張佰清,葛新宇,馬鳳鳴,馬藝超,張士豪,謝加豪
脈沖強光誘變對黑曲霉產果膠酶活力的影響
張佰清,葛新宇,馬鳳鳴,馬藝超,張士豪,謝加豪
(沈陽農業(yè)大學食品學院,沈陽 110866)
脈沖強光技術可應用于微生物誘變育種以及獲得高產菌株。該文采用響應面法確定脈沖強光誘變黑曲霉高產果膠酶的最佳條件,同時探究突變菌株高產果膠酶的酶學性質。結果表明:脈沖強光誘變條件為脈沖電壓2 075 V,脈沖次數36次,脈沖距離5.4 cm。以此工藝參數進行誘變,得到了高產果膠酶的突變菌株L9,與原始菌株相比,其果膠酶活力提高了82.22%±0.18%。突變菌株L9遺傳性能良好,所產果膠酶具有更高的pH穩(wěn)定性和熱穩(wěn)定性。因此,脈沖強光可用于黑曲霉誘變,得到穩(wěn)定性良好的高產果膠酶的突變菌株。
酶;農產品;電場;脈沖強光;誘變;黑曲霉;果膠酶;響應面法
果膠酶[1]是一種能將果膠裂解,使其變成多聚半乳糖醛酸的復合酶,主要用于提高果蔬汁出汁率和果酒澄清處理[2],增加產品風味。目前,食品加工用黑曲霉生產果膠酶,雖然其果膠酶組分較為齊全,但產量較低[3]。人工誘變篩選的黑曲霉能夠提高果膠酶產量,因此,探索新型物理方法,將其應用于黑曲霉誘變育種,以獲得具有穩(wěn)定遺傳性狀的高產菌株是食品工業(yè)的重要研究熱點[4]。
脈沖強光是一種利用瞬間放電以脈沖光形式誘變微生物的新型冷處理技術[5]。目前,脈沖強光逐漸應用于優(yōu)良菌株的誘變選育,具有處理時間短、耗能低[6]、效率高、污染小[7]等優(yōu)點。孟憲軍等[8]利用脈沖強光誘變納塔爾鏈霉菌得到高產納他霉素突變菌株,較原始菌株提高1.6倍。孫欄夢等[9]以啤酒酵母為出發(fā)株,通過脈沖強光抗性篩選得到產雙乙酰含量高、凝聚性強、發(fā)酵速率快的優(yōu)良突變株。張佰清等[10-11]通過脈沖強光誘變乳酸乳球菌和保加利亞乳桿菌,分別得到Nisin高產突變株和高產多糖菌株,提高了菌株發(fā)酵性能。Orcajo等[12-13]研究表明脈沖強光通過改變菌體細胞的核酸結構來引起細胞變異,但DNA修復機制不發(fā)生作用,從而誘導微生物突變[14]。
本試驗以產果膠酶的黑曲霉為研究對象,進行脈沖強光誘變,通過響應面優(yōu)化法確定最優(yōu)誘變條件,初步探究誘變菌株果膠酶的酶學性質,考察脈沖強光作為一種新型誘變技術,應用于黑曲霉誘變的可行性。為脈沖強光作為一種新的誘變技術應用于優(yōu)良菌株誘變提供理論參考。
1.1.1 供試菌株
黑曲霉(CICC40493),沈陽農業(yè)大學生物學院提供。
1.1.2 主要設備
脈沖強光裝置波長范圍在200~1 100 nm,其中紫外光部分占15%~20%,脈沖寬度20s,最大輸入能量644 J,沈陽農業(yè)大學食品學院自制;高壓蒸汽滅菌鍋上海三申器械有限公司;PHS-3C型酸度計;DK-S22恒溫水浴鍋,常州國華科技有限公司;超凈工作臺,上海博訊有限公司;恒溫培養(yǎng)箱,上海一恒科學儀器有限公司;離心機,Sigma 公司。
1.1.3 培養(yǎng)基
斜面培養(yǎng)基:PDA培養(yǎng)基[15]
初篩培養(yǎng)基:果膠5 g/L、NaNO33 g/L、NaCl 1 g/L、MgSO41 g/L、K2HPO4·3H2O 1 g/L、KH2PO40.5 g/L、溴酚藍0.1 g/L、瓊脂粉20 g/L、pH值5.5
發(fā)酵培養(yǎng)基:桔皮粉20 g/L、蛋白胨5 g/L、NaCl 1 g/L、MgSO41 g/L、K2HPO4·3H2O 1 g/L、KH2PO40.5 g/L。
1.2.1 脈沖強光誘變條件的確定
斜面活化好菌株后,將制備的孢子懸液轉移到直徑為9 cm的滅菌培養(yǎng)皿中,放入脈沖強光處理室氙燈正下方,進行脈沖強光照射處理??疾熳罴衙}沖電壓、脈沖次數、脈沖距離和菌液量[16]對菌株致死率和突變菌株胞外果膠酶活力的影響。文獻報道,致死率在70%~80%時,菌株突變性可以保持在較穩(wěn)定的水平[17]。前期單因素試驗結果得到脈沖電壓2 000 V、脈沖次數30次、脈沖距離5 cm為最佳處理條件,菌液量對脈沖處理結果無顯著影響。進而通過最陡爬坡試驗以快速逼近最佳產酶區(qū)域。
式中為對照組平皿上的菌落數;為誘變處理后平皿上的菌落數。
1.2.2 響應面試驗設計
以最陡爬坡試驗的最高響應值點為中心點進行中心組合設計,運用Design-Expert軟件對試驗數據進行回歸擬合[18-19],試驗因素與水平如表1。
表1 響應面試驗自變量因素與水平
1.2.3 高產果膠酶突變菌株的篩選
1)初篩
將適當濃度孢子懸液[20]進行照射處理,取100L孢子懸液涂布于篩選培養(yǎng)基上。30 ℃錫箔紙避光培養(yǎng)3 d,用未處理的孢子液涂布篩選培養(yǎng)基進行對照[21],每組做3個平行。觀察透明圈與菌落直徑的(/)比值,選擇(/)值較大的菌株進行復篩[22]。
2)復篩
將初篩菌株進行液體發(fā)酵,對粗酶液進行果膠酶活力測定[23],選取果膠酶活力高的菌株。
1.2.4 酶活的測定
采用3,5-二硝基水楊酸比色(DNS法)測定[24]。底物為0.4%果膠溶液。酶活力單位(U):在pH值為4.0,45 ℃條件下,每分鐘催化果膠水解生成1mol半乳糖醛酸所需酶量為1個酶活力單位。
1.2.5 突變菌株遺傳穩(wěn)定性實驗
將突變菌株連續(xù)傳代6代,同時進行發(fā)酵培養(yǎng)[25],測定每一代菌株產酶活性,比較其產酶活性變化。
1.2.6 果膠酶酶學性質研究
試驗將菌株發(fā)酵液經離心取上清液為粗酶液,加入(NH4)2SO4飽和度為60%,經冷凍離心取沉淀,溶于緩沖液,4 ℃透析12 h。通過Cellulose DE-52陰離子交換柱層析,收集酶活部分。再經SepHadex G-100凝膠過濾柱層析,二次純化,收集酶活部分。采用SDS-PAGE電泳進行純化結果的驗證。
1)果膠酶最適作用pH值
用醋酸-醋酸鈉緩沖溶液配制pH值分別為3.0、3.5、4.0、4.5、5.0、5.5、6.0和6.5的底物,測定果膠酶在不同pH環(huán)境中的酶活。
2)果膠酶最適作用溫度
將最適pH環(huán)境下的果膠酶活測定體系分別置于30、35、40、45、50、55、60、65 ℃的不同溫度環(huán)境中,測定果膠酶在不同溫度環(huán)境中的酶活。
3)果膠酶的pH穩(wěn)定性
將粗酶液用不同pH值的緩沖液(3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5)處理1 h后與底物反應,在最適條件下測定其酶活,以未經處理的酶液活性為100%,計算相對酶活,分析果膠酶pH穩(wěn)定性。
4)果膠酶的熱穩(wěn)定性
將粗酶液置于不同溫度(40、50、60、70 ℃)恒溫水浴鍋中水浴保溫,每隔20 min取少量酶液迅速在冷水浴中降溫冷卻,測定酶活,以未處理的果膠酶活力以100%計。
1.2.7 數據分析
試驗數據均平行測定3次,測定結果以平均值±標準差(SD)表示,使用SPSS 17.0軟件進行數據分析[26]。
脈沖強光誘變黑曲霉是一個多因素作用的復雜過程,以透明圈與菌落直徑的比值(/)為指標,通過統(tǒng)計分析得出脈沖強光誘變黑曲霉的最佳優(yōu)化條件。前期試驗結果表明,菌液量對(/)值無顯著性影響,因此將脈沖電壓、脈沖次數和脈沖距離作為試驗因素,通過最陡爬坡試驗以快速逼近最佳產酶區(qū)域,最后以最陡爬坡試驗的最高點為中心點進行中心組合設計。運用Design-Expert軟件對試驗數據進行回歸擬合,得出最優(yōu)誘變條件[27-28]。
1)最陡爬坡試驗結果
最陡爬坡試驗是考察某一因素的變化來確定其在試驗中的具體影響,為響應面試驗提供一個合理數據范圍。試驗的設計及結果如表2所示。
表2 最陡爬坡試驗設計及結果
注:/為透明圈與菌落直徑的比值,下同。
Note:is the ratio of transparent circle to colony diameter, the same below.
由表2可知,0+1Δ號試驗組的比值響應值達到最大1.57,之后開始下降。因此,選取此拐點試驗條件作為響應面設計中心點。
2)響應面優(yōu)化試驗結果
利用Design-Expert10軟件設計試驗,進行3因素3水平的Box-Behnken響應面試驗。試驗的設計及結果與方差分析分別如表3、表4所示。
表3 響應面試驗設計及結果
表4 試驗結果方差分析
注:**表示對試驗結果有極顯著影響(<0.01);*表示對試驗結果有顯著性影響(<0.05)。
Note: ** means significant influence on the test results (< 0.01);* means significant impact on test results (< 0.05).
由表3、4可知,菌株的水解圈與菌落直徑比值()對脈沖電壓()、脈沖次數()和脈沖距離()的多元二次回歸方程為:
該模型回歸項極顯著(<0.01),失擬項不顯著(>0.05),決定系數為0.978 9,校正后決定系數0.940 9,說明該模型成立,可有效反映出菌株水解圈/菌落直徑比值與脈沖電壓、脈沖次數和脈沖距離之間的關系,能夠較真實地反映試驗結果,具有實際應用意義。由以上可知,、、、2、2、2為顯著影響因素,各因素兩兩交互作不顯著。如圖1所示。
利用Design-Expert10軟件計算,確定誘變條件為:脈沖電壓2 074.3V、脈沖次數36.338次、脈沖距離5.41cm,最大比值為1.612。結合實際操作,即脈沖電壓2 075V、脈沖次數36次、脈沖距離5.4 cm。在此最優(yōu)條件下進行3次驗證試驗,比值為1.58,比預測值略低,且致死率達到76.67%,說明用該回歸方程分析得到的最優(yōu)誘變條件具有可信度。
在脈沖強光的最佳誘變條件下進行高產果膠酶突變菌株的選育,初篩選結果如圖1所示。
注:Y為原始菌株。
由圖1可知,以值為初篩指標,挑選60個單菌落,從中選取10株酶活力較原始菌株()顯著提高(<0.05)的突變菌株進行復篩,即突變菌株L4、L6、L8、L9、L18、L28、L37、L38、L45、L46。
脈沖強光突變菌株的復篩結果如表5所示。
表5 突變菌株的復篩結果
注:試驗數據均平行測定3次,測定結果以平均值± 標準差(SD)表示,下同。
Note: All experimental data were measured three times in parallel, and the results were expressed as mean ± standard deviation (SD), the same below.
表5可知,相較于原始菌株,突變菌株產酶能力均有顯著提升。其中,突變菌株L9產酶能力最強,其酶活力高達(188.21±1.22)U/mL,比原始菌株(103.29± 0.31) U/mL提高了82.22%±0.18%。因此選取突變菌株L9進行后續(xù)研究。
突變菌株L9遺傳穩(wěn)定性研究如表6所示。
表6 突變菌株遺傳穩(wěn)定性研究
由表6可知,傳代1~6次,突變菌株L9的產酶活性變化并不顯著,由此證明突變菌株L9的產果膠酶能力較穩(wěn)定,并具有較好的遺傳穩(wěn)定性,進一步說明脈沖強光可應用于產果膠酶能力強且能夠穩(wěn)定遺傳的突變菌株的誘變選育。
誘變前后菌株所產果膠酶采用SDS-PAGE電泳進行純化,有一條清晰條帶在29.0~44.3 kDa之間,并初步估計酶的分子量為35 kDa。誘變前后菌株所產果膠酶的最適pH、最適溫度如圖2a、2b所示。pH 值5.0、45 ℃時,L9與原始菌株果膠酶活力均達到最高,L9的果膠酶活分別為191.16、192.67 U/mL,與原始菌株相比分別提高了80.84%、71.68%。
突變菌株L9果膠酶的pH穩(wěn)定性、熱穩(wěn)定性結果如圖2c、2d、2e所示。在pH值在4~6時,原始菌株果膠酶出現不同程度的損失,L9果膠酶相對酶活均超過80%,明顯高于原始菌株。原始菌株果膠酶在40~50 ℃條件下處理活力呈現不同程度的損失,在60~70 ℃條件下僅保存80 min酶液基本失活。而突變菌株L9果膠酶在40~50 ℃條件下保存40 min后,酶活基本沒有損失;在60~70 ℃條件下保存100 min。酶液基本失活。因此,誘變菌株果膠酶的pH穩(wěn)定性、熱穩(wěn)定性有較明顯的提升,這可能是由于突變株所產酶亞基間的聚合度增強[29]。脈沖強光誘變黑曲霉菌株得到果膠酶高產菌株,與已有研究脈沖強光誘變增加菌株發(fā)酵產酶性能結果一致[30],說明了脈沖強光應用黑曲霉誘變的可行性。Effect
注:圖a、c中溫度為45 ℃,圖b、d、e中pH值為5.0。
本文對產果膠酶的黑曲霉菌株進行脈沖強光誘變處理,通過響應面試驗確定的最優(yōu)誘變條件為脈沖電壓2 075 V、脈沖次數36次、脈沖距離5.4 cm。在此誘變條件下,得到高產果膠酶突變菌株L9,其酶活力為(188.21±1.22)U/mL,比優(yōu)化前提高82.22%±0.18%。經傳代培養(yǎng)實驗表明,突變菌株產果膠酶能力穩(wěn)定,該酶最適pH值為5.0,最適溫度45 ℃。突變菌株L9所產果膠酶比原始菌株具有更高的pH穩(wěn)定性和熱穩(wěn)定性。綜上,脈沖強光可以應用于菌株誘變,在工業(yè)酶制劑中應用前景廣闊。可進一步探究脈沖強光技術誘變機理,開發(fā)脈沖技術在誘變領域的潛力。
[1]劉建輝,李俊杰,楊倩. 果膠酶的研究概況及展望[J]. 產業(yè)與科技論壇,2017,16(15):68-70.
Liu Jianhui, Li Junjie, Yang Qian. Overview and prospect of pectinase research[J]. Industral & Science Tribune, 2017, 16 (15): 68-70. (in Chinese with English abstract)
[2]王鴻飛,李和生,馬海樂,等. 果膠酶對草莓果汁澄清效果的研究[J]. 農業(yè)工程學報,2003,19(3):161-164.
Wang Hongfei, Li Hesheng,Ma Haile, et al. Clarification effects of pectinase on strawberry fruit juice[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(3): 161-164. (in Chinese with English abstract)
[3]Sharma N, Rathore M, Sharma M. Microbial pectinase: Sources, characterization and applications[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(1): 45-60.
[4]裘紀瑩,王未名,陳建愛,等.微生物果膠酶的研究進展[J]. 中國食品添加劑,2010(4):238-241.
Qiu Jiying, Wang Weiming, Chen Jianai, et al. Advance in microorganism pectinase research[J]. China Food Additives, 2010(4): 238-241. (in Chinese with English abstract)
[5]羅志剛,楊連生. 脈沖強光技術在食品工業(yè)中的應用[J]. 食品工業(yè),2002(5):44-46.
Luo Zhigang, Yang Liansheng. Application of intense pulsed light technology in food industry[J]. The Food Industry, 2002(5): 44-46. (in Chinese with English abstract)
[6]彭光華,王璐瑤,涂貽軒,等. 復合增強脈沖強光保鮮鮮切荸薺技術研究[J]. 長江蔬菜,2019(4):72-76.
Peng Guanghua,Wang Luyao, Tu Yixuan, et al. Study on preservation technology of fresh-cut water chestnut by compound reinforced pulse Strong light[J]. Journal of Changjiang Vegetables, 2019(4): 72-76. (in Chinese with English abstract)
[7]戚向陽,周婷婷,曹少謙. 不同強度脈沖強光對鮮香菇保鮮效果的影響[J]. 農業(yè)工程學報,2019,35(3):287-293.
Qi Xiangyang, Zou Tingting, Cao Shaoqian. Effects of intense pulsed light treatment with different intensity on preservation of fresh shiitake mushrooms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019,35(3): 287-293. (in Chinese with English abstract)
[8]孟憲軍,鄭鳳娥,張琦. 納塔爾鏈霉菌的脈沖強光誘變育種研究[J]. 食品工業(yè)科技,2008,29(3):141-142.
Meng Xianjun, Zheng Fenge, Zhang Qi. Study on the mutagenic breeding of the strain ofby electrofusion impulse[J]. Science and Technology of Food Industry, 2008,29(3): 141-142. (in Chinese with English abstract)
[9]張佰清,孫欄夢. 脈沖強光對啤酒酵母的誘變效應[J].食品科學,2015,36(7): 153-157.
Zhang Baiqing, Sun Lanmeng. Mutagenic Effects of Pulsed Light Irradiation on[J]. Food Science, 2015, 36(7): 153-157. (in Chinese with English abstract)
[10]趙春燕,孟曉曦,劉長江. 脈沖強光誘變選育Nisin高產菌株[J]. 食品科技,2010(8):32-34.
Zhao Chunyan, Meng Xiaoxi, Liu Changjiang. Screening of a high Nisin producing strain by pulse ray[J]. Food Science and Technology, 2010(8): 32-34. (in Chinese with English abstract)
[11]陶雨施,張佰清. 脈沖強光誘變保加利亞乳桿菌高產胞外多糖[J]. 食品工業(yè)科技,2018,39(10):143-148.
Tao Yushi, Zhang Baiqing. Enhancement of exopolysaccharides production inby intense pulse light mutagenesis[J]. Science and Technology of Food Industry, 2018, 39(10): 143-148. (in Chinese with English abstract)
[12]Orcajo J, Igo M D M, Lavilla M. Cow’s milk allergen-lactoglobulin immunoreactivity affected by pulsed light treatment[J]. Clinical and Translational Allergy, 2015, 5(Supp.3): 50.
[13]Cheigh C I, Park M H, Chung M S, et al. Comparison of intense pulsed light-and ultraviolet (UVC)- induced cell damage in Listeria monocytogenes, and Escherichia coli O157: H7[J]. Food Control, 2012, 25(2): 654-659.
[14]佘秋生,楊海波,楊冠軍,等. 紫外誘變黑曲霉篩選高產果膠酶菌種[J]. 中國釀造,2012,31(6):134-137.
She Qiusheng, Yang Haibo, Yang Guanjun, et al. Breeding of high pectinase-producingstrain by UV[J]. China Brewing, 2012, 31(6): 134-137. (in Chinese with English abstract)
[15]王棟. 米曲霉蛋白酶在高鹽環(huán)境的催化動力學及其在醬油釀造中的應用[D]. 無錫:江南大學,2013.
Wang Dong. Catalytic Kinetics of Aspergillus oryzae Protease in High-Salt Environment and its Application in Soy Sauce Fermentation[D]. Wuxi: Jiangnan University, 2013. (in Chinese with English abstract)
[16]張佰清,馬鳳鳴. 脈沖強光處理對南陽酵母殺菌效果的影響[J]. 沈陽農業(yè)大學學報,2007,38(2):253-255.
Zhang Baiqing, Ma Fengming. Sterilizationtrial on Nanyang Yeast with pulsed light[J]. Journal of Shenyang Agricultural University, 2007, 38(2): 253-255. (in Chinese with English abstract)
[17]田磊,張芳,沈國平,等. Ectoine高產菌株Halomonas sp. XH26的鑒定及紫外誘變選育[J/OL]. 生物學雜志,2019, 36:3-9.
Tian Lei, Zhang Fang, Shen Guoping, et al. Identification of high-yielding strainfor producing ectoine and UV mutagenesis breeding[J/OL]. Journal of Biology, 2019,36: 3-9. (in Chinese with English abstract)
[18]王瑤,李琪,李平蘭. 響應面法優(yōu)化植物乳桿菌LPL-1產細菌素發(fā)酵條件及細菌素理化性質分析[J]. 食品科學,2018,39(22):101-109.
Wang Yao, Li Qi, Li Pinglan. Optimization of fermentation conditions for plantaricin production byLPL-1 by response surface methodology and its physicochemical properties[J]. Food Science, 2018, 39(22): 101-109. (in Chinese with English abstract)
[19]趙天惠. 枯草芽孢桿菌脈沖強光誘變及其發(fā)酵性能研究[D]. 沈陽:沈陽農業(yè)大學,2017.
Zhao Tianhui. Study onInduced by Pulsed Light and Its Fermentation Performance[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract)
[20]吳曉冰,于新,吳青. 綠色木霉菌T-YY黃色素的穩(wěn)定性研究[J]. 農業(yè)工程學報,2008, 24(1):285-290.
Wu Xiaobing, Yu Xin, Wu Qing. Stability of yellow pigment fromstrain T-YY[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 285-290. (in Chinese with English abstract)
[21]趙迪,朱峰,魯旭鵬,等.殺線蟲真菌Simplicillium chinense菌株Snef5強毒和弱毒菌株的誘變篩選[J]. 沈陽農業(yè)大學學報,2016,47(5):602-607.
Zhao Di, Zhu Feng, Lu Xupeng, et al. Mutation Breeding for High and Low Toxic Strains of(Snef5)[J]. Journal of Shenyang Agricultural University, 2016, 47(5): 602-607. (in Chinese with English abstract)
[22]杜國軍,田英華,劉曉蘭. 果膠酶高產菌株的微波-硫酸二乙酯復合誘變選育[J]. 江蘇農業(yè)科學,2017,45(20):279-281.
Du Guojun, Tian Yinghua, Liu Xiaolan. Microwave - diethyl sulfate mutagenesis of strain with high pectinase yield[J]. Jiangsu Agricultural Sciences, 2017, 45(20): 279-281. (in Chinese with English abstract)
[23]陳勇強,葉秀云,梁燕輝,等. 產果膠酶菌株:黑曲霉的復合誘變及產酶條件研究[J]. 中國食品學報,2016,16(1):99-107.
Chen yongqiang, Ye Xiuyun, Liang Yanhui, et al. Study on the compound mutation and pectinase-producing conditions of[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(1): 99-107. (in Chinese with English abstract)
[24]李忠福,徐建國.分光光度法測定果膠酶活性方法的研究[J]. 黑龍江醫(yī)藥,2002(6):428-430.
Li Zhongfu, Xu Jianguo. Determination of pectinase activity by spectrophotometry[J]. Heilongjiang Medical Journal, 2002(6): 428-430. (in Chinese with English abstract)
[25]郝淼聞,俞志敏. 高產谷胱甘肽釀酒酵母菌株的誘變選育研究[J]. 沈陽農業(yè)大學學報,2013,44(6):832-836.
Hao Miaowen, Yu Zhimin. Mutation breeding high-yield glutathione strains of saccharomy cerevisiae[J]. Journal of Shenyang Agricultural University, 2013, 44(6): 832-836. (in Chinese with English abstract)
[26]鐘葵,胡小松,陳芳,等. 脈沖電場對果膠酯酶的活性及構象的影響[J]. 農業(yè)工程學報,2005,21(2):149-152.
Zhong Kui, Hu Xiaosong, Chen Fang, et al. Inactivation and conformational change of pectinesterase induced by pulsed electric fields[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 149-152. (in Chinese with English abstract)
[27]Chan-Ick Cheigh, Hee-Jeong Hwang,et al. Intense pulsed light (IPL) and UV-C treatments for inactivatingon solid medium and seafoods[J]. Food Research International, 2013, 54: 745-752.
[28]Oguma K, Katayama H, Mitani H, et al. Determination of pyrimidine dimers inandduring UV light inactivation, photoreactivation, and dark repair[J]. Applied and Environmental Microbiology, 2001, 67(10): 4630-4637.
[29]朱運明,王曉飛,閔偉紅,等. 北京棒桿菌天冬氨酸激酶G377定點突變及酶學性質表征[J]. 食品科學,2014,35(9):192-197.
Zhu Mingyun, Wang Xiaofei, Min Weihong, et al. Site-directed mutagenesis and characterization ofG377 from[J]. Food Science, 2014, 35(9): 192-197. (in Chinese with English abstract)
[30]趙天惠,張佰清. 耐受性枯草芽孢桿菌的脈沖強光誘變篩選及產酶活力分析[J]. 食品科學,2018,39(2):192-197.
Zhao Tianhui, Zhang Baiqing. Pulsed light mutagenesis and screening offor improved tolerance and extracellular enzymatic activities of screened mutants[J]. Food Science, 2018, 39(2): 192-197. (in Chinese with English abstract)
Effect of Aspergillus Niger induced by intense pulsed light on pectinase-producing activity
Zhang Baiqing, Ge Xinyu, Ma Fengming, Ma Yichao, Zhang Shihao, Xie Jiahao
(,,110866,)
Intense pulse light (IPL) technology is a new non-toxic and environmentally friendly cold treatment technology, which can be applied to mutation breeding of microorganisms and to obtain high-producing strains. Aspergillus Niger is the main strain producing pectinase in food industry at present, but its pectinase yield is low. In order to verify the feasibility of applying intense pulse light technology to mutagenize Aspergillus Niger strains for high yield of pectinase, this experiment used intense pulse light technology to mutagenize Aspergillus Niger. With pulse voltage, pulse number and pulse distance as independent variables and ratio of transparent circle to colony diameter as dependent variables, steepest slope moving tests, response surface tests and result analysis are carried out to determine the optimum conditions for high-yield pectinase induced by the intense pulse light. At the same time, secondary screening of mutant strains was carried out and the genetic stability of the mutant strain was determined and the enzymatic properties of the mutant strain with high pectinase production were explored. The results showed that the multiple quadratic regression equation of transparent circle and colony diameter ratio () against impulse voltage (), pulse number () and pulse distance () is as follows:=1.59+0.068+0.048?0.033? 0.011?0.019?0.022?0.0712?0.0872?0.132.All the factors in the response surface design test were significant, and the interaction between two factors was not significant. The optimum mutagenesis conditions were when the pulse voltage was 2 075 V, the pulse number 36 times and the pulse distance 5.4 cm. Under the optimum conditions, the ratio of transparent circle to colony diameter could reach 1.58, which was in good agreement with the predicted value of response surface fitting equation, indicating that the model was credible. Induce mutation to the Aspergillus Niger under such optimized condition, screen mutant strains using transparent circle for 60 mutant strains with bigger ratio of transparent circle to colony diameter. The mutant strain L9 with high pectinase production was finally selected by re-screening the above-mentioned 60 strains by determining pectinase activity, which was as high as (188.21+1.22) U/mL, which was 82.2% higher than that of the original strains. The results of genetic stability analysis showed that the mutant strain L9 had stable pectinase performance within 6 generations and no significant changes were seen in terms of pectinase activity, which indicated that the mutant strain L9 had good genetic stability. The optimum pH value and temperature for producing pectinase were 5.0 and 45℃. Compared with the original strain, the mutant strain L9 produced pectinase with better activity at the optimum pH and temperature. The range of the pH stability and thermal stability of the mutant strain were also significantly wider than that of the original strain, indicating that the mutant strain had good pH stability and thermal stability. Through the above experimental results, we can know that the application of intense pulse light technology to Aspergillus Niger mutation is feasible. After the intense pulse light induced mutation and secondary screening, a mutant strain of Aspergillus Niger with higher pectinase production with high enzymatic activity and good genetic stability can be obtained.
enzyme; agricultural products; electric field; pulsed light; mutagenesis; Aspergillus Niger; pectinase; response surface analysis
張佰清,葛新宇,馬鳳鳴,馬藝超,張士豪,謝加豪. 脈沖強光誘變對黑曲霉產果膠酶活力的影響[J]. 農業(yè)工程學報,2020,36(3):296-301.doi:10.11975/j.issn.1002-6819.2020.03.036 http://www.tcsae.org
Zhang Baiqing, Ge Xinyu, Ma Fengming, Ma Yichao, Zhang Shihao, Xie Jiahao. Effect of Aspergillus Niger induced by intensepulsed light on pectinase-producing activity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 296-301. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.036 http://www.tcsae.org
2019-09-03
2019-10-08
國家自然科學基金項目資助(31772011)
張佰清,博士,教授,博士生導師,研究方向為農產品加工。Email:sybaiqinggxl@sina.com
10.11975/j.issn.1002-6819.2020.03.036
TS201.3
A
1002-6819(2020)-03-0296-06