朱瑤迪,張佳燁,李苗云,趙莉君,趙改名,馬陽陽,任宏榮,王文濤
肽聚糖對(duì)肉制品中產(chǎn)氣莢膜梭菌芽孢萌發(fā)率影響及預(yù)測(cè)
朱瑤迪,張佳燁,李苗云※,趙莉君,趙改名,馬陽陽,任宏榮,王文濤
(河南農(nóng)業(yè)大學(xué)食品科學(xué)與技術(shù)學(xué)院,鄭州 450000)
該研究利用產(chǎn)氣莢膜梭菌(,)營養(yǎng)體及其芽孢肽聚糖以芽孢萌發(fā)率、渾濁度OD600%、Ca2+-DPA%變化率等為指標(biāo)比較不同肽聚糖對(duì)芽孢萌發(fā)的影響;并針對(duì)芽孢萌發(fā)率檢測(cè)耗時(shí)、費(fèi)力等問題,提出一種基于近紅外光譜技術(shù)(near infrared spectroscopy, NIR)定量預(yù)測(cè)不同濃度肽聚糖誘導(dǎo)芽孢萌發(fā)率研究。首先原始光譜經(jīng)不同方式預(yù)處理,獲得最佳方法為標(biāo)準(zhǔn)正態(tài)變換,然后使用主成分分析和遺傳-聯(lián)合區(qū)間偏最小二乘法進(jìn)行光譜數(shù)據(jù)降維及特征變量篩選,分別對(duì)不同濃度肽聚糖誘導(dǎo)芽孢、OD600%、Ca2+-DPA%進(jìn)行快速預(yù)測(cè)。結(jié)果表明:營養(yǎng)體肽聚糖可有效誘導(dǎo)芽孢萌發(fā),而芽孢肽聚糖效果不明顯。利用GA-siPLS篩選芽孢萌發(fā)特征變量的最佳特征區(qū)間分別是[3, 9, 11, 14]、[1, 7, 12, 15]和[7, 8, 12, 17],其預(yù)測(cè)集和RMSEP分別為0.872 6,0.861 1,0.884 1和0.769,0.218%,42.34%。研究結(jié)果表明,利用NIR結(jié)合GA-siPLS可定量預(yù)測(cè)肽聚糖誘導(dǎo)芽孢的萌發(fā)率,實(shí)現(xiàn)芽孢萌發(fā)的快速預(yù)測(cè),為保證肉制品安全提供有效手段。
菌;近紅外光譜;肉;肽聚糖;芽孢萌發(fā); GA-siPLS;
產(chǎn)氣莢膜菌(,)是一種廣泛存在于環(huán)境中的革蘭氏陽性厭氧芽孢菌,可在空氣、土壤、水及人和動(dòng)物腸道中發(fā)現(xiàn)[1]。其芽孢對(duì)高溫、高壓、干燥、輻射以及強(qiáng)酸強(qiáng)堿等條件均具有極強(qiáng)的抗逆性,使其能在食品殺菌過程中存活,很難被殺死,并可長時(shí)間保持休眠狀態(tài)[1]。然而其一旦萌發(fā)就可快速繁殖,且開始產(chǎn)生毒素,不僅可引起人急性腹部絞痛和腹瀉,而且造成脹袋及腐敗。因此,不但致病性強(qiáng),而且給肉品產(chǎn)業(yè)帶來很大的經(jīng)濟(jì)損失,被稱為美國第三大食源性致病菌,每年與食物中毒相關(guān)的經(jīng)濟(jì)損失達(dá)3.43億美元[2]。“先萌發(fā),后殺滅”是芽孢研究的熱點(diǎn)[3-4],目前,通過添加萌發(fā)劑可使芽孢快速、高效萌發(fā),同時(shí)失去抗逆性,便于使用常規(guī)方法殺滅,保證肉制品食用安全。
肽聚糖是由細(xì)菌代謝過程中自身分泌的物質(zhì),是其細(xì)胞壁的主要成分,可作為一系列宿主-微生物相互作用的信號(hào),尤其是對(duì)芽孢萌發(fā)有促進(jìn)作用[5]。然而不同肽聚糖的組成和功能有顯著差別,張津瑜等[6]通過紅外光譜鑒定發(fā)現(xiàn)枯草芽孢桿菌(,.)芽孢皮層肽聚糖與營養(yǎng)體細(xì)胞壁肽聚糖特征氨基酸種類和含量大不相同。Shah等[7]和著名芽孢萌發(fā)專家Setlow[8]在2008年均提出了肽聚糖可誘導(dǎo).芽孢萌發(fā)的新途徑,并認(rèn)為在nmol/L為單位濃度即可高效誘導(dǎo)芽孢萌發(fā)。目前,芽孢萌發(fā)率的檢測(cè)主要是利用常規(guī)的化學(xué)指標(biāo)判斷如熱抗性損失平板計(jì)數(shù)、芽孢渾濁度(OD600)、芽孢折光性測(cè)定等化學(xué)方法,不僅耗時(shí)費(fèi)力,而且檢測(cè)結(jié)果往往延遲于生產(chǎn)、銷售,因此尋找一種快速、無損的方法來預(yù)測(cè)肽聚糖對(duì)芽孢萌發(fā)的影響是非常迫切的。
近紅外光譜分析技術(shù)是一種通過光譜信息反映物質(zhì)內(nèi)部成分的物理測(cè)試技術(shù),具有分析速度快、操作便捷、無損等優(yōu)點(diǎn)[9]。已被廣泛用于食品[10]、農(nóng)產(chǎn)品[11]、藥品[12]等的定性分類和定量分析。目前,在食源性致病菌檢測(cè)方面的應(yīng)用也越來越廣泛,如陳全勝等[13]運(yùn)用近紅外光譜技術(shù)結(jié)合反向傳播人工神經(jīng)網(wǎng)絡(luò)(BP-ANN)可以快速識(shí)別雞肉中的假單胞菌;魏穎琪[14]運(yùn)用近紅外光譜技術(shù)結(jié)合主成分分析(PCA)、判別分析(LDA)和偏最小二乘回歸(PLSR)方法預(yù)測(cè)稻谷中有害霉菌的數(shù)量;谷芳等[15]運(yùn)用近紅外光譜技術(shù)結(jié)合PCA算法預(yù)測(cè)豬肉中菌落總數(shù);Bai等[16]運(yùn)用近紅外(NIR)光譜和支持向量機(jī)(SVM)鑒定大腸桿菌O157:H7,單核細(xì)胞增生李斯特菌和金黃色葡萄球菌三種常見的食源菌。這些研究表明,近紅外光譜技術(shù)可以實(shí)現(xiàn)對(duì)食源性致病菌的定性和定量預(yù)測(cè)且模型精度高;但是目前關(guān)于近紅外光譜技術(shù)預(yù)測(cè)肉制品中芽孢萌發(fā)率的內(nèi)容鮮有報(bào)道。
本研究以芽孢為研究對(duì)象,利用不同濃度營養(yǎng)體及其芽孢皮層肽聚糖分別誘導(dǎo)其芽孢萌發(fā),并通過芽孢熱抗性損失()、渾濁度(OD600%)、2,6-吡啶二羧酸(Ca2+-DPA%)釋放率等指標(biāo)進(jìn)行比較。另外采用NIR結(jié)合GA-siPLS算法,對(duì)營養(yǎng)體肽聚糖誘導(dǎo)芽孢萌發(fā)率進(jìn)行定量分析,不僅可以對(duì)肉制品安全實(shí)現(xiàn)在線實(shí)時(shí)檢測(cè),而且為快速預(yù)測(cè)不同萌發(fā)劑對(duì)芽孢萌發(fā)效果提供有效的技術(shù)手段。
1.1.1 菌種與原料
菌種:產(chǎn)氣莢膜梭菌C1芽孢是由河南農(nóng)業(yè)大學(xué)肉品加工與安全重點(diǎn)實(shí)驗(yàn)室自行提取并鑒定(主要是從真空包裝的鹽焗雞中自行分離培養(yǎng)所得)產(chǎn)氣莢膜梭菌芽孢及其營養(yǎng)體肽聚糖是由河南農(nóng)業(yè)大學(xué)肉品加工與安全重點(diǎn)實(shí)驗(yàn)室自行提取,并鑒定。
1.1.2 試劑與培養(yǎng)基
胰胨-亞硫酸鹽-環(huán)絲氨酸瓊脂(TSC)、液體硫乙醇酸鹽培養(yǎng)基(FTG)、0.1%無菌蛋白胨水(BP均購自青島高科技工業(yè)園海博生物科技有限公司;胰蛋白酶Trypsin(1∶250)購自賽默飛世爾科技(中國)有限公司;溶菌酶Lysozyme from chicken white購自Sigma公司;三氯化忒、2,6-吡啶二羧酸(DPA)(購買自Sigma公司),其他化學(xué)試劑均為國產(chǎn)分析純。
1.2.1 芽孢熱抗性()測(cè)定
在80 ℃、10 min的熱處理通常被稱作芽孢熱抗性損失[17]。通過平板計(jì)數(shù)法確定芽孢萌發(fā)的數(shù)量。將107mg/mL芽孢樣品與無菌水中的肽聚糖在37 ℃下孵育10 min,然后進(jìn)行濕熱處理,梯度稀釋后用TSC培養(yǎng)基在37℃厭氧培養(yǎng)24 h計(jì)數(shù),通過公式(1)計(jì)算。
式中為芽孢熱抗性損失,total熱激前芽孢總數(shù),lgCFU/mL,survival熱處理后殘存活菌數(shù), lgCFU/mL。
1.2.2 芽孢渾濁度(OD600%)和折光性測(cè)定
參照孫靜等[18]的方法檢測(cè),取200L芽孢懸浮液在600 nm下測(cè)定OD600%(見公式2)。測(cè)定前后將其搖勻,每隔20 min取芽孢懸浮液滴于載玻片上,蓋上蓋玻片,放置于相差顯微鏡下觀察其折光性。
式中OD600%是OD600變化率,D是OD600下降值;D是初始OD600值。
1.2.3 Ca2+-2,6-吡啶二羧酸釋放率(Ca2+-DPA%)測(cè)定
參考Alistair等[19-20]的方法,采用熒光法測(cè)量Ca2+-DPA%。將肽聚糖誘導(dǎo)處理過的芽孢在7 000×和4 ℃下離心10 min,并測(cè)定Ca2+-DPA上清液,于96孔板中加入100L芽孢懸液與100L的20mol/ L氯化鋱(III)六水合物(TbCl3.6H2O)混合,用1 mol/L乙酸調(diào)pH值至5.6,酶標(biāo)儀(Molecular Devices)測(cè)定。在激發(fā)波長為270 nm,發(fā)射波長為545 nm處測(cè)定熒光值。未經(jīng)肽聚糖誘導(dǎo)處理的芽孢作為陰性對(duì)照。將1 mL培養(yǎng)的芽孢煮沸60 min為芽孢中總Ca2+-DPA量,Ca2+-DPA%通過公式(3)計(jì)算。
式中Ca2+-DPA%是初始Ca2+-DPA的百分比,F是芽孢釋放Ca2+-DPA量,F是初始Ca2+-DPA量。
1.2.4 營養(yǎng)體及其芽孢肽聚糖的提取
肽聚糖是細(xì)菌細(xì)胞壁的主要成分,關(guān)于產(chǎn)氣莢膜梭菌營養(yǎng)體及其芽孢肽聚糖具體提取方法如下:首先將及其芽孢擴(kuò)大培養(yǎng)后,利用超聲波物理破碎(條件:功率200 W,磁力50次超聲脈沖,每次5 s,間隔5 s),不溶性細(xì)胞壁組分再通過離心收集,并采用4%SDS重新懸浮,煮沸15 min,再采用熱無菌水(60℃)清洗數(shù)次直至除去殘留的SDS,進(jìn)一步采用0.5 mg/mL的胰蛋白酶處理(10 mmol/L Tri-Hcl,pH值8),并加入10 mmol/L CaCl2,酶解16 h以除去共價(jià)結(jié)合的蛋白質(zhì),將酶解液加入SDS(終濃度1%)煮沸鈍化胰蛋白酶,并清洗除去SDS。將細(xì)胞壁重新懸浮于氫氟酸(5 mg細(xì)胞壁懸浮于2 mL 48% HF)中,4 ℃處理48 h。HF可以除去肽聚糖上磷酸二酯鍵共價(jià)連接的次生細(xì)胞壁多糖,包括磷壁酸、poly-(,GlcNAc)等。細(xì)胞壁組分再分別采用8 mol/L LiCl和0.1METDA清洗,無菌水清洗2次,最后采用丙酮除去脂磷壁酸和脂多糖。將樣品凍干,得到肽聚糖。并所得樣品進(jìn)行純化,具體參照文獻(xiàn)[17]:將凍干后的肽聚糖在磷酸鹽緩沖液懸浮,加入變?nèi)芫孛附馍砂陔?,同時(shí)利用硼氫化鈉還原后采用HPLC分離,ODS色譜柱,胞壁肽組分檢測(cè)采用紫外檢測(cè)器,波長206 nm,最后在檢測(cè)器出口單峰收集胞壁肽組分,并利用HPLC法脫鹽,凍干得到胞壁肽組分。
1.3.1 近紅外光譜數(shù)據(jù)采集
為保證儀器穩(wěn)定性,先打開近紅外光譜儀預(yù)熱30 min,然后將樣品裝入液體樣品池中,設(shè)置掃描參數(shù):儀器分辨率8 cm-1,掃描次數(shù)32次,光譜范圍為波數(shù)4 000~10 000 cm-1,每個(gè)樣品10 min/次,跟蹤采集60 min,獲得6條光譜,取平均;數(shù)據(jù)采集過程中,室內(nèi)濕度基本保持不變,溫度控制在(20±5)℃。采集光譜時(shí),每個(gè)濃度35個(gè)樣品,3個(gè)濃度共105條光譜,將預(yù)處理的光譜和實(shí)測(cè)值隨機(jī)劃分為訓(xùn)練集70和預(yù)測(cè)集35個(gè)樣本,進(jìn)行建模分析。
1.3.2 近紅外光譜數(shù)據(jù)預(yù)處理
由于外界因素(如基線漂移,光的散射以及環(huán)境等)會(huì)對(duì)光譜產(chǎn)生影響,需采用一定的預(yù)處理方法進(jìn)行消除[21],常采用的方法包括標(biāo)準(zhǔn)歸一化(standard normal variable,SNV)、多元散射校正(multiple scattering correction,MSC)、中心化(Centralization)等。本研究對(duì)采集得到的105條光譜進(jìn)行預(yù)處理,然后利用指標(biāo)與偏最小二乘(PLS)建立預(yù)測(cè)模型,依據(jù)模型相關(guān)系數(shù)()和交互驗(yàn)證均方根誤差(RMSECV)等指標(biāo)選擇最佳預(yù)處理方法,經(jīng)比較,采用SNV對(duì)光譜進(jìn)行預(yù)處理效果最佳,結(jié)果如表1和圖1所示。
表1 不同預(yù)處理方法對(duì)S指標(biāo)預(yù)測(cè)模型的結(jié)果分析
圖1 不同肽聚糖誘導(dǎo)芽孢萌發(fā)的原始光譜和預(yù)處理后光譜示意圖
本試驗(yàn)嘗試采用遺傳算法(GA)-聯(lián)合區(qū)間偏最小二乘(si-PLS)篩選變量建立模型。先利用GA進(jìn)行全光譜變量篩選,然后進(jìn)一步將所選光譜劃分為10,11,12,...,20個(gè)子區(qū)間,并劃分不同子區(qū)間時(shí)分別聯(lián)合2、3、4個(gè)子區(qū)間建立預(yù)測(cè)模型。同時(shí)依據(jù)RMSECV,以及來選擇肽聚糖誘導(dǎo)芽孢萌發(fā)的最佳預(yù)測(cè)模型,值越接近1,RMSECV值越小,模型的精度越高,表明模型的預(yù)測(cè)性能越好[21]。
采用MATLAB2016b處理近紅外光譜數(shù)據(jù),SPSS16.0對(duì)數(shù)據(jù)結(jié)果進(jìn)行單因素方差分析,Origin 8.5軟件進(jìn)行繪圖。
2.1.1 芽孢熱抗性損失
肽聚糖誘導(dǎo)芽孢萌發(fā)時(shí)失去熱抗性[22],結(jié)果如表2所示,隨著時(shí)間的增加,經(jīng)10-1、10-3、10-5mg/mL不同濃度營養(yǎng)體肽聚糖誘導(dǎo)后芽孢值分別為95.28%、88.83%和83.69%,能顯著誘導(dǎo)芽孢萌發(fā)(<0.05);而芽孢皮層肽聚糖誘導(dǎo)后值分別為10.00%、9.85%和1.32%,對(duì)芽孢萌發(fā)基本無影響。結(jié)果表明,營養(yǎng)體肽聚糖可有效誘導(dǎo)芽孢萌發(fā),且隨著濃度增加,誘導(dǎo)芽孢萌發(fā)率越大,最高能使95.28%的芽孢萌發(fā),而皮層肽聚糖則對(duì)芽孢萌發(fā)無影響。
表2 不同濃度C. Perfringens營養(yǎng)體肽聚糖對(duì)產(chǎn)氣莢膜梭菌數(shù)量的影響
注:表中字母表示差異性顯著水平,其中A, B, C代表組間差異性,a, b, c代表組內(nèi)差異性。
Note: The letters in the table represent significant levels of variability, where A, B, and C represent inter group variability, and a, b, and c represent intra group variability.
2.1.2 芽孢渾濁度OD600
芽孢萌發(fā)時(shí)折光性降低且導(dǎo)致芽孢懸浮液OD600值下降,芽孢完全萌發(fā)時(shí)OD600下降約60%[23]。OD600結(jié)果如圖2所示,經(jīng)10-1、10-3、10-5mg/mL濃度的營養(yǎng)體肽聚糖孵育60 min后,芽孢萌發(fā)顯著(<0.05),OD600%值分別為59.41%、8.88%、1.80%;而芽孢皮層肽聚糖則對(duì)芽孢萌發(fā)無顯著影響(>0.05),OD600%僅有輕微下降,萌發(fā)不明顯。利用相差顯微鏡進(jìn)行驗(yàn)證發(fā)現(xiàn),隨著時(shí)間的增加,芽孢皮層肽聚糖誘導(dǎo)的芽孢則始終為“光亮”,芽孢未萌發(fā)(圖2c),而營養(yǎng)體肽聚糖誘導(dǎo)的芽孢折光性降低,芽孢中心由“光亮”逐漸變“黑暗”(圖2d)。
注:圖c、d中從左至右依次為0、20、40、60 min 的結(jié)果分析。
Note: Fig. c, d are the result of 0、20、40、60 min, from left to right.
圖2 不同濃度肽聚糖OD600變化示意圖
Fig.2 Schematic diagram of change of OD600with different PGd concentrations
2.1.3 Ca2+-2,6-吡啶二羧酸DPA(Ca2+-DPA)釋放率
在芽孢萌發(fā)過程中Ca2+-DPA為芽孢的特有物質(zhì),Ca2+-DPA的釋放是芽孢萌發(fā)的關(guān)鍵步驟[22-25]。加入不同肽聚糖孵育60 min后,10-1、10-3、10-5mg/mL濃度的營養(yǎng)體肽聚糖中芽孢Ca2+-DPA%分別為58%、13%和10%,其中濃度為10-1mg/mL營養(yǎng)體肽聚糖誘導(dǎo)芽孢萌發(fā)效果最佳,而芽孢皮層肽聚糖誘導(dǎo)芽孢萌發(fā)時(shí),Ca2+-DPA%分別為7%、6%、5%則表明芽孢無萌發(fā)。芽孢萌發(fā)過程中Ca2+-DPA釋放結(jié)果如圖3所示。
本試驗(yàn)采用主成分分析(principal component analysis,PCA)對(duì)數(shù)據(jù)進(jìn)行分析,可將分散在一組變量上的信息集中到某幾個(gè)綜合指標(biāo)上,采用較少的特征信息對(duì)芽孢萌發(fā)率進(jìn)行有效表征[26-27]。經(jīng)PCA分析后,前3個(gè)主成分的貢獻(xiàn)率分別為93.26%、5.23%、1.21%,累計(jì)貢獻(xiàn)率達(dá)到99.7%,營養(yǎng)體肽聚糖誘導(dǎo)芽孢萌發(fā),可將不同濃度營養(yǎng)體肽聚糖誘導(dǎo)萌發(fā)芽孢區(qū)分開,部分存在交叉,還需進(jìn)一步模式識(shí)別。
GA作為一種有效的全局搜索算法,可用于波長選擇優(yōu)化[28-30]。GA變量篩選結(jié)果如表3所示,對(duì)于指標(biāo),利用GA-siPLS預(yù)測(cè)模型,當(dāng)特征光譜劃分為20個(gè)區(qū)間,聯(lián)合區(qū)間數(shù)為4時(shí),主成分?jǐn)?shù)為4,光譜區(qū)間為[3, 9, 11, 14],其訓(xùn)練集的R和RMSEC分別為0.892 4和0.711,預(yù)測(cè)集R和RMSEP分別為0.8726和0.769。對(duì)于OD600%,當(dāng)聯(lián)合區(qū)間數(shù)為4,主成分?jǐn)?shù)為10時(shí),光譜區(qū)間為[1, 7, 12, 15]時(shí),獲得的模型最佳,其訓(xùn)練集的R和RMSEC分別為0.896 3和0.189%,預(yù)測(cè)集的R和RMSEP分別為0.8611和0.218%。對(duì)Ca2+-DPA%,當(dāng)聯(lián)合光譜區(qū)間為[7, 8, 12, 17]時(shí),主成分因子數(shù)為6時(shí),其訓(xùn)練集的R和RMSEC分別為0.9037和39.53%,其預(yù)測(cè)集的R和RMSEP分別為0.884 1和42.34%。該模型在所有模型中精度最高,預(yù)測(cè)性能最佳。經(jīng)驗(yàn)證集進(jìn)行模型驗(yàn)證,結(jié)果如表3所示。不同指標(biāo)預(yù)測(cè)集散點(diǎn)圖如圖4所示。
表3 芽孢萌發(fā)指標(biāo)S、OD600%值和Ca2+-DPA%的GA-siPLS 預(yù)測(cè)結(jié)果
圖4 最佳營養(yǎng)體肽聚糖濃度條件下對(duì)芽孢S,OD600%值和Ca2+-DPA%預(yù)測(cè)集的散點(diǎn)圖
本研究首先探究了不同肽聚糖對(duì)芽孢萌發(fā)的影響,確定了營養(yǎng)體肽聚糖可有效誘導(dǎo)其芽孢萌發(fā),這表明雖同是肽聚糖,但在芽孢形成過程中,肽聚糖結(jié)構(gòu)應(yīng)發(fā)生了變化,結(jié)構(gòu)決定功能,芽孢皮層肽聚糖不能與萌發(fā)受體結(jié)合,從而無法誘導(dǎo)芽孢萌發(fā),這與之前的研究一致,關(guān)于兩者之間的結(jié)構(gòu)差異需要進(jìn)一步研究。然后本研究利用、OD600%和Ca2+-DPA%等指標(biāo)比較了不同濃度營養(yǎng)體肽聚糖對(duì)芽孢萌發(fā)效果,結(jié)果表明在10-1mg/mL時(shí)誘導(dǎo)芽孢萌發(fā)效果最佳。同時(shí)利用NIR技術(shù)結(jié)合GA-siPLS模型定量預(yù)測(cè)了不同濃度肽聚糖對(duì)芽孢萌發(fā)率,結(jié)果為:對(duì)于指標(biāo)、OD600%和Ca2+-DPA%訓(xùn)練集模型的相關(guān)系數(shù)R分別為0.892 4,0.896 3, 0.903 7;RMSEC分別為0.711,0.189%,39.53%;預(yù)測(cè)集模型的相關(guān)系數(shù)R分別為0.872 6,0.861 1和0.884 1;RMSEP分別為0.769,0.218%和42.34%,驗(yàn)證集R分別為0.864 2,0.821 7和0.895 3,RMSECV分別為0.734,0.206%和41.27%,且利用Ca2+-DPA%指標(biāo),預(yù)測(cè)精度最高,可有效預(yù)測(cè)芽孢萌發(fā)率。綜上所述,利用近紅外光譜技術(shù)結(jié)合化學(xué)計(jì)量學(xué)方法預(yù)測(cè)食源性致病菌芽孢萌發(fā)率是可行的,為保證肉制品的食用安全性提供了理論依據(jù)和新的技術(shù)手段。
[1]Komatsu H, Inui A, Sogo T, et al.of Nihon rinsho Japanese[J]. Journal of Clinical Medicine, 2012, 70(8): 1357-1361.
[2]Freedman J C, Shrestha A, Mcclane B A, et al.enterotoxin: Action, genetics, and translational applications[J]. Toxins, 2016, 8(3): 73-75.
[3]Rahayu W P, Fardiaz D, Kartika G D, et al. Estimation of economic loss due to food poisoning outbreaks[J]. Food Science & Biotechnology, 2016, 25(1): 157-161.
[4]Alanazi S, Alnoman M, Banawas S, et al. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores oftype A in laboratory medium and chicken meat[J]. Food Microbiology, 2018, 73: 311-318.
[5]Talukdar P K, Dompijitkul P U, Hossain A, et al, Inactivation strategies forperfringens spores and vegetative cells, Appl[J]. Environ. Microbiol, 2017, 83: 2731-2736.
[6]張津瑜,孫靜,郭洪偉,等. 枯草桿菌芽孢皮層肽聚糖的提取與結(jié)構(gòu)分析[J]. 食品科技,2018,43(4):10-14. Zhang Jinyu, Sun Jing, Guo Hongwei, et al. Extraction and structural analysis of peptidoglycan from bacillus subtilis spore[J]. Food Science and Technology, 2018, 43(4): 10-14. (in Chinese with English abstract)
[7]Shah I M, Laaberki M, Popham D L, et al. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments[J]. Cell, 2008, 135 (3): 486-496.
[8]Setlow P. Dormant spores receive an unexpected wake-up call[J]. Cell, 2008, 135(3): 410-412.
[9]Sinelli N, Spinardi A, di Egidio V, et al. Evaluation of quality and nutraceutical content of blueberries () by near and mid-infrared spectroscopy[J]. Postharvest Biol Technol, 2008, 50: 31-36.
[10]Zeng X Y, Zhao W Q, Hu X Z, et al. Determination of polyphenols in oats by near-infrared spectroscopy (NIRS) and two-dimensional correlation spectroscopy[J]. Analytical Letters, 2019, 52(13): 1-10.
[11]Yi X, Kutsanedzie F Y H, Hao S, et al. Rapid pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy[J]. Food Analytical Methods, 2018, 11(4): 1199-1208.
[12]Boiret M, Chauchard F. Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products[J]. Analytical & Bioanalytical Chemistry, 2017, 409(3): 683-691.
[13]陳全勝,王名星,郭志明,等. 雞肉中假單胞菌的近紅外光譜快速識(shí)別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):328-334. Chen Quansheng, Wang Mingxing, Guo Zhiming, et al. Fast identification of pseudomonas in chicken by near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 328-334. (in Chinese with English abstract)
[14]魏穎琪.基于光譜和氣味信息的稻米有害霉菌侵染快速分析方法研究[D]. 南京:南京財(cái)經(jīng)大學(xué),2017.Wei Yingqi. Rapid Detection of Harmful Fungal Infection in Paddy Rice based on Spectral and Volatile Odor Information[D]. Nanjing: Nanjing University of Finance and Economics, 2017.
[15]谷芳,曾智偉,郭康權(quán),等. 基于近紅外光譜的豬肉細(xì)菌菌落總數(shù)的動(dòng)力學(xué)模型[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,18(3):152-156. Gu Fang, Ceng Zhiwei, Guo Kangquan, et al. Kinetic model of total bacterial colonies of pork based on near infrared spectroscopy[J]. Journal of China Agricultural University, 2013, 18(3): 152-156. (in Chinese with English abstract)
[16]Bai F N, Liu J X, Han S H, et al. Identification of food-borne bacteria by Near Infrared spectroscopy based on support vector machine[J]. Food Science, 2014, 35(12): 179-182.
[17]張良. 高靜壓與溫度協(xié)同殺滅芽孢的效果與機(jī)制研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2015. Zhang Liang. Research on Effectiveness and Mechanism of Spore Inactivation by High Hydrostatic Pressure Combined with Heat[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[18]孫靜,張津瑜,胡小松,等. 超高壓導(dǎo)致芽孢亞致死損傷進(jìn)而提高芽孢熱敏感性[J]. 食品科技,2017,42(10):313-317. Sun Jing, Zhang Jinyu, Hu Xiaosong, et al. Ultrahigh pressure leads to sublethal injury of spores and thus increases the thermal sensitivity of spores[J]. Food Science and Technology, 2017, 42(10): 313-317. (in Chinese with English abstract)
[19]Alistair A, Hindle, Elizabeth A, et al. Dipicolinic acid (DPA) assay revisited and appraised for spore detection[J]. The Analyst, 1999, 124: 1599-1604.
[20]Saeed B, Sarker M R. l -lysine (pH 6. 0) induces germination of spores of,, type F isolates carrying chromosomal or plasmid-borne enterotoxin gene[J]. Microbial Pathogenesis, 2018, 123: 227-232.
[21]Xu Y, Kutsanedzie F Y H, Sun H, et al. Rapid pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy[J]. Food Anal Method, 2018, 11(7): 1199-1208.
[22]Setlow B, Cowan A E, Setlow P. Germination of spores of Bacillus subtilis with dodecylamine[J]. Journal of Applied Microbiology, 2003, 95(3): 234-236.
[23]梁棟,陳芳,胡小松,等. 芽孢萌發(fā)研究進(jìn)展[J]. 中國食品學(xué)報(bào),2018,18(6):175-179. Liang Dong, Chen Fang, Hu Xiaosong, et al. Research progress on spore germination[J]. Chinese Journal of Food Science, 2018, 18(6): 175-179. (in Chinese with English abstract)
[24]Setlow P. Dormant spores receive an unexpected wake-up call[J]. Cell, 2008, 135(2): 410-412.
[25]饒雷. 高壓二氧化碳結(jié)合溫度對(duì)枯草芽孢桿菌芽孢的殺滅效果與機(jī)制[D]. 北京: 中國農(nóng)業(yè)大學(xué),2017. Rao Lei. Effect and Mechanism of High Pressure Carbon Dioxide Binding Temperature on Spores of Bacillus Subtilis[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[26]ChenJ, Zhou C, Liu Z, et al. Divergent urinary metabolic phenotypes between major depressive disorder and bipolar disorder identified by a combined GC-MS and NMR Spectroscopic Metabonomic Approach[J]. Proteome Res, 2015, 14(8): 3382-3389.
[27]Artos F C, Lopes J A, Ojas R M, et al. Detection and quantification ofand pseudomonas aeruginosa in cow milk by near-infrared spectroscopy[J], Dairy Tecnol, 2015, 68(14): 357-365.
[28]陳全勝,張燕華,萬新民,等. 基于高光譜成像技術(shù)的豬肉嫩度檢測(cè)研究[J]. 光學(xué)學(xué)報(bào),2010,34(9):2602-2607. Chen Quansheng, Zhang Yanhua, Wan Xinmin et al. Study on Pork Tenderness Detection based on Hyperspectral Imaging Technology[J]. Journal of the Optical, 2010, 34(9): 2602-2607. (in Chinese with English abstract)
[29]Akkaya M R. Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy[J]. Food SCI Tech Mys, 2018, 55(21): 2318-2325
[30]Liu W J, Li W J, Li H G, et al, Research on the method of identifying maize haploid based on KPCA and near infrared spectrum[J]. Spectroscopy & Spectral Analysis, 2017, 32(4): 237-241.
Effect of different Peptidoglycan onspore germination and quantitative prediction
Zhu Yaodi, Zhang Jiaye, Li Miaoyun※, Zhao Lijun, Zhao Gaiming, Ma Yangyang, Ren Hongrong, Wang Wentao
(,,450000,)
() is a Gram-positive, anaerobic, spore forming pathogenic bacterium causing gastrointestinal (GI) diseases in humans and animals. The most important type that causes-associated food poisoning (FP) in humans istype A, and this illness is the third most commonly reported food-borne disease in the United States.spores are resistant to many environmental stresses and remain dormant in the environment for a long period of time. Once conditions are favorable, they can break their dormancy and initiate germination in response to a variety of compounds. Bacterial shape and cellular resistance to cytoplasmic turgor pressure are determined by peptidoglycan (PG), a polymer of repeated subunits of an N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) peptide monomer that surrounds the cytoplasmic membrane. PG can be targeted to a single germination receptor to efficiently inducespore germination. In this study,vegetative and its spore cortex peptidoglycan were used for spore germination rate (), turbidity (OD600%) and the release rate of Ca2+-DPA%. Among the existing spectroscopic methods, near-infrared spectroscopy (NIR) has been proven to be one of the most powerful tools for the qualitative and quantitative analysis of constituents in food, agricultural, wood and pharmaceutical products. The, and (OD600%) and Ca2+-DPA% were compared the effect of different peptidoglycans on spore germination, and the time-consuming and laborious shortage of spore germination rate detection, a study based on NIR combined with chemometric methods to quantitatively predict spore germination rates under different PG concentration conditions. Three preprocessed method, including MSC, SNV and centralization, were used to preprocess the original spectral. The optimal preprocessing method is SNV, and then using principal component analysis (PCA) and GA-joint interval Partial least squares (GA-siPLS) for spectral data dimensionality reduction and feature variable screening, and finally using GA-siPLS was used to rapidly predict spore, OD600%, and Ca2+-DPA% in different concentrations of PG. The results showed thatPG could effectively induce spore germination, and the best effect was induced by 10-1mg/mL. The results of were showed that thewas 95.28%, the OD600% was 29.41%, and the Ca2+-DPA release rate was 58%, while the spore PG effect was not obvious. Using GA-siPLS to screen for spore germination characteristic variables, the optimal feature intervals for, OD600%, and Ca2+-DPA% were[3, 9, 11, 14], [1, 7, 12, 15], and [7, 8, 12, 17], respectively. For the, the correlation coefficientsof the calibration set and prediction set are 0.892 4 and 0.872 6, respectively, and the root mean square error are 0.711 and 0.769 respectively. For the OD600%, the R are 0.896 3 and 0.861 1, respectively. The root mean square error are 0.189% and 0.218% respectively. For Ca2+-DPA%, the Rof the most training set and prediction set are 0.9037 and 0.884 1, respectively, and the root mean square error is 39.53% and 42.34%. The results show that the NIR combined with chemometric methods can quickly predict the spore germination rate of. This study can rapidly predict the spore germination rate, which can provide an effective means to ensure the safety of meat products.
bacteria; near-infrared spectroscopy; meat product; Peptidoglycan; spore germination; GA-siPLS;
朱瑤迪,張佳燁,李苗云,趙莉君,趙改名,馬陽陽,任宏榮,王文濤. 肽聚糖對(duì)肉制品中產(chǎn)氣莢膜梭菌芽孢萌發(fā)率影響及預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):287-293. doi:10.11975/j.issn.1002-6819.2020.04.034 http://www.tcsae.org
Zhu Yaodi, Zhang Jiaye, Li Miaoyun, Zhao Lijun, Zhao Gaiming, Ma Yangyang, Ren Hongrong, Wang Wentao. Effect of different Peptidoglycan onspore germination and quantitative prediction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 287-293. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.034 http://www.tcsae.org
2019-10-22
2020-01-07
國家自然科學(xué)基金項(xiàng)目(31571856);省高校創(chuàng)新人才計(jì)劃(18HASTIT036);河南省科技攻關(guān)項(xiàng)目(192102110216);研究生教育改革與質(zhì)量提升(19JG0703);國家現(xiàn)代農(nóng)業(yè)(肉牛/牦牛)產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-37)
朱瑤迪,講師,博士,主要從事肉品加工與安全控制研究。Email:zhu_yaodi@163.com
李苗云,博士,教授,博士生導(dǎo)師,主要從事為肉品加工與安全控制研究。Email:limy7476@126.com
10.11975/j.issn.1002-6819.2020.04.034
TS251.5
A
1002-6819(2020)-04-0287-07