• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      豎向非均質(zhì)飽和地基中埋置扭轉(zhuǎn)荷載的動(dòng)力響應(yīng)

      2020-04-10 06:54鄒新軍賀瓊覃玉蘭

      鄒新軍 賀瓊 覃玉蘭

      摘 ? 要:為探討豎向非均質(zhì)飽和地基中埋置簡(jiǎn)諧扭轉(zhuǎn)荷載的動(dòng)力響應(yīng),考慮地基為飽和半空間,并假定土體剪切模量隨深度呈指數(shù)函數(shù)非線性分布,基于Biot固結(jié)理論與彈性動(dòng)力學(xué)原理,建立飽和地基扭轉(zhuǎn)振動(dòng)的動(dòng)力微分方程,引入邊界條件并利用Hankel變換方法求解獲得變換域內(nèi)的剪應(yīng)力、切向位移表達(dá)式,進(jìn)而通過(guò)Hankel逆變換求得飽和地基內(nèi)部的剪應(yīng)力、切向位移解答,據(jù)此基于Mathematica編制出相應(yīng)計(jì)算程序,并通過(guò)參數(shù)分析發(fā)現(xiàn):地基土剪應(yīng)力、切向位移沿徑向呈現(xiàn)出明顯的波動(dòng)規(guī)律,曲線波動(dòng)頻率隨荷載頻率增大而增大;荷載作用面土體切向位移最大,剪應(yīng)力發(fā)生突變,主要影響范圍是荷載作用面上、下各兩倍荷載作用半徑(2a)區(qū)域;土體最大切向位移隨荷載埋深h增大而減小,h = 2a時(shí)最大切向位移下降90%,h > 4a時(shí),最大切向位移近似為零.

      關(guān)鍵詞:飽和地基;埋置扭轉(zhuǎn)荷載;動(dòng)力響應(yīng);剪切模量;Hankel變換

      中圖分類號(hào):TU471.4 ? ? ? ? ? ? ? ?? ?文獻(xiàn)標(biāo)志碼:A

      Dynamic Response of Buried Torsional Load in Vertically

      Non-Homogeneous Saturated Soil

      ZOU Xinjun?覮,HE Qiong,QIN Yulan

      (College of Civil Engineering,Hunan University,Changsha 410082,China)

      Abstract:To discuss the dynamic response of buried harmonic torsional load in vertically non-homogeneous saturated soil,the soil shear modulus was assumed as a nonlinear distribution with the depth defined as an exponential function,and the dynamic differential equations of half space were established by using the Biot's consolidation theory and elastic-dynamic theory. The expressions of stress and tangential displacement in the Hankel transform domain were then acquired by solving the dynamic differential equations using the method of Hankel transform,and the true stress and tangential displacement can be obtained by Hankel inverse transformation as well. The corresponding calculation program by Mathematica was compiled based on the obtained solutions. A detailed parameter analysis completed by the program indicates that,the stress and tangential displacement of the soil show obvious fluctuations with the change of radius,and the frequency of fluctuant curves increases with the loading frequency. In addition,the maximum tangential displacement of soil occurs and there is a sharp change of stress on the loading surface. The influence range of the buried harmonic torsional load is about two times the action radius to the loading surface. Furthermore,the largest tangential displacement of the soil is negatively correlated with the depth of buried load,and it is reduced by 90% when the depth of buried load is 2 times the action radius. When the depth of buried load is greater than 4 times the action radius,the largest tangential displacement is approximately equal to zero.

      Key words:saturated soil;buried torsional load;dynamic response;shear modulus;Hankel transform

      彈性半空間的動(dòng)力響應(yīng)問(wèn)題在巖土工程中具有舉足輕重的地位,該問(wèn)題在土-結(jié)構(gòu)物的動(dòng)力相互作用、地震工程、基礎(chǔ)振動(dòng)等領(lǐng)域均引起了國(guó)內(nèi)外學(xué)者的關(guān)注.隨著我國(guó)經(jīng)濟(jì)發(fā)展,近海工程建設(shè)如火如荼,如跨海大橋、海上風(fēng)力發(fā)電機(jī)以及海上平臺(tái)等,這些結(jié)構(gòu)物受力較復(fù)雜,不僅要承受自然環(huán)境產(chǎn)生的風(fēng)力、波浪力以及地震荷載,還要承受使用過(guò)程中的運(yùn)轉(zhuǎn)荷載,其不可避免地會(huì)受到扭轉(zhuǎn)荷載的影響. 同時(shí),實(shí)際工程中基礎(chǔ)大多具有一定埋深,基礎(chǔ)承受扭轉(zhuǎn)動(dòng)荷載時(shí),周圍土體亦會(huì)承受基礎(chǔ)所傳遞的埋置扭轉(zhuǎn)動(dòng)荷載,因此研究彈性半空間中埋置扭轉(zhuǎn)荷載的動(dòng)力響應(yīng)問(wèn)題,有助于進(jìn)一步掌握地基基礎(chǔ)的承載變形特性.

      Lamb[1]最先對(duì)彈性半空間的動(dòng)力學(xué)問(wèn)題進(jìn)行研究,其分別考慮了半空間表面作用和內(nèi)部埋置的法向線荷載與點(diǎn)荷載等四種典型荷載. Chao[2]研究了彈性半空間表面受水平、豎向荷載時(shí)的動(dòng)力響應(yīng)問(wèn)題.王貽蓀[3]研究了豎向集中簡(jiǎn)諧荷載作用于彈性半空間表面的問(wèn)題,采用拉普拉斯變換方法獲得了特定條件下半空間表面位移的精確解. Reissner和Sagoci[4]首次研究了彈性半空間表面基礎(chǔ)受扭轉(zhuǎn)荷載作用下的響應(yīng)問(wèn)題. Rahman[5]在Reissner的理論基礎(chǔ)上進(jìn)一步對(duì)彈性半空間內(nèi)部埋置剛性板的扭轉(zhuǎn)振動(dòng)問(wèn)題進(jìn)行了研究. 自Biot[6] 提出飽和多孔介質(zhì)波的傳播理論,并推導(dǎo)出土體的多維固結(jié)方程以來(lái),不少學(xué)者開(kāi)始在此理論基礎(chǔ)上研究飽和半空間的動(dòng)力學(xué)問(wèn)題. Philippacopoulos[7]考慮多孔彈性半空間中埋置點(diǎn)源荷載,利用傅立葉變換與漢克爾變換方法求解地基土的位移. 陳勝立等[8]對(duì)飽和地基中埋置簡(jiǎn)諧豎向集中荷載下的動(dòng)力響應(yīng)問(wèn)題進(jìn)行研究,分析了飽和地基土表面豎向位移的變化規(guī)律. Chen等[9]研究飽和地基中埋置任意荷載的三維動(dòng)力響應(yīng)問(wèn)題,求解了彈性半空間中的應(yīng)力、位移分量. 張智卿等[10]研究了均質(zhì)非飽和滯回阻尼土層中彈性支撐樁的扭轉(zhuǎn)振動(dòng). 陳剛等[11]對(duì)半空間飽和土體中埋置扭轉(zhuǎn)簡(jiǎn)諧荷載的穩(wěn)態(tài)響應(yīng)問(wèn)題進(jìn)行研究,分析了土體參數(shù)對(duì)響應(yīng)的影響規(guī)律.

      以上研究均視地基為各向同性彈性半空間,但實(shí)際上地基土在沉積過(guò)程中會(huì)受到各個(gè)方向有效應(yīng)力的影響,具有一定的各向異性,主要有徑向非均質(zhì)性和豎向非均質(zhì)性兩種情況. Naggar[12]研究了徑向非均勻地基中土體的豎向、扭轉(zhuǎn)動(dòng)力響應(yīng). Zhang等[13]考慮地基土的徑向非均勻性(將樁周土沿徑向分為n圈層,每個(gè)圈層為剪切模量不同的均質(zhì)各向同性彈性體),研究彈性半空間中單樁的扭轉(zhuǎn)振動(dòng)響應(yīng)問(wèn)題. Awojobi等[14]考慮彈性半空間的豎向非均質(zhì)性,假定土體剪切模量隨深度線性變化,對(duì)半空間的平面應(yīng)變與軸對(duì)稱問(wèn)題進(jìn)行了研究. 鄒新軍等[15]基于樁側(cè)土雙折線模型,探討了地基土分層時(shí)單樁的受扭性狀. 王國(guó)才等[16]對(duì)層狀地基中單樁的扭轉(zhuǎn)振動(dòng)問(wèn)題進(jìn)行研究,采用積分變換及Muki 虛擬樁的方法求解并分析了樁土參數(shù)對(duì)動(dòng)力響應(yīng)的影響. Wroth[17]等認(rèn)為土壤沉積時(shí)的地質(zhì)環(huán)境和荷載歷史隨著時(shí)間而發(fā)生變化,故假定土體剪切模量隨深度呈非線性分布更符合實(shí)際. Rajapakse[18]假定土體剪切模量隨深度分別呈冪函數(shù)與指數(shù)函數(shù)非線性分布,采用經(jīng)典變分定理的方法來(lái)分析荷載傳遞問(wèn)題. 鄒新軍等[19]考慮地基土的剪切模量隨深度非線性分布,對(duì)單樁靜力受扭問(wèn)題進(jìn)行了彈塑性分析,但相應(yīng)的動(dòng)力扭轉(zhuǎn)分析仍屬鮮見(jiàn).

      天然地基土通常在豎向呈現(xiàn)非均勻性,其剪切模量、滲透系數(shù)及孔隙率等均隨深度發(fā)生變化,為簡(jiǎn)化問(wèn)題,本文主要考慮剪切模量隨深度的非線性變化,即假定地基土的剪切模量隨深度呈指數(shù)函數(shù)非線性分布,基于Biot固結(jié)理論與彈性動(dòng)力學(xué)原理,建立飽和地基土中作用簡(jiǎn)諧扭轉(zhuǎn)荷載下的動(dòng)力微分方程,引入邊界條件并利用Hankel變換與逆變換求解獲得飽和地基土中的剪應(yīng)力與切向位移解答,據(jù)此基于Mathematica編制出相應(yīng)的計(jì)算程序,進(jìn)一步進(jìn)行參數(shù)分析并討論土體參數(shù)對(duì)地基土中埋置簡(jiǎn)諧扭轉(zhuǎn)荷載動(dòng)力響應(yīng)的影響規(guī)律.

      1 ? 基本扭轉(zhuǎn)動(dòng)力微分方程的建立

      彈性半空間中埋置簡(jiǎn)諧扭轉(zhuǎn)荷載問(wèn)題可在柱坐標(biāo)系下建立簡(jiǎn)化分析計(jì)算模型,如圖1所示,其中:彈性半空間地基內(nèi)部z = h處作用埋置簡(jiǎn)諧扭矩T0eiωt (ω為頻率,i = (-1)1/2),荷載作用范圍是半徑為a的圓形區(qū)域.

      許多學(xué)者在研究扭轉(zhuǎn)問(wèn)題時(shí),為進(jìn)一步簡(jiǎn)化問(wèn)題均做出一定假定,如張智卿[10]、Naggar[12]、Rajapakse[18]等,為建立問(wèn)題的基本方程,本文參照已有文獻(xiàn)特做出如下假定:

      3) 地基土的扭轉(zhuǎn)振動(dòng)為小變形,只考慮土骨架切向位移uθ(r,z,t)eiωt和孔隙水相對(duì)于土骨架的切向位移wθ(r,z,t)eiωt,為書(shū)寫方便下文省略簡(jiǎn)諧因子eiωt.

      4) 假定簡(jiǎn)諧扭轉(zhuǎn)荷載作用范圍內(nèi),扭轉(zhuǎn)剪應(yīng)力F(r)與半徑成正比例關(guān)系,則荷載作用面處扭轉(zhuǎn)剪應(yīng)力分布函數(shù)為:

      2 ? 基本扭轉(zhuǎn)動(dòng)力微分方程的求解

      為求解剪切模量呈指數(shù)函數(shù)非線性分布的地基土扭轉(zhuǎn)動(dòng)力響應(yīng),將剪切模量分布式(1)代入飽和地基土的基本扭轉(zhuǎn)動(dòng)力微分方程式(9)中并化簡(jiǎn):

      3 ? 邊界條件與待定系數(shù)求解

      為了求解所得解答式(16)與式(17)中的待定系數(shù)A、B,首先需要確定相應(yīng)的邊界條件. 由圖1所示彈性半空間中埋置簡(jiǎn)諧扭轉(zhuǎn)荷載的簡(jiǎn)化計(jì)算分析模型可知,荷載作用面將半空間分為區(qū)域(1)與區(qū)域(2)兩部分,根據(jù)基本扭轉(zhuǎn)動(dòng)力微分方程的解式(16)以及土體的剪應(yīng)力分布式(17)可得區(qū)域(1)、(2)的切向位移、剪應(yīng)力表達(dá)式分別為:

      將待定系數(shù)表達(dá)式(24)代入到飽和地基土的切向位移式(18)與剪應(yīng)力式(19)中可獲得Hankel變化域內(nèi)的剪應(yīng)力、切向位移解答,并將該解答進(jìn)行Hanke逆變換即可得到飽和地基土的應(yīng)力位移.

      根據(jù)上述獲得的地基土應(yīng)力位移解答,采用Mathematica編制出Hankel逆變換的數(shù)值積分程序,用以計(jì)算埋置簡(jiǎn)諧扭轉(zhuǎn)荷載作用下豎向非均質(zhì)飽和地基中的最終剪應(yīng)力與切向位移.

      4 ? 結(jié)果驗(yàn)證與參數(shù)分析

      4.1 ? 結(jié)果驗(yàn)證

      為驗(yàn)證本文推導(dǎo)結(jié)果的正確性,令α→0,則土體剪切模量Gs不隨深度z變化,此時(shí)問(wèn)題退化為均質(zhì)飽和半空間中埋置扭轉(zhuǎn)荷載作用的動(dòng)力響應(yīng)問(wèn)題,與陳剛等[11]的理論解進(jìn)行對(duì)比(如圖2),計(jì)算參數(shù)為:地表處剪切模量μ = 9.4 × 106 Pa,孔隙率n = 0.4,土顆粒密度ρs = 2 650 kg/m3,水的密度ρw = 1 000 kg/m3,土體動(dòng)力滲透系數(shù)kd = 10-7 m/s,扭轉(zhuǎn)荷載頻率f = 1、埋深 h = 8,計(jì)算深度 z = 8.8.

      從圖2可看出,本文退化結(jié)果與已有理論解吻合較好,從而驗(yàn)證了本文解的正確性.

      4.2 ? 參數(shù)分析

      為了分析影響飽和地基扭轉(zhuǎn)動(dòng)力響應(yīng)的主要參數(shù)及其規(guī)律,下面分別探討簡(jiǎn)諧扭轉(zhuǎn)荷載的頻率與埋深、土體剪切模量非均勻系數(shù)及地基土的動(dòng)力滲透系數(shù)等參數(shù)對(duì)地基扭轉(zhuǎn)動(dòng)力響應(yīng)的影響.

      以飽和黏性土地基為例[11],其物理力學(xué)參數(shù)為:地表處剪切模量μ = 9.4 × 106 Pa,孔隙率n = 0.4,土顆粒密度ρs = 2 650 kg/m3,水的密度ρw = 1 000 kg/m3. 算例中計(jì)算得到的應(yīng)力、位移皆取幅值并除以k即

      4.2.1 ? 簡(jiǎn)諧扭轉(zhuǎn)荷載無(wú)量綱頻率 f的影響

      為探討簡(jiǎn)諧扭轉(zhuǎn)荷載無(wú)量綱頻率f的影響,分別取f為1.00、1.25、1.50、1.75、2.00、2.25、2.50及2.75,荷載作用半徑a = 1 m,埋深 h = 1,土體剪切模量非均勻系數(shù)α = 1,土體動(dòng)力滲透系數(shù)kd = 10-7 m/s,根據(jù)編制的計(jì)算程序分別計(jì)算深度z1 = 0.5與 z2 = 1.5處土體的剪應(yīng)力以及切向位移,獲得如圖3、圖4所示的土體切向位移、剪應(yīng)力隨無(wú)量綱半徑的變化曲線.

      由圖3、圖4可看出:飽和地基土的剪應(yīng)力與切向位移沿徑向呈現(xiàn)出明顯的波動(dòng)變化規(guī)律,隨著簡(jiǎn)諧扭轉(zhuǎn)荷載無(wú)量綱頻率f的增大,曲線波動(dòng)頻率逐漸增大.地基土的切向位移幅值隨荷載頻率的增大先增后減,即存在某一臨界荷載頻率,使得切向位移幅值最大,與共振理論相一致.總體趨勢(shì)上,地基土的應(yīng)力幅值隨荷載頻率的增大而增大.在同一深度處,當(dāng)r > a時(shí),地基土的應(yīng)力、位移幅值隨著到荷載中心距離的增大而減小,與地基中應(yīng)力波傳播時(shí)能量逐漸降低的規(guī)律一致.

      4.2.2 ? 簡(jiǎn)諧扭轉(zhuǎn)荷載埋深h的影響

      為探討簡(jiǎn)諧扭轉(zhuǎn)荷載埋深的影響,分別取 h為0.5、1.0、2.0及4.0,荷載頻率 f = 1,其余參數(shù)同上,根據(jù)所編制的計(jì)算程序分別計(jì)算r > a處土體不同深度處的剪應(yīng)力和切向位移,獲得如圖5、圖6所示的地基土切向位移、剪應(yīng)力隨深度變化曲線.

      由圖5、圖6可看出:荷載作用面以上,土的剪應(yīng)力、切向位移隨荷載埋深h的增大而增大,荷載作用面以下,土體的剪應(yīng)力與切向位移隨荷載埋深h的增大而減小,荷載作用面土體的剪應(yīng)力發(fā)生突變,切向位移達(dá)到峰值.當(dāng)z - h≥2a時(shí),土體的剪應(yīng)力、切向位移近似為零,說(shuō)明埋置荷載主要影響其作用面上、下各兩倍荷載作用半徑(2a)區(qū)域.

      根據(jù)所編制的程序分別計(jì)算荷載頻率 f為0.1、0.5、1.0及1.5時(shí),土體不同深度處的剪應(yīng)力與切向位移,獲得如圖7所示的土體最大切向位移與荷載埋深h之間的關(guān)系曲線.

      由圖7可看出:土的最大切向位移隨荷載埋深h的增大而減小,荷載埋深小于兩倍荷載作用半徑(2a)時(shí),曲線急劇下降,h = a時(shí)最大切向位移下降75%,h = 2a時(shí)最大切向位移下降90%,h > 4a時(shí),飽和地基土的最大切向位移近似為零.

      4.2.3 ? 剪切模量非均勻系數(shù)α的影響

      為探討地基土剪切模量分布形式的影響,分別取剪切模量指數(shù)函數(shù)式(1)中的非均勻系數(shù)α為0.1、0.5、1.0及1.5,荷載頻率 f = 1,埋深 h = 1,其余參數(shù)同上,計(jì)算獲得如圖8、圖9所示深度 z1 = 0.5處地基土的剪應(yīng)力、切向位移隨半徑的分布曲線.

      由圖8、圖9可看出:隨地基土剪切模量非均勻系數(shù)α的增大,土中剪應(yīng)力、切向位移逐漸減小,系數(shù)α每增加0.5個(gè)單位,剪應(yīng)力峰值下降約23%,切向位移峰值下降約40%,這是因?yàn)橄禂?shù)α越小,地基土越接近均質(zhì)狀態(tài),其變形越大,說(shuō)明相同荷載條件下,剪切模量隨深度呈指數(shù)函數(shù)分布的非均質(zhì)地基比均質(zhì)地基變形小.

      4.2.4 ? 地基土動(dòng)力滲透系數(shù)kd的影響

      為探討飽和地基土動(dòng)力滲透系數(shù)的影響,分別取kd為10-2 m/s、10-5 m/s及10-7 m/s,α = 1,荷載頻率 f = 1,埋深 h = 1,其余參數(shù)同上,計(jì)算 z1 = 0.5處土體的切向位移,獲得如圖10所示地基土切向位移與無(wú)量綱半徑的變化曲線.

      .

      5 ? 結(jié) ? 論

      假定土體剪切模量隨深度呈指數(shù)函數(shù)非線性分布,基于Biot固結(jié)理論與動(dòng)力學(xué)原理,建立豎向非均質(zhì)飽和地基內(nèi)部作用簡(jiǎn)諧扭轉(zhuǎn)荷載時(shí)的動(dòng)力微分方程,通過(guò)Hankel變換與逆變換求得土體的剪應(yīng)力與切向位移解答,據(jù)此基于Mathematica編制出相應(yīng)計(jì)算程序,通過(guò)參數(shù)分析獲得土體參數(shù)對(duì)地基扭轉(zhuǎn)動(dòng)力響應(yīng)的影響規(guī)律,主要結(jié)論如下:

      1)埋置簡(jiǎn)諧扭轉(zhuǎn)荷載作用下,土體的剪應(yīng)力、切向位移均沿徑向呈現(xiàn)出明顯波動(dòng)規(guī)律,波動(dòng)頻率隨荷載頻率的增大而增大,切向位移幅值隨荷載頻率的增大先增后減,即存在某一臨界荷載頻率,使得切向位移幅值最大.

      2)對(duì)比分析表明,隨著土體剪切模量指數(shù)分布函數(shù)中非均勻系數(shù)α增大,土體的剪應(yīng)力、切向位移逐漸減小,系數(shù)α每增大0.5個(gè)單位,剪應(yīng)力峰值下降約23%,切向位移峰值下降約40%,說(shuō)明相同荷載條件下,剪切模量隨深度呈指數(shù)函數(shù)分布的非均質(zhì)地基比均質(zhì)地基變形小.

      3)埋置簡(jiǎn)諧扭轉(zhuǎn)荷載作用下,土體的切向位移自地面開(kāi)始沿深度表現(xiàn)為先增加后減小的變化趨勢(shì),荷載作用面處,土的切向位移最大,剪應(yīng)力發(fā)生突變,荷載主要影響范圍為其作用面上、下各兩倍荷載作用半徑(2a),且隨荷載埋深h的增大,土體最大切向位移逐漸減小,h = a時(shí)最大切向位移值下降75%,h = 2a時(shí)最大切向位移值下降約90%,h > 4a時(shí)最大切向位移值近似為零.

      4)地基土動(dòng)力滲透系數(shù)kd的變化對(duì)土體應(yīng)力以及切向位移幾乎沒(méi)有影響.

      誠(chéng)然,上述解答暫僅針對(duì)豎向非均質(zhì)(土體剪切模量隨深度呈指數(shù)函數(shù)非線性分布)飽和地基中埋置簡(jiǎn)諧扭轉(zhuǎn)荷載的動(dòng)力響應(yīng)問(wèn)題,對(duì)于地基為非飽和、雙向非均質(zhì)或分層等更為復(fù)雜的情況,有待進(jìn)一步的深入研究.

      參考文獻(xiàn)

      [1] ? ?LAMB H. On the propagation of tremors over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society of London,1904,203:1—42.

      [2] ? ?CHAO C C. Dynamical response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics,1960,27(3):559—567.

      [3] ? ?王貽蓀.半無(wú)限體表面在豎向集中諧和力作用下表面豎向位移的精確解[J]. 力學(xué)學(xué)報(bào),1980,16(4):63—68.

      WANG Y S. Exact solution of surface vertical displacement of half-space under vertical concentrated harmonic force[J]. Chinese Journal of Theoretical and Applied Mechanics,1980,16(4):63—68. (In Chinese)

      [4] ? ?REISSNER E,SAGOCI H F. Forced torsional oscillations of elastic half-space. I[J]. Journal of Applied Physics,1944,15(9):655—662.

      [5] ? ?RAHMAN M. The Reissner-Sagoci problem for a half-space under buried torsional forces[J]. International Journal of Solids & Structures,2000,37(8):1119—1132.

      [6] ? ?BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. Journal of the Acoustical Society of America,1956,28(2):179—191.

      [7] ? PHILIPPACOPOULOS A J. Buried point source in a poroelastic half-space[J]. Journal of Engineering Mechanics,1997,123(8):860—869.

      [8] ? ?陳勝立,張建民,陳龍珠. 飽和地基中埋置點(diǎn)源荷載的動(dòng)力Green函數(shù)[J]. 巖土工程學(xué)報(bào),2001,23(4):423—426.

      CHEN S L,ZHANG J M,CHEN L Z. ?Dynamic Green′s functions of saturated soils subjected to the internal excitation[J]. Chinese Journal of Geotechnical Engineering,2001,23(4):423—426.(In Chinese)

      [9] ? CHEN S L,CEN L Z,PAN E. Three-dimensional time-harmonic green′s functions of saturated soil under buried loading[J]. Soil Dynamics & Earthquake Engineering,2007,27(5):448—462.

      [10] ?張智卿,王奎華,謝康和,等. 非飽和土中彈性支承樁的扭轉(zhuǎn)振動(dòng)響應(yīng)分析[J]. 計(jì)算力學(xué)學(xué)報(bào),2008,25(4):552—556.

      ZHANG Z Q,WANG K H,XIE K H,et al. Torsional vibration of a pile with elastic bottom boundaries embedded in unsaturated soil[J]. Chinese Journal of Computational Mechanics,2008,25(4):552—556. (In Chinese)

      [11] ?陳剛,徐長(zhǎng)節(jié),吳大志,等. 半空間飽和土在埋置扭轉(zhuǎn)振動(dòng)荷載作用下的響應(yīng)[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版),2005,39(10):1566—1570.

      CHEN G,XU C J,WU D Z,et al. Dynamic response of buried torsional oscillations in saturated half-space[J]. Journal of Zhejiang University (Engineering Science),2005,39(10):1566—1570. (In Chinese)

      [12] ?NAGGAR M H E. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering & Mechanics,2000,10(4):299—312.

      [13] ?ZHANG Z,PAN E. Dynamic torsional response of an elastic pile in a radially inhomogeneous soil[J]. Soil Dynamics & Earthquake Engineering,2017,99:35—43.

      [14] ?AWOJOBI A O,GIBSON R E. Plane strain and axially symmetric problems of a linearly nonhomogeneous elastic half-space[J]. Quarterly Journal of Mechanics & Applied Mathematics,1973,26(3):285—302.

      [15] ?鄒新軍,徐洞斌,王亞雄. 成層地基中單樁受扭彈塑性分析[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(9):72—78.

      ZOU X J,XU D B,WANG Y X. Elastic-plastic analysis of torsional single pile in layered subsoil[J]. Journal of Hunan University (Natural Sciences),2014,41(9):72—78. (In Chinese)

      [16] ?王國(guó)才,丁翠紅,王哲,等. 層狀地基中單樁扭轉(zhuǎn)振動(dòng)特性分析[J]. 計(jì)算力學(xué)學(xué)報(bào),2009,26(5):715—721.

      WANG G C,DING C H,WANG Z,et al. Study on the torsional oscillations of single pile embedded in layered foundation[J]. Chinese Journal of Computational Mechanics,2009,26(5):715—721. (In Chinese)

      [17] ?WROTH C P,RANDOLPH M F,HOULSBY G T,et al. A review of the engineering properties of soils with particular reference to shear modulus[R]. London:CUED/D-Soils TR,Cambridge University,1979.

      [18] ?RAJAPAKSE R K N D. A torsion load transfer problem for a class of non-homogeneous elastic solids[J]. International Journal of Solids and Structures,1988,24(2):139—151.

      [19] ?鄒新軍,徐洞斌,王亞雄,等. 非均質(zhì)地基中單樁受扭彈塑性分析[J]. 土木工程學(xué)報(bào),2015,48(11):103—110.

      ZOU X J,XU D B,WANG Y X. Torsional elasto-plastic analysis of single piles in heterogeneous ground[J]. China Civil Engineering Journal,2015,48(11):103—110. (In Chinese)

      宁波市| 株洲市| 托里县| 南丹县| 麦盖提县| 洛隆县| 山东省| 通榆县| 奎屯市| 呈贡县| 通许县| 饶河县| 洱源县| 黑河市| 永修县| 嘉峪关市| 亳州市| 石门县| 定安县| 简阳市| 绥芬河市| 崇阳县| 根河市| 乐都县| 普陀区| 香河县| 黄骅市| 奈曼旗| 昌吉市| 葵青区| 静乐县| 英山县| 中江县| 香格里拉县| 察隅县| 开化县| 昌乐县| 屯昌县| 石阡县| 海晏县| 汶上县|