魏世錦,羅貴清,劉林云,徐荷瀾,侯秀良
蒸汽閃爆處理對生姜纖維吸附性能的影響
魏世錦,羅貴清,劉林云,徐荷瀾,侯秀良※
(江南大學(xué)生態(tài)紡織教育部重點(diǎn)實(shí)驗(yàn)室,無錫 214122)
生姜纖維來源于廢棄的生姜渣,以生姜纖維資源化利用為前提,以制備一種高效處理染料廢水的生物質(zhì)吸附劑為目的,該文對生姜纖維進(jìn)行蒸汽閃爆、冷凍粉碎聯(lián)合處理得到閃爆粉碎生姜纖維吸附劑,探究了蒸汽閃爆處理及冷凍粉碎處理、不同吸附條件(吸附時(shí)間、pH值、鹽濃度和蒸汽壓強(qiáng))對生姜纖維吸附性能的影響。結(jié)果表明:蒸汽壓強(qiáng)為1.9 MPa時(shí),閃爆粉碎生姜纖維對活性染料RB19的吸附量最高,其最大吸附量(115.12 mg/g)是原生姜纖維(48.80 mg/g)、粉碎生姜纖維(54.10 mg/g)的2.36倍、2.13倍,其吸附動力學(xué)過程符合準(zhǔn)二階動力學(xué)模型(2為0.99),吸附等溫線符合 Langmuir 模型(2為0.99)。閃爆粉碎生姜纖維吸附能力經(jīng)過吸附、解吸5次循環(huán)后仍保留80%,循環(huán)吸附性能良好。掃描電鏡分析顯示,隨著蒸汽壓強(qiáng)從1.3升高到1.9MPa,生姜纖維內(nèi)表面暴露出來,染料分子RB19更容易進(jìn)入生姜纖維內(nèi)部。X射線衍射(X-ray diffraction)分析顯示,閃爆粉碎生姜纖維與生姜纖維相比,結(jié)晶指數(shù)從39%下降到20%,無定形區(qū)擴(kuò)大,從而提高其吸附能力。研究結(jié)果可為生姜纖維用作染料廢水吸附劑提供參考依據(jù)。
吸附;纖維;生姜;蒸汽閃爆;活性染料
世界上商業(yè)染料有100000種,每年染料消耗量超過7萬t[1],其中45%屬于活性染料?;钚匀玖峡蓪γ?、粘膠等纖維素纖維染色[2-3],其染色廢水中含有20%~60%沒有固著在纖維素纖維上的活性染料[4],因此,紡織印染企業(yè)會產(chǎn)生大量的活性染料廢水,活性染料廢水處理已成為重要研究方向?;钚匀玖蟁B19廣泛用于紡織品染色,是不易生物降解的可持久污染物,因此在許多研究中通常用作模型染料[5]。
處理染色廢水有多種方法,包括生物處理、絮凝、膜分離過程、化學(xué)沉淀、吸附和離子交換等方法。在這些處理方法中,采用吸附劑吸附廢水中的殘留染料已被證明是一種經(jīng)濟(jì)、有效的方法[5-6],而吸附劑需環(huán)保、成本低、吸附性能好并可重復(fù)利用。采用天然廢棄物制備吸附劑處理染料廢水已成為當(dāng)前的研究熱點(diǎn)。小麥秸稈[7]、廢茶[8]、椰子葉[9]、油茶堅(jiān)果殼[10]、蔗渣纖維[11]、木薯渣纖維[12]等天然木質(zhì)纖維素廢棄物已被用作吸附劑處理染料廢水。2018年全球生姜年產(chǎn)量約為835萬t[13],主要分布在中國,印度等亞洲國家。生姜經(jīng)過提取姜汁過程后產(chǎn)生大量的生姜渣,大約有500萬t[14];利用價(jià)值低,大部分被丟棄。生姜渣中90%為生姜纖維。因此,生姜纖維可作為吸附劑原料之一。
提高木質(zhì)纖維素纖維吸附劑的吸附性能是研究者感興趣的課題。文獻(xiàn)[8]報(bào)道了對天然廢茶進(jìn)行陽離子改性提高其吸附性能,但需消耗大量的酸。已有研究表明[15],蒸汽閃爆技術(shù)是一種高效、綠色的木質(zhì)纖維素材料預(yù)處理技術(shù),目前已廣泛用于處理棉稈皮、甲殼素等。棉稈皮等生物質(zhì)材料經(jīng)過蒸汽閃爆后的化學(xué)組成和物理結(jié)構(gòu)均發(fā)生顯著變化,如材料尺寸顯著變小、結(jié)晶度降低、比表面積增大。木質(zhì)纖維素纖維經(jīng)過粉碎后,粒徑變小,比表面積增大[16],對提高吸附量也會有幫助,但是,纖維一般較柔韌,難以采用普通的粉碎機(jī)粉碎。冷凍粉碎通過將纖維素纖維冷凍(-196 ℃)變脆,可在短時(shí)間內(nèi)粉碎且粒徑更小。目前還未見到有關(guān)蒸汽閃爆、冷凍粉碎聯(lián)合處理促進(jìn)木質(zhì)纖維素纖維吸附性能的研究報(bào)道。
本文對生姜纖維進(jìn)行蒸汽閃爆和冷凍粉碎聯(lián)合處理得到生姜纖維粉末吸附劑,并用于活性染料RB19的吸附。研究蒸汽閃爆條件、吸附條件對吸附劑吸附能力的影響,并從吸附劑表面形貌,結(jié)晶指數(shù)等方面分析、解釋其吸附性能提高的原因,以期為生姜纖維用作染料廢水吸附劑原料提供參考。
采用山東產(chǎn)的生姜,自制生姜纖維,從清洗過的生姜渣中分揀纖維,細(xì)度為98.83dtex,平均長度為49.6mm;活性藍(lán)19,無錫菲諾染料有限公司;N-N二甲基甲酰胺、三氯甲烷、鹽酸、氫氧化鈉、無水碳酸鈉、乙醇、丙酮均為分析純,國藥集團(tuán)化學(xué)制藥有限公司。
1.2.1 生姜纖維蒸汽閃爆處理
使用蒸汽閃爆試驗(yàn)臺(QBS-200B,中國鶴壁正道生物能源有限公司)對生姜纖維進(jìn)行蒸汽閃爆,每次閃爆時(shí),閃爆倉中可放10 g物料。根據(jù)課題組前期研究成果,蒸汽閃爆壓強(qiáng)對材料結(jié)構(gòu)、性能有重要影響,本文采用1.3,1.6,1.9,2.1 MPa 4個(gè)不同的蒸汽壓強(qiáng)處理150s后閃爆[17-18]。蒸汽閃爆前,把生姜纖維與水1∶1混合浸泡24 h,然后對其進(jìn)行蒸汽閃爆處理。采用烘箱對閃爆后的生姜纖維在105 ℃下干燥,獲得干燥的閃爆生姜纖維(含水率為8%)。
1.2.2 冷凍粉碎處理
在粉碎機(jī)(DC-3,中國河北北辰科技股份有限公司)通入液氮(-196℃),采用25000r/min的旋轉(zhuǎn)速度對物料進(jìn)行粉碎,每分鐘粉碎10 g。生姜纖維、閃爆生姜纖維經(jīng)粉碎后粒徑分別為80、120m。
1.2.3 3種生姜纖維吸附劑
為比較蒸汽閃爆處理、冷凍粉碎處理對生姜纖維吸附性能的影響,本文采用3種生姜纖維吸附劑進(jìn)行比較,分別是剪短為1cm的生姜纖維(GF)、經(jīng)過冷凍粉碎所得的粉碎生姜纖維(FDGF)、經(jīng)過蒸汽閃爆、冷凍粉碎聯(lián)合處理所得的閃爆粉碎生姜纖維(EGFP)。
在做吸附試驗(yàn)前,首先對商業(yè)RB19染料進(jìn)行提純,以保證模擬染色廢水中染料的濃度。提純過程:50g商業(yè)RB19染料先溶于250g N-N二甲基甲酰胺,然后加500mL三氯甲烷使其沉降得到純度為95%的RB19染料[5,19-20]。
由于活性染料在染色過程中不可避免發(fā)生水解,因此,在做吸附試驗(yàn)前,需要做模擬染色以得到染色廢水。模擬染色廢液的制備過程:提純后的RB19先溶于5g/L碳酸鈉溶液中,然后在80℃加熱1h,模擬RB19染色過程,得到20g/L RB19染色廢液。然后使用鹽酸將染色廢液調(diào)節(jié)至中性[5]。
采用同樣的吸附條件比較了生姜纖維(GF),粉碎生姜纖維(FDGF),閃爆粉碎生姜纖維(EGFP)3種吸附劑的吸附能力。在21℃室溫下,研究了不同pH值(2~10)、NaCl濃度(0.28~45g/L)、初始染液質(zhì)量濃度(700~1 500 mg/L)、時(shí)間(0~16h)及不同蒸汽壓強(qiáng)(1.3~2.1MPa)對閃爆粉碎生姜纖維吸附能力的影響。所有試驗(yàn)均重復(fù)3次[21]。
在吸附試驗(yàn)中,平衡吸附量q(mg/g)和在時(shí)間(h)時(shí)的吸附量q(mg/g)分別根據(jù)式(1)和(2)計(jì)算[21]
式中C和C分別是在開始和吸附平衡時(shí)廢液中染料質(zhì)量濃度,mg/L;q和q分別是在吸附時(shí)間和吸附平衡時(shí)的吸附量,mg/g;是所用吸附劑的質(zhì)量,g。
準(zhǔn)一階模型見方程式[21](3)
準(zhǔn)二階模型見方程式(4)
式中1是準(zhǔn)一階速率常數(shù),h-1;2是準(zhǔn)二階速率常數(shù),g/(mg·h)。
Langmuir模型基于吸附在均勻吸附劑表面上形成單層覆蓋的假設(shè),見方程式(5)如下[21]
式中max是吸附劑的最大單層吸附量,mg/g;是Langmuir常數(shù),mg/L;其與吸附位點(diǎn)的吸附能力和親和力有關(guān)。
Freundlich模型是一個(gè)經(jīng)驗(yàn)公式,假設(shè)多層吸附發(fā)生在非均勻表面上,吸附熱在表面上不均勻分布,見方程式(6)[21]
式中F是Freundlich常數(shù),1/是吸附指數(shù),它們分別與吸附量和吸附強(qiáng)度有關(guān)。
在吸附試驗(yàn)中,染料去除率(%)如式(7)所示
把吸附過染料的閃爆粉碎生姜纖維1g放入20mL、0.1g/L NaOH溶液中,重復(fù)解吸3次后用于下一次循環(huán)吸附試驗(yàn)。
1.6.1 微觀形態(tài)表征
使用SU1510掃描電子顯微鏡(Hitachi Japan,Ltd.)觀察樣品的表面形態(tài)。在掃描之前,用薄金層濺射涂覆所有樣品。
1.6.2 結(jié)晶指數(shù)測試
使用D2 PHASER X射線衍射儀(Bruker,Germany)獲得生姜纖維的X射線衍射(XRD)曲線。用Segal方程(8)計(jì)算樣品的晶體指數(shù)[22](CI, crystal index)
使用Scheffé檢驗(yàn)將所有獲得的數(shù)據(jù)點(diǎn)進(jìn)行單因素方差分析,置信區(qū)間為95%,值小于0.05表示差異顯著[23]。
從圖1可以看出隨著蒸汽壓強(qiáng)從1.3升高到1.9MPa,閃爆粉碎生姜纖維對RB19的吸附能力增強(qiáng);蒸汽壓強(qiáng)從1.9升高到2.1MPa,吸附量趨于穩(wěn)定。表明閃爆生姜纖維的較佳蒸汽壓強(qiáng)為1.9MPa。
注:吸附時(shí)間8h, pH值2, 鹽濃度0.28g·L-1
2.2.1 pH值
圖2a為吸附時(shí)間為8h,鹽質(zhì)量濃度為0.28g/L,初始染料質(zhì)量濃度為1 000 mg/L,蒸汽閃爆壓強(qiáng)為1.3MPa時(shí),不同pH值對閃爆粉碎生姜纖維吸附能力的影響。隨著pH值從2增加到10,閃爆粉碎生姜纖維的吸附量降低。RB19的化學(xué)結(jié)構(gòu)[24]含有大量帶負(fù)電荷的磺酸基,而閃爆粉碎生姜纖維主要成分為纖維素,表面凈電荷為負(fù)電荷,因此,RB19染料與閃爆粉碎生姜纖維之間排斥力較大。染色廢液的pH值趨近于2,閃爆粉碎生姜纖維表面的一部分負(fù)電荷被H+中和,進(jìn)而降低RB19染料與閃爆粉碎生姜纖維之間排斥力,從而提高閃爆粉碎生姜纖維的吸附性能;隨著染色廢液的pH值從2增加到10,帶負(fù)電荷的生姜纖維和帶負(fù)電荷的RB19之間排斥力逐漸增大,從而閃爆粉碎生姜纖維的吸附能力逐漸降低,因此pH為2時(shí)吸附量較大。
2.2.2 NaCl濃度
如圖2b所示,在吸附時(shí)間為8h, pH值為2,初始染料質(zhì)量濃度為1 400 mg/L,蒸汽閃爆壓強(qiáng)為1.9MPa時(shí),當(dāng)NaCl質(zhì)量濃度為45g/L時(shí),閃爆粉碎生姜纖維的吸附量最大;隨著染色廢液中NaCl質(zhì)量濃度從0.28提高到45g/L,大量Na+會抵消閃爆粉碎生姜纖維表面的負(fù)電荷[25],從而降低閃爆粉碎生姜纖維與RB19之間的排斥力,閃爆粉碎生姜纖維的吸附性能相應(yīng)增強(qiáng)。但根據(jù)紡織染整工業(yè)水污染物排放標(biāo)準(zhǔn)GB4287—2012規(guī)定氯元素質(zhì)量濃度低于15mg/L才允許排放。因此,除了染色廢液中已存在的質(zhì)量濃度大約為0.28g/L NaCl(這是RB19模擬染色過程不可避免產(chǎn)生的鹽),吸附試驗(yàn)不宜再添加鹽。
圖2 pH值和NaCl質(zhì)量濃度對閃爆粉碎生姜纖維吸附性能的影響
2.2.3 時(shí)間
圖3表明當(dāng)吸附RB19時(shí),生姜纖維(GF)、粉碎生姜纖維(FDGF)和閃爆粉碎生姜纖維(EGFP)依次吸附12,8,8h達(dá)到平衡,所得吸附量為平衡吸附量。GF,F(xiàn)DGF和EGFP對RB19染料的吸附結(jié)果按照準(zhǔn)一階動力學(xué)和準(zhǔn)二階動力學(xué)模型擬合,得到的擬合結(jié)果顯示相對于準(zhǔn)一階模型決定系數(shù)而言,準(zhǔn)二階模型的決定系數(shù)更高(表1)。同時(shí)從表1可以看出,試驗(yàn)得到的最大吸附量與一階擬合得到的吸附量差距較大,與二階擬合所得吸附量相差不大。因此,生姜纖維、粉碎生姜纖維、閃爆粉碎生姜纖維吸附符合二階動力學(xué)模型,其吸附過程發(fā)生了物理吸附和化學(xué)吸附,且吸附速率受化學(xué)吸附機(jī)理的控制[26]。
注:pH值2,鹽濃度0.28g·L-1,初始染料濃度700~1 000 mg·L-1,蒸汽壓強(qiáng)1.3 Mpa
表1 3種樣品吸附RB19的動力學(xué)模型參數(shù)
注:e,exp和e,cal分別是3種樣品吸附RB19的試驗(yàn)平衡吸附量和理論計(jì)算平衡吸附量;1和2分別是準(zhǔn)一階、準(zhǔn)二階速率常數(shù);R是決定系數(shù)。
Note:e,expande,calare the experimental and calculated equilibrium amounts of adsorption dye RB 19 on three samples, respectively;1,2are reaction rate constant of pseudo-first-order and pseudo-second-order kinetic models, respectively;Ris determination coefficient.
如圖4a,b,c所示,隨著初始染料濃度的提高,生姜纖維、粉碎生姜纖維和閃爆粉碎生姜纖維的吸附量相應(yīng)提高直至達(dá)到其最大吸附能力,同時(shí)其去除率相應(yīng)下降。如圖4 d,e,f和表2所示,生姜纖維、粉碎生姜纖維和閃爆粉碎生姜纖維吸附RB19的過程符合Langmuir吸附等溫線,決定系數(shù)(R均為0.99)較高表明了RB19在3種樣品上的吸附是具有均勻表面的單層吸附,Langmuir等溫模型計(jì)算的生姜纖維、粉碎生姜纖維、閃爆粉碎生姜纖維的最大吸附能力分別是48.80,54.10,115.12 mg/g,粉碎生姜纖維和閃爆粉碎生姜纖維的吸附能力分別是生姜纖維的1.11,2.36倍。結(jié)果表明生姜纖維經(jīng)過液氮粉碎后吸附量沒有顯著增加,而生姜纖維經(jīng)過蒸汽閃爆,冷凍粉碎聯(lián)合處理后吸附量顯著增加。
表2 三種樣品吸附RB19的Langmuir和Freundlich等溫線模型參數(shù)
注:pH值2,鹽濃度0.28g·L-1,吸附時(shí)間8h,蒸汽壓強(qiáng)1.3~1.9Mpa
如圖5所示,閃爆粉碎生姜纖維吸附能力經(jīng)過5次吸附-解吸循環(huán)后還保留80%,仍然具有較好的吸附能力。閃爆粉碎生姜纖維首次吸附量為91.80mg/g,其經(jīng)過5次循環(huán)以后的吸附量為73.40mg/g,吸附性能有所下降,但是5次循環(huán)以后,閃爆粉碎生姜纖維的吸附量仍可保持80%,可循環(huán)使用,表明本文制備的閃爆粉碎生姜纖維吸附劑具有良好的重復(fù)使用性。
注:pH值2,鹽濃度0.28g·L-1,吸附時(shí)間8h,初始染料濃度1 500 mg·L-1,蒸汽壓強(qiáng)1.9 MPa
2.5.1 微觀形貌
圖6顯示生姜纖維經(jīng)過蒸汽閃爆后微觀形貌變化,其中生姜纖維經(jīng)過一定蒸汽閃爆壓強(qiáng)處理后表面結(jié)構(gòu)被破壞,隨著蒸汽壓強(qiáng)提高,生姜纖維表面結(jié)構(gòu)破壞越嚴(yán)重,與生姜纖維相比,1.3MPa閃爆生姜纖維的內(nèi)部結(jié)構(gòu)部分暴露出來,1.6MPa和1.9MPa閃爆生姜纖維外表面結(jié)構(gòu)被完全破壞,生姜纖維內(nèi)表面進(jìn)一步暴露出來。并且有文獻(xiàn)顯示幾個(gè)RB19分子一般以一個(gè)三軸為33.4?×11.4?×8.8?的小橢球體形式存在[27]。因此,閃爆粉碎生姜纖維在吸附RB19過程中,RB19更容易進(jìn)入生姜纖維內(nèi)部從而提高吸附性能。這也是蒸汽閃爆的生姜纖維吸附性能提高的重要因素。
圖6 生姜纖維經(jīng)過蒸汽閃爆前、后的微觀形貌(×500倍)
圖7顯示生姜纖維的長度為1cm左右,粉碎生姜纖維為120m,閃爆粉碎生姜纖維為80m。根據(jù)表1結(jié)果,生姜纖維與粉碎生姜纖維的最大吸附能力分別為48.80、54.10 mg/g,二者相差不大表明經(jīng)粉碎后的纖維尺寸減小對吸附量沒有顯著影響。
圖7 生姜纖維的照片,粉碎生姜纖維和閃爆粉碎生姜纖維的微觀形貌(×200倍)
2.5.2 結(jié)晶指數(shù)
生姜纖維由規(guī)則的結(jié)晶區(qū)和無序的無定形區(qū)組成,結(jié)晶指數(shù)越低,無定形區(qū)越大。如圖8所示,生姜纖維經(jīng)過一定蒸汽壓強(qiáng)閃爆后結(jié)晶指數(shù)減少,生姜纖維結(jié)晶指數(shù)是39%,閃爆生姜纖維在1.3,1.6,1.9 MPa的結(jié)晶指數(shù)分別為35%,29%,20%,表明生姜纖維經(jīng)過一定蒸汽壓強(qiáng)閃爆后無定形區(qū)擴(kuò)大,而纖維對RB19染料的吸附主要發(fā)生在不規(guī)則的無定形區(qū)。因此,閃爆生姜纖維可以吸附更多的RB19染料。并且,隨著蒸汽壓強(qiáng)從1.3到1.9MPa,閃爆生姜纖維的結(jié)晶指數(shù)從35%降低到20%,從而使閃爆生姜纖維不規(guī)則的無定形區(qū)進(jìn)一步擴(kuò)大,從而促進(jìn)閃爆生姜纖維對RB19的吸附能力進(jìn)一步提高。綜合來說,對于生姜纖維來說,蒸汽壓強(qiáng)是提高生姜纖維對RB19吸附能力的關(guān)鍵因素。
圖8 生姜纖維和閃爆粉碎生姜纖維的XRD譜圖
閃爆粉碎生姜纖維的最大吸附量為115.12mg/g,與文獻(xiàn)報(bào)道比較,陽離子改性茶葉[28]、活性炭[29]和廢棄棉秸稈[30]的吸附量分別為71.9、39、35.7mg/g,閃爆粉碎生姜纖維的吸附能力分別是其1.60,2.95和3.22倍。蒸汽閃爆處理可顯著提高生姜纖維的吸附能力。
1)生姜纖維經(jīng)過蒸汽閃爆、冷凍粉碎聯(lián)合處理后對活性染料RB19的吸附量由48.80mg/g提高到115.12mg/g。
2)在pH值 2-10范圍內(nèi),閃爆粉碎生姜纖維在pH 2時(shí)吸附量最大,吸附符合Langmuir熱力學(xué)模型(2均為0.99)和準(zhǔn)二級動力學(xué)模型(2均為0.99)。
3)閃爆粉碎生姜纖維較好的染料吸附能力是由于經(jīng)過蒸汽閃爆后,生姜纖維外表面結(jié)構(gòu)被破壞,整體變疏松,RB19更容易進(jìn)入生姜纖維無定形區(qū)從而提高吸附性能;同時(shí),結(jié)晶指數(shù)從39%下降到20%,擴(kuò)大的無定形區(qū)使生姜纖維可吸附更多的染料。
[1]Husain Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review[J]. Critical Reviews in Biotechnology, 2006, 26(4): 201-221.
[2]Liu Linyun, Mu Bingnan, Li Wei, et al. Cost-effective reactive dyeing using spent cooking oil for minimal discharge of dyes and salts[J]. Journal of Cleaner Production, 2019, 227: 1023-1034.
[3]Mu Bingnan, Liu Linyun, Li Wei, et al. High sorption of reactive dyes onto cotton controlled by chemical potential gradient for reduction of dyeing effluents[J]. Journal of Environmental Management, 2019, 239: 271-278.
[4]Ashrafi S. D, Kamani H, Soheil H. Optimization and modeling of process variables for adsorption of basic blue 41 on NaOH-modified rice husk using response surface methodology[J]. Desalination and Water Treatment, 2015, 57(30): 14051-14059.
[5]Xu Helan, Zhang Yue, Jiang Qiouran, et al. Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater[J]. Journal of Environmental Management, 2013, 125: 33-40.
[6]Li Wei, Mu Bingnan, Yang Yiqi. Feasibility of industrial scale treatment of dye wastewater via bioadsorption technology[J]. Bioresource Technology, 2019, 277: 157-170.
[7]張繼義,蒲麗君,李根. 秸稈生物碳質(zhì)吸附劑的制備及其吸附性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):104-109. Zhang Jiyi, Pu Lijun, Li Gen. Preparation of biochar adsorbent from straw and its adsorption capability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 104-109. (in Chinese with English abstract)
[8]Liu Chunping, Pi Yongrui, Ju Guodong, et al. Adsorptive removal of Cu2+and direct sky blue 5B from aqueous solutions by acid treated tea waste-application of response surface methodology[J]. Desalination and Water Treatment, 2019, 143: 256-267.
[9]Ali H J,Ishak A R R, Nur N K K. Adsorption of methylene blue onto coconut (cocos nucifera ) leaf: optimization, isotherm and kinetic studies[J]. Desalination and Water Treatment, 2015, 57(19): 8839-8853.
[10]Yu Yanling, Wan Yuan, Shang Hongru, et al. Corncob-to-xylose residue (ccxr) derived porous biochar as an excellent adsorbent to remove organic dyes from wastewater[J]. Surface and Interface Analysis, 2019, 51(2): 234-245.
[11]王攀峰,邰文亮,楊賢,等. 改性甘蔗渣吸附水中Th(Ⅳ)的研究[J]. 化工新型材料,2019,9(147):174-186. Wang Panfeng, Tai Wenliang, Yang Xian, et al. Study on the adsorption of thorium ion by modified bagasse[J]. New Chemical Materials, 2019, 9(147): 174-186.(in Chinese with English abstract)
[12]謝新玲,黃婕,張友全,等. 改性磁性木薯渣微球的制備及對Pb(Ⅱ)的吸附[J]. 化工新型材料,2019,47(8):158-162. Xie Xinling, Huang Jie, Zhang Youquan, et al. Preparation of modified magnetic cassava residue microsphere and its adsorption on Pb(Ⅱ)[J]. New Chemical Materials, 2019, 47(8): 158-162. (in Chinese with English abstract)
[13]Gupta RK. Ginger-a wonderful spice: An overview[J]. Vegetos, 2008, 21(1): 1-10.
[14]Mao Qianqian, Xu Xiaoyu, Cao Shiyu, et al. Bioactive compounds and bioactivities of ginger [J]. Foods, 2019, 8(6): 185.
[15]Hou Xiuliang, Zhang Li, Wizi Jakpa, et al. Preparation and properties of cotton stalk bark fibers using combined steam explosion and laccase treatment[J]. Journal of Applied Polymer Science, 2017, 134(32): 45058.
[16]Wen G, Cookson P G. The effect of pH and temperature on the dye sorption of wool powders[J]. Journal of Applied Polymer Science, 2009(116): 2216-2226.
[17]Yuan Jiugang, Wang Qiang, Fan Xuerong, et al. Enhancing dye adsorption of wool fibers with 1-butyl-3-methylimidazolium chloride ionic liquid processing[J]. Textile Research Journal, 2010, 18(80): 1898-1904.
[18]Hou Xiuliang, Sun Fangfang, Zhang Li, et al. Chemical-free extraction of cotton stalk bark fibers by steam flash explosion[J]. Bioresource Technology, 2014, 9(4): 6950-6967.
[19]Chen Luyi, Wang Bijia, Chen Jiangang, et al. Characterization of dimethyl sulfoxide treated wool and enhancement of reactive wool dyeing in non-aqueous medium[J]. Textile Research Journal, 2015, 86(5): 533-542.
[20]Mehta H U, Ravikrishnan M R, Chitale A G. A study of the abnormal viscosity of prociondyed cellulose in cuprammonium hydroxide[J]. Journal of the Society of Dyers and Colourists, 1962, 78(11): 552-558.
[21]Song Kaili, Xu Helan, Xu Lan, et al. Cellulose nanocrystal reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution[J]. Bioresource Technology, 2017, 232: 254-262.
[22]Zhang Pan, Zhang Nan, Wang Qiang, et al. Disulfide bond reconstruction: A novel approach for grafting of thiolated chitosan onto wool[J]. Carbohydrate Polymers, 2019, 203: 369-377.
[23]Ibrahim R K, El-Shafie A, Hin L S, et al. A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution[J]. Journal of Environmental Management, 2019, 235: 521-534.
[24]Kafun Wana-Kleinschek, Simona S A, Ribitsch V. Surface characterization and adsorption abilities of cellulose fibers[J]. Polymer Engineering and Science, 1999, 39(8): 1412-1424.
[25]柯貴珍,周夢梅,朱坤迪. 天然植物染料紫蘇對棉織物的染色性能研究[J]. 染整技術(shù),2019,41(4):33-36. Ke Guizhen, Zhou Mengmei, Zhu Kundi. Study on dyeing performance of cotton fabric with natural dye form perilla[J]. Textile Dyeing and Finishing Journal, 2019, 41(4): 33-36. (in Chinese with English abstract)
[26]高秀紅,劉子明,滕洪輝,等. 熱解溫度對花生殼生物質(zhì)炭吸附去除水中4-硝基酚的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(7):224-230. Gao Xiuhong, Liu Ziming, Teng Honghui, et al. Adsorption-remove effect of p-nitrophenol in water by peanut shell biochar at different pyrolysis temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 224-230. (in Chinese with English abstract)
[27]Shimode M, Urakawa H, Yamanaka S. Evaluation of size and shape of copper phthalocyanine tetrasulphonic acid tetra sodium salt and reactive blue 19 in aqueous solution[J]. Transaction, 1996, 52(6): 55-62.
[28]Wong S, Tumari H H, Ngadi N, et al. Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (pei-stl)[J]. Journal of Cleaner Production, 2019, 206: 394-406.
[29]Ahmad A A, Hameed B H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 298-303.
[30]Tun? ?zlem, Tanac H, Aksu Z. Potential use of cotton plant wastes for the removal of remazol black B reactive dye[J]. Journal of Hazardous Materials, 2009, 163(1): 187-198.
Effect of steam explosion on adsorption properties of ginger fiber
Wei Shijin, Luo Guiqing, Liu Linyun, Xu Helan, Hou Xiuliang※
(214122)
Ginger fiber(GF) is not suitable for textile due to its coarseness and it is usually disposed as wastes. This paper introduces a technology to make ginger fiber a valuable adsorbent of dyes in dyeing wastewater. The new technology is to explode the ginger fiber first by steam, and then frozen and disintegrate it to powder. We investigated the impact of a variety of factors in processing the ginger fiber on its ability to adsorb the dye RB19 in dyeing wastewater, which included the conditions under which the stream explosion was conducted, concentration of NaCl, and pH value. The surface morphologies and crystallization indexes of the ginger fiber before and after steam explosion were analyzed to elucidate the mechanisms underlying the improved adsorption of ginger fiber after steam explosion. Experimental results showed that steam explosion conducted under pressure1.9 MPa and lasting 150 s increased the adsorption from 48.80 to 115.12 mg/g. It was also found that several RB19 molecules aggregated to an ellipsoid with three axes: 33.4 ?×11.4 ?×8.8 ?. Breaking the ginger fiber surface enhanced the movement of RB19 molecules into the exploded ginger fiber powder(EGFP) and steam explosion made EGFP much richer in GF than in crystal index (CI). Increasing the pressure under which the steam explosion was conducted from 1.3 to 1.9 MPa reduced CI in EGFP from 35% to 20%, indicated that the steam explosion opened the amorphous region in the ginger fiber and that the expansion increased with pressure. As such, it enhanced the adsorption of RB19. The increased adsorption was mainly due to the broken surface. In addition, EGFP became small particles with a diameter of 80m, thereby enlarging the pores. Such structural changes made it easy for the dye molecules to move into the amorphous region of EGFP and improved its adsorption consequently. The steam explosion also increased the adsorbing rate, reducing the time required from the adsorption to reach equilibrium from 12 h to 8 h. The adsorption of RB 19 by the processed ginger fiber followed a second-order kinetic and the Langmuir thermodynamic model. After five cycles of adsorption-desorption, the adsorption capacity of the ginger fiber was still 80% of its original capacity. It is concluded that that steam explosion can effectively improve the adsorption capacity of ginger fiber. As a biomass adsorbent, EGFP can not only ameliorate the detrimental impact of dyeing wastewater on environmental but also turns a waste into a decontaminant amendment. It has potential applications in environmental engineering.
adsorption; fiber; ginger; steam explosion; reactive dye
魏世錦,羅貴清,劉林云,徐荷瀾,侯秀良. 蒸汽閃爆處理對生姜纖維吸附性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):316-322. doi:10.11975/j.issn.1002-6819.2020.04.038 http://www.tcsae.org
Wei Shijin, Luo Guiqing, Liu Linyun, Xu Helan, Hou Xiuliang. Effect of steam explosion on adsorption properties of ginger fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 316-322. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.038 http://www.tcsae.org
2019-09-20
2019-12-26
中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(NO. JUSRP51907A,JUSRP51723B);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(蘇政辦發(fā)[2014]37號)
魏世錦,主要從事生物基紡織材料研究。Email:1746133829@qq.com
侯秀良,博士,教授,研究方向?yàn)樯锘徔棽牧?。Email:houxiuliang@163.com
10.11975/j.issn.1002-6819.2020.04.038
X712
A
1002-6819(2020)-04-0316-07