面,平行于底坡的剖面,對(duì)臨近底坡的流速場(chǎng)進(jìn)行分析(圖7c和圖7d)。工況1、2的流速場(chǎng)整體分布規(guī)律大致相同:臨底水流多態(tài),流速分區(qū)明顯。與表層水流相比,主流區(qū)擴(kuò)大,主要分布在埡口段、池室右半部分及前半部分,約占池室面積3/4。主流區(qū)流速范圍0.20~0.60 m/s,最大流速0.60 m/s,出現(xiàn)在導(dǎo)流坎附近和池室前端。埡口段的臨底流速明顯低于表面流速,但池室內(nèi)臨底流速略高于表面流速,或持平,原因是池內(nèi)無(wú)輔助消能工進(jìn)行底流消能。低流速區(qū)位于兩側(cè)近池壁處和導(dǎo)流坎后面,左側(cè)區(qū)域較大,流速小于0.20 m/s。工況2與工況1相比,池室主流區(qū)面積縮小,低流速區(qū)面積達(dá)到池室面積的1/3。流速高于0.60 m/s的區(qū)域明顯減小,證明導(dǎo)流坎的高度對(duì)臨底流速場(chǎng)有一定的影響。
圖7 不同工況下表面流和臨底流速分布
3.3.3 橫斷面流速分布
為了進(jìn)一步分析水池內(nèi)的流速分布,選取橫坐標(biāo)=0.54 m與=0.82 m處的橫斷面,如測(cè)點(diǎn)位置圖3a所示。工況1、2流速分布大致相同,主流區(qū)分布在斷面左側(cè),低流速區(qū)分布在斷面右側(cè)(圖8)。
圖8 工況1、2時(shí)的橫斷面流速分布
橫斷面=0.54 m處流速分布如圖8a所示,工況1的斷面流速在0~0.41 m/s之間,高流速區(qū)在斷面左側(cè)底部位置。工況2斷面流速范圍0~0.45 m/s,最大流速0.45 m/s,分布在斷面左側(cè)底部。工況1中流速≥0.14 m/s的區(qū)域約占橫斷面1/2,工況2中流速≥0.14 m/s的區(qū)域約占橫斷面3/4,說(shuō)明在橫斷面=0.54 m處,工況1的流速場(chǎng)分區(qū)明顯,低流速區(qū)較寬闊,斷面上層流速更低。橫斷面= 0.82 m處流速分布如圖8b所示,2種工況的主流區(qū)都分布在斷面左側(cè),工況2左側(cè)主流區(qū)相對(duì)擴(kuò)大。工況1斷面流速范圍0~0.38 m/s,流速≥0.25 m/s區(qū)域位于斷面左側(cè)底部;流速≤0.13 m/s的低流速區(qū)域約占橫斷面1/2。工況2斷面流速范圍0~0.38 m/s,流速≥0.25 m/s區(qū)域在池室斷面左側(cè)底部和頂部,高流速區(qū)域增大;流速≤0.13 m/s的低流速區(qū)域約占橫斷面1/3。不同工況下橫斷面流速場(chǎng)分布及最大流速有差異。同種工況下不同斷面的流態(tài)多樣化,與池室1相比,池室2的斷面最大流速衰減9%~20%,流速降低,過(guò)魚阻力明顯降低。
旋流式魚道是對(duì)太極式魚道的進(jìn)一步改進(jìn),在池室內(nèi)省去太極魚道中太極圓盤,靠導(dǎo)流坎促成池室內(nèi)旋流。通過(guò)數(shù)值模擬和物理模型試驗(yàn)研究,得出以下結(jié)論:
1)導(dǎo)流坎的引流作用顯著,水躍偏移至池室右側(cè),將水流紊動(dòng)劇烈變化控制在池室右側(cè)及池室邊壁。初始工況最大水深相比其他工況較低;右壁最淺水深由無(wú)導(dǎo)流坎時(shí)的1 cm增至加入導(dǎo)流坎后的2.4 cm。
2)旋流式魚道表層流速場(chǎng)呈現(xiàn)明顯的分區(qū)現(xiàn)象,水流多態(tài)。池室內(nèi)主流區(qū)(流速變化范圍0.21~0.84 m/s,最大流速0.84 m/s)和非主流區(qū)(0.21 m/s以下的低流速區(qū)和回流區(qū))陰陽(yáng)環(huán)抱,分區(qū)明顯。主流區(qū)向池室右側(cè)偏轉(zhuǎn),非主流區(qū)流速區(qū)域?qū)掗?,適合洄游魚類中途休憩。
3)池室2表面最大流速低于池室1,高流速區(qū)域縮小,減速效果明顯;池室內(nèi)臨底流速場(chǎng)分區(qū)明顯,主流區(qū)面積比表面流速場(chǎng)大,但流速低于表面流速場(chǎng)。
4)通過(guò)對(duì)不同位置橫斷面流速場(chǎng)分析,主流區(qū)主要位于池室右側(cè)區(qū)域,低流速區(qū)分布在池室左側(cè)區(qū)域,分區(qū)明顯。=0.54 m橫斷面處,斷面流速范圍0~0.45 m/s;=0.82 m橫斷面處,斷面流速范圍0~0.38 m/s,說(shuō)明水流得到進(jìn)一步優(yōu)化調(diào)整,流速減小,過(guò)魚阻力降低。
旋流式魚道作為一種近自然魚道,具有小流量、大水深、低流速、大坡降和小工程量的特點(diǎn),但其相關(guān)研究還處于起步階段。影響水流水力特性因素眾多,旋流式魚道的細(xì)部結(jié)構(gòu)需進(jìn)一步優(yōu)化。例如本文只研究了淹沒(méi)式導(dǎo)流坎,未進(jìn)行全擋式導(dǎo)流坎試驗(yàn)。導(dǎo)流坎的結(jié)構(gòu)形式、旋轉(zhuǎn)機(jī)制,其他消能工的增設(shè)以及魚道最佳坡降等仍是今后要考慮的問(wèn)題。
[1]李捷,李新輝,潘峰,等. 連江西牛魚道運(yùn)行效果的初步研究[J]. 水生態(tài)學(xué)雜志,2013,34(4):53-57.
Li Jie,Li Xinhui,Pan Feng,et al. Preliminary study on the operating effect of Xiniu fishway in Lianjiang River[J]. Journal of Hydroecology, 2013,34(4):53-57. (in Chinese with English abstract)
[2]南京水利科學(xué)研究所. 魚道[M]. 北京:電力工業(yè)出版社,1982.
[3]王珂,劉紹平,段辛斌,等. 崔家營(yíng)航電樞紐工程魚道過(guò)魚效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):184-189.
Wang Ke, Liu Shaoping, Duan Xinbin, et al. Fishway effect of Cuijiaying navigation-power junction project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 184-189. (in Chinese with English abstract)
[4]FAO. Fish Passes:Design, Dimensions and Monitoring[M]. Rome: The Food and Agriculture Organization of the United Nations, 2002.
[5]曹慶磊,楊文俊,周良景. 國(guó)內(nèi)外過(guò)魚設(shè)施研究綜述[J].長(zhǎng)江科學(xué)院院報(bào),2010,27(5):39-43.
Cao Qinglei, Yang Wenjun, Zhou Liangjing. Review on study of fishery facilities at home and abroad[J]. Journal of Yangtze River Scientific Research Institute,2010, 27(5): 39-43. (in Chinese with English abstract)
[6]王興勇,郭軍. 國(guó)內(nèi)外魚道研究與建設(shè)[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2005(3):222-228.
Wang Xingyong, Guo Jun. Brief review on research and construction of fish-ways at home and abroad[J]. Journal of China Institute of Water Resources and Hydropower Research, 2005(3): 222-228. (in Chinese with English abstract)
[7]閆濱,王鐵良,劉桐渤. 魚道水力特性研究進(jìn)展[J]. 長(zhǎng)江科學(xué)院院報(bào),2013,30(6):35-42.
Yan Bin, Wang Tieliang, Liu Tongbo. Research Progress of Fishway's Hydraulic Characteristics in China and Abroad[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(6): 35-42. (in Chinese with English abstract)
[8]Rajaratnam N, Vinne G V, Katopodis C. Hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 1986, 112(10): 909-927.
[9]Rajaratnam N, Katopadis C, Paccagnan R. Field studies of fishways in Albeta[J]. Canadian Journal of Civil Engineering, 1992, 19(4): 627-638.
[10]Liu M, Rajaratnam N, Zhu D Z. Mean flow and turbulence structure in vertical slot fishway[J]. Journal of Hydraulics Engineering, 2006, 132(8): 765-777.
[11]Wu S, Rajaratnam N, Katopodis C. Structure of flow in vertical slot fishway[J]. Journal of Hydraulics Engineering, 1999, 125(4): 351-360.
[12]徐體兵,孫雙科. 豎縫式魚道水流結(jié)構(gòu)的數(shù)值模擬[J]. 水利學(xué)報(bào),2009,40(11):1386-1391.
Xu Tibing, Sun Shuangke. Numerical simulation of the flow structure in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2009, 40(11): 1386-1391. (in Chinese with English abstract)
[13]張國(guó)強(qiáng),孫雙科. 豎縫寬度對(duì)豎縫式魚道水流結(jié)構(gòu)的影響[J]. 水力發(fā)電學(xué)報(bào),2012,31(1):151-156.
Zhang Guoqiang, Sun Shuangke. Effect of slot width on the flow structure of vertical slot fishway[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 151-156. (in Chinese with English abstract)
[14]邊永歡,孫雙科. 豎縫式魚道的水力特性研究[J]. 水利學(xué)報(bào),2013,44(12):1462-1467.
Bian Yonghuan, Sun Shuangke. Study on hydraulic characteristic of flow in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1462-1467. (in Chinese with English abstract)
[15]佟雪豐,李衛(wèi)明,劉德富,等. 丹尼爾式魚道內(nèi)水流紊動(dòng)特性試驗(yàn)研究[J]. 水電能源科學(xué),2016,34(2):94-97,128.
Tong Xuefeng, Li Weiming, Liu Defu, et al. Test research on turbulence dynamic characteristics of water flow in daniel fishway[J]. Water Resources and Power, 2016, 34(2): 94-97, 128. (in Chinese with English abstract)
[16]Yagci O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure[J]. Ecological Engineering, 2009, 36(1): 36-46.
[17]Ead S A, Katopodis C, Sikora G J, et al. Flow regimes and structure in pool and weir fishways[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 379-390.
[18]Magura C R. Hydraulic Characteristics of Embedded Circular Culverts[D]. Winnipeg, Manitoba, Canada: Department of Civil Engineering, University of Manitoba, 2007.
[19]黃明海. 豎縫-潛孔組合式魚道進(jìn)魚口渠段三維紊流數(shù)值模擬研究[C]//全國(guó)水力學(xué)與水利信息學(xué)學(xué)術(shù)大會(huì).2009:7.
[20]郭堅(jiān),芮建良. 以洋塘水閘魚道為例淺議我國(guó)魚道的有關(guān)問(wèn)題[J]. 水力發(fā)電,2010,36(4):8-10.
Guo Jian, Rui Jianliang. Question and suggestion on fishway construction in China: Lesson learned from the operation of Yangtang lock fishway[J]. Water Power, 2010, 36(4): 8-10. (in Chinese with English abstract)
[21]張?jiān)F? 日本:茶道之邦話“魚道”[J].中國(guó)三峽,2009(7):66-71.
[22]孫雙科,張國(guó)強(qiáng). 環(huán)境友好的近自然型魚道[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2012,10(1):41-47.
Sun Shuangke, Zhang Guoqiang. Environment-friendly fishway in close-to-nature types[J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(1): 41-47. (in Chinese with English abstract)
[23]李廣寧,孫雙科,郭子琪,等. 仿自然魚道水力及過(guò)魚性能物理模型試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(9):147-154.
Li Guangning, Sun Shuangke, Guo Ziqi, et al. Physical model test on hydraulic characteristics and fish passing performance of nature-like fishway[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 147-154. (in Chinese with English abstract)
[24]郄志紅,郭麗云,吳鑫淼,等. 太極式魚道水力特性試驗(yàn)研究及數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):182-188.
Qie Zhihong, Guo Liyun, Wu Xinmiao, et al. Experimental study and numerical simulation of hydraulic characteristics of Tai Chi fishway[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 182-188. (in Chinese with English abstract)
[25]水利水電工程魚道設(shè)計(jì)導(dǎo)則:SL609-2013[S]. 北京:中國(guó)水利水電出版社,2013.
[26]艾克明. 魚道水力設(shè)計(jì)的基本要點(diǎn)與工程實(shí)例[J]. 水利科技與經(jīng)濟(jì),2012,18(10):82-85.
[27]肖苡辀,王文娥,胡笑濤. 基于FLOW-3D的田間便攜式短喉槽水力性能數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):55-61.
Xiao Yizhou, Wang Wen’e, Hu Xiaotao. Numerical simulation of hydraulic performance for portable short-throat flume in field based on FLOW-3D[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 55-61. (in Chinese with English abstract)
[28]呂宏興,裴國(guó)霞,楊玲霞. 水力學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2002.
[29]王福軍. 計(jì)算流體動(dòng)力學(xué)分析:CFD軟件原理與應(yīng)用[M]. 北京:清華大學(xué)出版社,2004.
[30]龔麗,吳一紅,白音包力皋,等. 草魚幼魚游泳能力及游泳行為試驗(yàn)研究[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2015,13(3):211-216.
Gong Li, Wu Yihong, Bai Yinbaoligao, et al. Experimental study on swimming capability and swimming behavior of juvenile grass carp[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(3): 211-216. (in Chinese with English abstract)
[31]Moriasi D N, Arnold J G, Liew M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the American Society of Agricultural and Biological Engineers (Transactions of the ASABE), 2007, 50(3): 885-900.
Establishment of swirling-flow fishway and analysis of its hydraulic characteristics
Qie Zhihong, Liu Hui, Wu Xinmiao, Ran Yanli
(,071001,)
The structure and flow pattern of traditional fishway are relatively simple, which is usually suitable for specific fish to pass through. However, there are many types of fish to be protected in rivers. Near natural fishway simulates natural form of fish and is expected to improve fish passing efficiency. Therefore, in order to enhance the meandering and naturalness of fish passing facilities, a swirling fishway structure with curved sidewall and diversion bank was proposed in this paper. The side wall of the swirl fishway adopted circular curve, and the contraction area between the chambers was smoothly connected by the reverse circular arc, which made the water flow close to the natural sinuous channel. The swirling fishway was obtained by improving Taiji fishway. Compared to Taiji fishway, it omitted the Taiji disc and was cheaper. At the same time, the water flow in the pond could be rapid and slow, or deep and shallow, highlighting the effect of Yin and Yang and enriching the flow pattern. Through the combination of numerical simulation and physical model test, the hydraulic characteristics of swirling fishway under different working conditions were explored. First of all, through physical model test, the water depth along the wall and the flow pattern distribution of the two sides of the fishway under different working conditions were obtained, and the effect of fish passing was observed. The accuracy and rationality of the numerical calculation were verified by comparing the water depth data obtained from the physical model test and the numerical calculation results. The CFD numerical calculation method was applied to simulate distribution of surface velocity field and internal velocity field that were difficult to be measured by physical model. The free surface flow velocity, the velocity near the bottom slope and the velocity distribution in key cross section of the swirl fishway were further analyzed. According to the design guidelines of fishway, the basic points of hydraulic design and the gravity similarity criteria, the physical test model was established. After the establishment of the physical model, the water flow test under different conditions was carried out, and the water depth of the measuring point was measured by the water level probe. The results showed that the swirling flow in the fishway was zigzag and the flow pattern was rich. The maximum relative error of simulated and measured water depth was 14.2%, less than the allowable value of 15%. The variation trend of the measured and numerical water depth along the wall was approximately the same. It indicated that the simulated method was reliable. The velocity in the main flow area of the fish passage was not higher than 0.84 m/s, meeting the requirements of fish passage. The fish passage object could be traced smoothly in the fish passage. The slow flow or return area on both sides of the main flow could be used for fish rest, which showed the rationality of the fish passage shape. The depth of the shallowest water increased from 1 cm without diversion sill to 2.4 cm with diversion sill. After scarification, although the upper water flow could still overflow the diversion scarp and enter the pool chamber, the shallowest water depth on the left side of the pool chamber was about 0.5 cm higher than that on the right side, and the water depth growth was smaller. The fishway proposed in this paper enriches the form of fishway and can guide design and construction of similar fishways.
numerical analysis; flow pattern; flow velocity; swirling-flow type; fishway
郄志紅,劉輝,吳鑫淼,冉彥立. 旋流式魚道的構(gòu)建與水力特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):119-125.doi:10.11975/j.issn.1002-6819.2020.03.015 http://www.tcsae.org
Qie Zhihong, Liu Hui, Wu Xinmiao, Ran Yanli. Establishment of swirling-flow fishway and analysis of its hydraulic characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 119-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.015 http://www.tcsae.org
2019-09-24
2019-11-04
河北省自然科學(xué)基金項(xiàng)目(E2017204125);河北省水利科研和推廣計(jì)劃項(xiàng)目(2018-29);河北省研究生創(chuàng)新能力培養(yǎng)資助項(xiàng)目(CXZZSS2019057)
郄志紅,教授,博士生導(dǎo)師,研究方向?yàn)樗そY(jié)構(gòu)優(yōu)化與維護(hù)管理。Email:qiezhihong@163.com
10.11975/j.issn.1002-6819.2020.03.015
TV131; S956.3
A
1002-6819(2020)-03-0119-07