宋彧 羅小博
摘 ? 要:為真實(shí)反映超厚濕陷性黃土區(qū)超高層型鋼混凝土(Super High Rise-Steel Reinforced Concrete,簡(jiǎn)稱SHR-SRC)結(jié)構(gòu)在施工過程中沉降特征隨上部載荷的變化規(guī)律,并指導(dǎo)安全施工,在試驗(yàn)場(chǎng)區(qū)建立了一套完整的沉降監(jiān)測(cè)體系,動(dòng)態(tài)追蹤測(cè)試了超高層結(jié)構(gòu)在整個(gè)施工周期2年6個(gè)月內(nèi)的沉降變形等原始數(shù)據(jù).利用實(shí)際監(jiān)測(cè)結(jié)果,結(jié)合ABAQUS有限元分析,對(duì)SRC結(jié)構(gòu)沉降特性進(jìn)行了系統(tǒng)分析.結(jié)果表明:施工過程中,SHR-SRC結(jié)構(gòu)整體沉降較為均勻,最大沉降速率為0.28 mm/d;距離核心筒附近的地下試樁點(diǎn)位正、負(fù)應(yīng)變值小,遠(yuǎn)處則相反;土體在施工強(qiáng)度平緩狀況下,局部會(huì)出現(xiàn)短暫的“回彈”現(xiàn)象;模擬顯示筏板底中心樁頂位移最大,邊樁次之,角樁最小,同一樁產(chǎn)生沉降差說明樁本身存在軸向壓縮;但由于黃土地基及結(jié)構(gòu)受力的復(fù)雜性,相關(guān)規(guī)律需進(jìn)一步分析與探討.
關(guān)鍵詞:超厚濕陷性黃土;SHR-SRC結(jié)構(gòu);施工;沉降監(jiān)測(cè);原始數(shù)據(jù)
中圖分類號(hào):TU196.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
Settlement Monitoring and Analysis on Construction Process
of SHR-SRC Structure in Ultra-thick Collapsible Loess Area
SONG Yu,LUO Xiaobo?覮
(College of Civil Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
Abstract:To truely reflect the variation law of settlement characteristics of Super High Rise-Steel Reinforced Concrete (SHR-SRC) structure with the upper load during the construction process in the ultra-thick collapsible loess area and guide the safe construction,a complete set of monitoring system was established to dynamically track testing settlement and deformation of SHR structure in the whole construction period (2.5 a) by the original data in the test area. The settlement characteristics of a SRC structure were analyzed systematically by actual monitoring results and ABAQUS finite element analysis. The results showed that the overall settlement of the SHR-SRC structure was relatively uniform,and the maximum settlement rate was 0.28 mm / d in the construction process. The positive and negative strain values of the underground test pile near the core tube were small,but far away the core they went by contrary. Under the condition of gentle construction intensity,local "rebound" phenomenon occurred briefly. The simulation showed that the largest displacement occurred at the top of the center pile at the bottom of raft,followed by the side pile,and the smallest displacement occurred at the angle pile. The settlement difference of the same pile indicated that the pile itself had axial compression. However,due to the complex mechanism of the loess and the structure,the related law is still needed to be further investigated and discussed.
Key words:ultra-thick collapsible loess;Super High Rise-Steel Reinforced Concrete (SHR-SRC) structure;construction;settlement monitoring;original data
近年來,從我國(guó)國(guó)情出發(fā),SHR結(jié)構(gòu)得到了快速發(fā)展,其結(jié)構(gòu)形式復(fù)雜多樣. 然而SRC結(jié)構(gòu)以受力合理、穩(wěn)定性好、強(qiáng)度高、剛度大,延性、耗能性及抗震性能好等諸多力學(xué)優(yōu)點(diǎn)被廣泛應(yīng)用到大跨度、高層及SHR結(jié)構(gòu)中;此外,它以減小構(gòu)件截面面積并充分利用材料、施工便捷、建造速度快、社會(huì)效益好、防火防銹耐久性大大提高等突出特點(diǎn)在土木工程界深受“青睞”. 眾所周知,SHR結(jié)構(gòu)因高、重特點(diǎn),建造在良好地基上并非易事,然而在超厚黃土濕陷性地基中修建SHR-SRC結(jié)構(gòu),因地下土體物理、力學(xué)性能存在巨大差異及樁土的復(fù)雜受力等因素影響,使其安全性在施工過程中顯得尤為重要,全方位沉降監(jiān)測(cè)是保證安全的重要舉措.
目前,眾多國(guó)內(nèi)外學(xué)者基于大量沉降監(jiān)測(cè)數(shù)據(jù)對(duì)SHR結(jié)構(gòu)的沉降特性及規(guī)律進(jìn)行了研究.在國(guó)內(nèi),主要集中在沿海軟土地帶,姜晨光等[1]早先根據(jù)大量資料,得出了沉降時(shí)效基本規(guī)律及相應(yīng)的經(jīng)驗(yàn)公式;錢思眾等[2]對(duì)高層建筑地基沉降監(jiān)測(cè)表明,施工速度與場(chǎng)地條件都會(huì)影響沉降速率;劉射洪等[3-4]以工程實(shí)例與模型相結(jié)合,證明黏土地基沉降具有時(shí)變性,其效應(yīng)對(duì)SHR結(jié)構(gòu)內(nèi)力有重要影響;馬思文[5] 以632.0 m上海中心大廈為工程背景,對(duì)施工過程中沉降量進(jìn)行了監(jiān)測(cè);蘭澤英等[6]通過自主研發(fā)的新型擺動(dòng)監(jiān)測(cè)系統(tǒng)(CCD)對(duì)SHR等結(jié)構(gòu)進(jìn)行了精準(zhǔn)測(cè)量;袁長(zhǎng)豐等[7]利用4年的沉降實(shí)測(cè)數(shù)據(jù),得出沉降量不隨時(shí)間、荷載的增大呈線性變化,并引出了沉降曲線函數(shù);文獻(xiàn)[8-9]對(duì)高層結(jié)構(gòu)的沉降監(jiān)測(cè)、預(yù)測(cè)等方面進(jìn)行了敘述;除此之外,呂遠(yuǎn)強(qiáng)等[10-14]對(duì)大荷載煤倉(cāng)等其他工程結(jié)構(gòu)進(jìn)行了沉降監(jiān)測(cè)與分析.在國(guó)外,許多學(xué)者[15-20]對(duì)高層結(jié)構(gòu)沉降計(jì)算、控制及監(jiān)測(cè)方面也做了大量的分析與研究.
超厚濕陷性黃土區(qū)結(jié)構(gòu)的研究主要是有別于相對(duì)成熟的沿海軟、黏土地區(qū),其最顯著的特征是,浸水后的原狀黃土礦物成分及微觀顆粒就會(huì)發(fā)生物理與化學(xué)反應(yīng),原穩(wěn)定結(jié)構(gòu)受到破壞,土體強(qiáng)度急劇下降,在應(yīng)力作用下產(chǎn)生濕陷性變形,結(jié)構(gòu)不均勻沉降,影響其安全與穩(wěn)定.因場(chǎng)地位置的特殊性,本文以超厚濕陷性黃土區(qū)首棟SHR-SRC結(jié)構(gòu)為研究對(duì)象,對(duì)施工過程中的沉降及變形等進(jìn)行系統(tǒng)分析,旨在為今后類似場(chǎng)地同類型結(jié)構(gòu)的設(shè)計(jì)、施工及監(jiān)測(cè)提供參考.
1 ? 工程概況及地質(zhì)條件
1.1 ? 工程概況
慶陽市某大廈目前作為超厚黃土區(qū)最高建筑,占地面積約3 640.0 m2,結(jié)構(gòu)高度164.0 m,采用SRC框架-核心筒體系,0.000 m以上38層,其以下4層,基坑深度-21.1 m,摩擦型樁長(zhǎng)40.0 m,樁間距3.3 m,樁徑1.0 m,總樁數(shù)為143根,筏板厚3.0 m,外觀效果如圖1.
1.2 ? 地質(zhì)條件
建筑場(chǎng)地地處素有“隴東糧倉(cāng)”之稱的全國(guó)最大黃土高原區(qū)——董志塬,下部由距今約200~300萬年的第四紀(jì)早更新世(Q1)至中更新世(Q2)組成,巨厚原生黃土達(dá)200.0~300.0 m左右;到了晚更新世末期,地層剝蝕作用較嚴(yán)重,黃土塬周邊形成沖溝,地形破碎,其上部100.0 m以內(nèi)由黑壚土(Q4eo1)、馬蘭黃土(Q3eo1)、離石黃土(Q2eo1)及午城黃土組成(Q1eo1),土層之間夾雜古土壤(粉質(zhì)黏土)[21],其厚度變化及部分物理力學(xué)指標(biāo)見表1.
2 ? 沉降監(jiān)測(cè)方案、儀器布設(shè)及數(shù)據(jù)采集
利用傳統(tǒng)的外部沉降監(jiān)測(cè)(宏觀)與新型的地下試樁自動(dòng)監(jiān)測(cè)(微觀)相結(jié)合,通過控制高程、應(yīng)變、電阻及溫度等參數(shù),對(duì)SHR-SRC結(jié)構(gòu)進(jìn)行長(zhǎng)期健康監(jiān)測(cè)(包括施工的全過程及工后監(jiān)測(cè)),為及時(shí)糾傾、局部加固維修及后期沉降預(yù)測(cè)奠定基礎(chǔ).
2.1 ? 外部沉降觀測(cè)
外部沉降采用DSZ2自動(dòng)安平水準(zhǔn)儀配合水準(zhǔn)尺觀測(cè).在遠(yuǎn)離建筑100.0 m以外穩(wěn)定區(qū)域設(shè)置6個(gè)基準(zhǔn)點(diǎn);根據(jù)結(jié)構(gòu)布置形式,為確保精準(zhǔn)監(jiān)測(cè),在核心筒四周布置2#、3#、4#、10#共4個(gè)觀測(cè)點(diǎn),外圍框架柱上分別布置1#、5#、8#及11#觀測(cè)點(diǎn);裙樓布置6#、7#和9#觀測(cè)點(diǎn)僅作為安全監(jiān)測(cè),不深入研究,方案中總共布置11個(gè)觀測(cè)點(diǎn)(如圖2),主體結(jié)構(gòu)新建一層,現(xiàn)場(chǎng)沉降觀測(cè)一次,記錄數(shù)據(jù)并及時(shí)分析.
2.2 ? 地下沉降監(jiān)測(cè)
為了更加精確地獲得結(jié)構(gòu)的沉降變形特征并獲得一些原始數(shù)據(jù),結(jié)合外部沉降觀測(cè)制定具體監(jiān)測(cè)方案(如圖3).
在樁頂與樁間土相應(yīng)位置分別安裝JMZX-215A型應(yīng)變計(jì)(圖4(a))、JMZX-50XX型土壓力盒(圖4(b)),將導(dǎo)線通過PVC保護(hù)管從地下引到地面,與32通道JMZX-32A數(shù)據(jù)采集儀(圖4(c))相連,調(diào)試完畢后定期采集動(dòng)態(tài)數(shù)據(jù),實(shí)現(xiàn)各參數(shù)自動(dòng)化測(cè)量并長(zhǎng)期健康監(jiān)測(cè)[22].
3 ? 試驗(yàn)結(jié)果與分析
3.1 ? 施工過程沉降分析
圖5(a)給出了核心筒上觀測(cè)點(diǎn)高程隨施工推進(jìn)的變化曲線. 由于前期施工強(qiáng)度較大、且2#及3#附近堆積大量建材、機(jī)械等,故在外界施工速度及外荷載等綜合因素作用下,其剪應(yīng)力大于土體抗剪強(qiáng)度,局部發(fā)生剪切破壞,在150 d左右,瞬時(shí)沉降明顯;由圖2看出與之對(duì)稱的4#、10#點(diǎn)在對(duì)應(yīng)時(shí)刻出現(xiàn)抬升,整體傾斜滿足規(guī)范[23],持續(xù)30 d后,這種“蹺蹺板”效應(yīng)減弱,各測(cè)點(diǎn)開始逐漸保持同步沉降;到中期,由于資金、技術(shù)等問題迫使結(jié)構(gòu)施工進(jìn)度減緩,各點(diǎn)高程同等變化,沉降均勻;一直持續(xù)到500 d左右,工程如期正常進(jìn)行,應(yīng)力逐漸增加,土顆粒間密實(shí)度增強(qiáng),沉降量呈減小趨勢(shì),以整體結(jié)構(gòu)高程曲線為參考,全周期內(nèi)(915 d),核心筒各點(diǎn)高程同步減小,沉降均勻,平均沉降量為217.5 mm.
相對(duì)于圖5(b)所示框架而言,與核心筒相比,外圍框架受力分散且較小,1#、5#、8#及11#各點(diǎn)自始至終保持同步下降,沉降均勻,平均沉降量212.7 mm,略小于核心筒;裙樓此處僅作為安全監(jiān)測(cè),各點(diǎn)沉降變化如圖5(c)所示,其變化規(guī)律與框架及核心筒保持一致,平均沉降量為211.3 mm,均小于前兩者,符合高聳結(jié)構(gòu)沉降量允許值[23],從側(cè)面反映出各結(jié)構(gòu)組成的整體均勻沉降,工程完建后的沉降由課題組成員在此基礎(chǔ)上繼續(xù)追蹤監(jiān)測(cè),對(duì)其整體結(jié)構(gòu)的沉降、變形等做進(jìn)一步的分析與深究,最終形成一套完整體系.
圖5精確地給出了各結(jié)構(gòu)上每個(gè)測(cè)點(diǎn)隨時(shí)間的變化曲線,但個(gè)別點(diǎn)還是存在微小差異,圖6更加直觀地描述了核心筒、框架及裙樓在施工過程中的高程變化曲線,各結(jié)構(gòu)隨整體同步沉降,為后期沉降監(jiān)測(cè)及進(jìn)一步沉降預(yù)測(cè)提供依據(jù).
整體結(jié)構(gòu)在施工全周期內(nèi)的速率變化如圖7所示,伴隨著施工的不斷進(jìn)行,沉降速率在30 d達(dá)到最大值0.28 mm/d,其后隨著施工動(dòng)態(tài)的變化呈波浪形變化,450 d與505 d之間趨于最小值0.066 mm/d,后期呈線性增長(zhǎng),平均沉降速率為0.23 mm/d,符合規(guī)范要求.
利用健康監(jiān)測(cè)數(shù)據(jù)所得曲線圖,可及時(shí)調(diào)整施工工況(施工強(qiáng)度、施工順序等),以及對(duì)材料堆放及機(jī)械安裝位置進(jìn)行合理布置,為安全施工提供了基本保障.
3.2 ? 結(jié)構(gòu)變形特征分析
3.2.1 ? 樁身應(yīng)變
圖8(a)反映了核心筒下樁頂正應(yīng)變曲線關(guān)系,施工初期,各監(jiān)測(cè)點(diǎn)數(shù)值近乎為同一值2 500 με,將其作為各自的標(biāo)定值,與圖5沉降觀測(cè)相對(duì)應(yīng),到了150 d左右時(shí),荷載急劇增大,對(duì)濕陷性黃土來講,由土骨架、水分與氣體共同承擔(dān),隨著骨架進(jìn)一步被壓縮,直到氣體與水分排出,其應(yīng)力轉(zhuǎn)移到骨架上,突變?yōu)樨?fù)應(yīng)變,其中18#點(diǎn)反向互補(bǔ)后實(shí)際為-229.1 ?με,中后期一直呈波浪形變化;還可發(fā)現(xiàn),在整個(gè)監(jiān)測(cè)過程中,靠近核心筒最近處4#數(shù)值最小,較遠(yuǎn)處19#次之,最遠(yuǎn)處18#正應(yīng)變值最大.從圖8(b)框架正應(yīng)變曲線來看,其變化規(guī)律較核心筒平緩,無突變現(xiàn)象,說明框架受力更均勻,沉降較穩(wěn)定.綜合圖8
壓應(yīng)力大,在較遠(yuǎn)地帶,施工強(qiáng)度較弱,再加上初期快速施工條件下產(chǎn)生的地基變形在短時(shí)間內(nèi)亦呈恢復(fù)趨勢(shì),由“重疊效應(yīng)”導(dǎo)致鋼筋受拉,故遠(yuǎn)處影響較小,與現(xiàn)場(chǎng)施工狀態(tài)相吻合;框架及整體結(jié)構(gòu)變化規(guī)律與正應(yīng)變相似.
3.2.2 ? 土體變形
測(cè)定土體相關(guān)參數(shù),不但可以實(shí)時(shí)監(jiān)測(cè)地基的不均勻下沉,還能與試樁的部分參數(shù)緊密結(jié)合起來,為復(fù)雜的樁-土受力分析提供參數(shù). 圖10(a)為場(chǎng)地地基土壓力歷時(shí)變化曲線,在施工初期,濕陷性黃土在各級(jí)荷載作用下,土??紫吨袣怏w逐漸受壓,土骨架變形,產(chǎn)生瞬時(shí)沉降,土壓力增加;200~360 d后施工強(qiáng)度逐漸減緩,此階段內(nèi),土體較前期比,出現(xiàn)類似于卸載回彈現(xiàn)象;中后期受結(jié)構(gòu)自重增加、施工擾動(dòng)增強(qiáng)等因素影響,土壓力大體呈增大趨勢(shì),局部也會(huì)出現(xiàn)微小回彈;在靠近核心筒,應(yīng)力相對(duì)集中,土壓力也相應(yīng)增大,對(duì)應(yīng)在圖上10#位置,最遠(yuǎn)處8#最小,但各點(diǎn)變化步調(diào)相一致.地基土應(yīng)變曲線如圖10(b)所示,曲線變化形式與圖10(a)接近,初期也是10#數(shù)值最大為-16.8 με,處于受壓狀態(tài),14#和8#分別為-8.6 με、5.6 με.
為進(jìn)一步考察土體的變形,圖11給出了土壓力與應(yīng)變之間的關(guān)系,考慮到篇幅原因,僅以8#為例,從散點(diǎn)圖中獲悉圖形變化呈線性,地基土處于彈性狀態(tài);14#近似于一條直線,相反,距離核心筒較近的10#線性規(guī)律不明顯,說明土體產(chǎn)生塑性變形.
4 ? 有限元模擬分析
現(xiàn)場(chǎng)試驗(yàn)利用各監(jiān)測(cè)技術(shù)手段,控制樁-筏及地基沉降量、沉降速率等,主要用于指導(dǎo)施工,為后期沉降預(yù)測(cè)做準(zhǔn)備;在此基礎(chǔ)上,為了更加形象、直觀地反映樁-筏基礎(chǔ)與持力土層的沉降、變形等,采用非線性有限元法建立三維模型,一則為與實(shí)際監(jiān)測(cè)數(shù)據(jù)作比較,驗(yàn)證有限元分析的可行性,二則為樁-筏結(jié)構(gòu)優(yōu)化設(shè)計(jì)提供思路,三則為基礎(chǔ)局部加固提供方案.
ABAQUS以其較強(qiáng)的實(shí)用性被廣泛地應(yīng)用到工程案例分析中[24],原模型根據(jù)SHR設(shè)計(jì)參數(shù)及實(shí)際地質(zhì)勘查資料建立,參考相關(guān)文獻(xiàn)[25],平面布置如簡(jiǎn)圖12所示.最終筏板尺寸:10.0 m×10.0 m×3.0 m,選用9根對(duì)稱的直徑為1.0 m且長(zhǎng)度為40.0 m的樁,土體模型尺寸:50.0 m×50.0 m×80.0 m.
采用Drucker-Prager本構(gòu)模型,鋼筋與混凝土分別采用T3D2與C3D8R單元進(jìn)行分離式建模,并采用embedded技術(shù)進(jìn)行自由度耦合;考慮到黃土的濕陷性及模擬的精準(zhǔn)性,在筏板-土、筏板底-土及樁-土間切向(垂直向)采用摩擦型接觸,系數(shù)選用0.5,法向(水平向)均采用“硬”接觸;筏板-樁頂及樁底-土體間采用tie接觸.在整體坐標(biāo)系下的模型周圍及底部設(shè)置位移約束邊界條件,上部結(jié)構(gòu)簡(jiǎn)化為均布荷載(介于3 000~3 500 kPa),模型如圖13所示.
4.1 ? 樁-土位移、應(yīng)力變化
圖14(a)為樁-土整體位移剖面云圖,可以看出,在上部荷載作用下筏板周圍土體下陷形成“凹形”槽,樁位移明顯大于土體位移,隨著深度的增加,樁身位移逐漸增大,土體位移逐漸減小,整體位移最大值為147.7 mm,小于實(shí)測(cè)值,原因是相比復(fù)雜的實(shí)際工況,建模一方面是在相對(duì)理想條件下進(jìn)行的,影響因素較少,另一方面與模型的約束程度、接觸類型及參數(shù)等選取有關(guān),計(jì)算結(jié)果偏于保守;在同一平面處,由中心位置向四周減小.樁-土應(yīng)力云圖如圖14(b)所示,在筏板處應(yīng)力相對(duì)集中,其次,樁身應(yīng)力大于土體應(yīng)力.主要原因是上部荷載憑借筏板沿樁身傳遞,最后擴(kuò)散到樁間土及樁底土層中,因此對(duì)筏板的設(shè)計(jì)(承載力、節(jié)約材料等)提出了更高的要求.
4.2 ? 地基土體位移、應(yīng)力變化
為了更加清晰地分析土體的位移與應(yīng)力,圖15給出了相應(yīng)云圖. 圖15(a)顯示土體位移小于圖14(a)中位移,最大沉降值位于頂部中心,原因是地基土中附加應(yīng)力產(chǎn)生疊加,取值為69.52 mm,沿著垂直面和水平面由于出現(xiàn)應(yīng)力擴(kuò)散,此外,隨著施工荷載的增加,下部土體密實(shí)度增強(qiáng),變形也隨之減小,從而導(dǎo)致位移減小. 由圖15(b)看出,應(yīng)力也主要集中在土體上部,逐漸向周圍擴(kuò)散,符合圖10(a)實(shí)測(cè)數(shù)據(jù)變化規(guī)律,其范圍遠(yuǎn)大于位移擴(kuò)散范圍,這也對(duì)地基加固(注漿加固、樁基加固等)研究開辟了新領(lǐng)域.
4.3 ? 樁-筏基礎(chǔ)位移及應(yīng)力變化
圖16(a)給出了樁-筏基礎(chǔ)位移云圖,筏板位移均勻分布且由中心向外圍逐漸減小,中心處最大位移為66.92 mm,其邊緣角處最小位移為50.76 mm,筏板在荷載作用下變形量小,說明其剛度設(shè)計(jì)合理.中心樁頂位移70.95 mm,邊樁及角樁頂部位移分別為64.03 mm、58.41 mm,沉降差異較小. 對(duì)同一試樁而言,樁底位移大于樁頂位移,存在位移差說明樁本身被軸向壓縮,這對(duì)樁身設(shè)計(jì)(強(qiáng)度、變形)也提出了考驗(yàn);圖16(b)應(yīng)力云圖顯示,筏板頂部應(yīng)力小,下部應(yīng)力大,其原因是筏板底面與樁頂接觸部位產(chǎn)生擠壓;在同一平面處,筏板邊緣處應(yīng)力大于中心處;樁身上部應(yīng)力普遍大于下部,原因是上部所受集中力大,導(dǎo)致鋼筋與混凝土之間摩擦力增大,變形亦較大,且各樁應(yīng)力同步變化,受力均勻.
5 ? 結(jié) ? 論
1)施工期(915 d)SHR-SRC結(jié)構(gòu)核心筒部分沉降略大于框架與裙樓部分,建筑沉降(<250 mm)及傾斜值均滿足規(guī)范要求(≤2‰~3‰L,L即相鄰兩測(cè)點(diǎn)距離),結(jié)構(gòu)整體沉降均勻.
2)試樁監(jiān)測(cè)初期,核心筒下正、負(fù)應(yīng)變值最小,150 d左右時(shí)上部荷載波動(dòng)幅度大,其曲線變化亦較框架明顯,到中后期,呈波浪形平穩(wěn)變化但數(shù)值仍然整體小于框架;此外,各測(cè)點(diǎn)參數(shù)值與距離核心筒位置也有關(guān),近處正、負(fù)應(yīng)變值小,遠(yuǎn)處則相反,對(duì)及時(shí)調(diào)整施工具有重大意義.
3)地基土壓力、土應(yīng)變也隨著動(dòng)態(tài)施工呈規(guī)律性變化,局部時(shí)間段出現(xiàn)“回彈”現(xiàn)象,荷載集中部位土體產(chǎn)生塑性變形,相對(duì)分散區(qū)域彈性變形明顯.
4)模型直觀顯示了樁、土體的位移及應(yīng)力大小分布,筏板受力均勻,中心樁頂部位移最大,邊樁次之,角樁最小的規(guī)律;土體應(yīng)力由上部中心向周圍擴(kuò)散,位移隨之減小.
5)對(duì)設(shè)計(jì)階段樁-筏計(jì)算、配筋等提供參考,在施工階段指導(dǎo)安全性施工,并對(duì)后期沉降預(yù)測(cè)及結(jié)構(gòu)加固奠定基礎(chǔ).
參考文獻(xiàn)
[1] ? ?姜晨光,鐘建民,黃家興,等. 建筑沉降時(shí)效的監(jiān)測(cè)與分析[J].巖石力學(xué)與工程學(xué)報(bào),2004,23 (3):505—509.
JIANG C G,ZHONG J M,HUANG J X,et al. Observation and analysis on time-dependency of building subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(3):505—509. (In Chinese)
[2] ? ?錢思眾,樊育豪. 高層建筑物地基沉降監(jiān)測(cè)與分析[J].西安科技大學(xué)學(xué)報(bào),2014,34 (3):284—289.
QIAN S Z,F(xiàn)AN Y H. Monitor and analysis of ground subsidence for high-rise building[J]. Journal of Xian University of Science and Technology,2014,34 (3):284—289. (In Chinese)
[3] ? ?劉射洪,袁聚云,趙昕. 軟黏土地區(qū)超高層建筑沉降變形的時(shí)變性研究[J].地下空間與工程學(xué)報(bào),2014,10 (S2):1910—1916.
LIU S H,YUAN J Y,ZHAO X. Time-dependent pile reaction force analysis for pile-raft foundation of super high-rise buildings[J].Chinese Journal of Underground Space and Engineering,2014,10 (S2):1910—1916. (In Chinese)
[4] ? ?劉射洪,袁聚云,趙昕. 軟黏土地基沉降的時(shí)變效應(yīng)對(duì)超高層建筑結(jié)構(gòu)內(nèi)力的影響[J].建筑結(jié)構(gòu)學(xué)報(bào),2015,36 (8):150—157.
LIU S H,YUAN J Y,ZHAO X. Effect of time-dependent settlement of soft clay soil on internal forces in super tall buildings[J]. Journal of Building Structures,2015,36 (8):150—157. (In Chinese)
[5] ? ?馬思文. 上海中心大廈施工過程中的沉降觀測(cè)[J].建筑施工,2015,37 (8):991—993.
MA S W. Settlement observation in Shanghai Tower construction process[J]. Building Construction, 2015, 37 (8): 991—993. (In
Chinese)
[6] ? ?蘭澤英,劉洋. 超高層建筑施工監(jiān)測(cè)內(nèi)容及技術(shù)體系研究[J]. 測(cè)繪工程,2016,25 (7):40—45.
LAN Z Y,LIU Y. Research on the content and technology system of super-high-rise building construction monitoring[J]. Engineering of Surveying and Mapping,2016,25 (7):40—45. (In Chinese)
[7] ? ?袁長(zhǎng)豐,劉穎,李聰明,等. 超高層建筑施工過程沉降特征分析 [J]. 測(cè)繪科學(xué),2018,42 (7):172—177.
YUAN C F,LIU Y,LI C M,et al. Analysis of settlement characteristics of an ultrahigh-rise building in the construction process[J]. Science of Surveying and Mapping, 2018, 42 (7): 172—177. (In
Chinese)
[8] ? ?宰金珉. 復(fù)合樁基理論與應(yīng)用[M]. 北京:水利水電出版社,2004:138—169.
ZAI J M. Theory and application of composite pile foundation[M]. Beijing:Water Conservancy and Hydropower Press,2004:138—169. (In Chinese)
[9] ? ?TIAN L Y,HUA X S. Settlement prediction for buildings surrounding foundation pits based on stationary auto-regression model[J].Journal of China University of Mining & Technology,2007,17(1):78—81.
[10] ?呂遠(yuǎn)強(qiáng),趙金剛,馮偉,等. 大荷載原煤倉(cāng)天然地基沉降監(jiān)測(cè)分析[J]. 煤田地質(zhì)與勘探,2018,46 (4):122—128.
L?譈 Y Q,ZHAO J G,F(xiàn)ENG W,et al. Monitoring and analysis of natural foundation subsidence of raw coal bunker with big load[J]. Coal Geology & Exploration,2018,46 (4):122—128. (In Chinese)
[11] ?尚艷亮,師文君,杜守繼,等. 盾構(gòu)近距離下穿橋梁數(shù)值分析與監(jiān)測(cè)[J]. 沈陽建筑大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,34 (2):247—256.
SHANG Y L,SHI W J,DU S J,et al. Numerical analysis and monitoring research on shield passing through bridge at close ?range[J].Journal of Shenyang Jianzhu University (Natural Science),2018,34 (2):247—256. (In Chinese)
[12] ?徐江,龔維明,穆保崗,等. 軟土區(qū)某地鐵深基坑施工過程數(shù)值模擬及現(xiàn)場(chǎng)監(jiān)測(cè)[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,47 (3):590—598.
XU J,GONG W M,MU B G,et al. Numerical simulation and monitoring on construction process of deep pit of subway station in soft cay[J]. Journal of Southeast University (Natural Science Edition),2017,47 (3):590—598. (In Chinese)
[13] ?馬蘭,趙永虎,米維軍,等. 灰土擠密樁控制高等級(jí)公路涵洞地基沉降效果研究[J].水利水電技術(shù),2018,49 (8):47—54.
MA L,ZHAO Y H,MI W J,et al. Study on settlement control effect from lime-loess compaction pile on culvert foundation of high-grade highway[J]. Water Resources and Hydropower Engineering,2018, 49 (8):47—54. (In Chinese)
[14] ?趙夢(mèng)雪,劉國(guó)林,王志偉. 濟(jì)寧地區(qū)高速公路沉降監(jiān)測(cè)與分析[J]. 測(cè)繪科學(xué),2017,42 (11):135—140.
ZHAO M X,LIU G L,WANG Z W. Monitoring and analysis of highway subsidence in Jining[J]. Science of Surveying and Mapping,2017,42 (11):135—140. (In Chinese)
[15] ?張玲,趙明華. 考慮鼓脹變形的散體材料樁復(fù)合地基沉降計(jì)算 [J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(5):120—124.
ZHANG L,ZHAO M H. Settlement calculation of granular material pile composite foundation with consideration of lateral bulging[J]. Journal of Hunan University (Natural Sciences),2016,43 (5):120—124. (In Chinese)
[16] ?SUZUKI N,F(xiàn)UKUMOTO Y,SUDO T,et al. Vertical load tests of cast-in-place concrete nodular piles and settlement analysis for the pile foundation supporting high-rise building under dead load and seismic load[J]. AIJ Journal of Technology and Design,2009,15(30):399—404.
[17] ?SUZUKI N,SEKI T. Vertical load test and settlement analysis of cast-in-place concrete nodular piles supporting a high-rise building[J]. Geotechnical Engineering,2011,42(2):20—28.
[18] ?AMR S M,SUHEIL J E. Settlement-control piles to optimize the mat foundation of a high-rise building in Downtown Orlando[C]//HUSSEIN M H,ANDERSON J B,CAMP W M. Art of foundation engineering practice:Proceedings of the art of foundation engineering practice congress 2010. Washington D C:American Society of Civil Engineers,2010:605—619.
[19] ?MIRSAYAPOV I,KOROLEVA I. Long-term settlements assessment of high-rise building groundbase based on analytical ground deformation diagram[J]. Procedia Engineering,2016, 165:519—527.
[20] ?羅如平,楊敏,楊軍. 剛性筏板下群樁基礎(chǔ)共同作用實(shí)用分析方法[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45 (11):54—61.
LUO R P,YANG M,YANG J. Practical analysis method on interaction of rigid piled raft foundation[J]. Journal of Hunan University (Natural Sciences),2018,45 (11):54—61. (In Chinese)
[21] ?宋彧,羅小博,路承功,等. 慶陽地區(qū)超高層巨厚層黃土地基工程地質(zhì)特征[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2018,48 (6):1756—1766.
SONG Y,LUO X B,LU C G,et al. Engineering geological characteristics of super high rise and thick loess foundation in Qingyang area[J]. Journal of Jilin University(Earth Science Edition),2018,48 (6):1756—1766. (In Chinese)
[22] ?羅小博. 隴東大厚度黃土區(qū)超高層結(jié)構(gòu)樁筏基礎(chǔ)沉降規(guī)律研究 [D]. 蘭州:蘭州理工大學(xué)土木工程學(xué)院,2018:26—31.
LUO X B. Research on settlement law of super-high-rise pile-raft structure foundation in Longdong Region[D]. Lanzhou:College of Civil Engineering,Lanzhou University of Technology,2018:26—31. (In Chinese)
[23] ?JGJ 94—2008 ? 建筑樁基技術(shù)規(guī)范[S]. 北京:中國(guó)建筑工業(yè)出版社,2008:28—30.
JGJ 94—2008 ? Technical specification for pile foundation[S]. Beijing:China Building Industry Press,2008:28—30. (In Chinese)
[24] ?費(fèi)康,彭結(jié). ABAQUS巖土工程實(shí)例詳解[M]. 北京:人民郵電出版社,2017:221—239.
FEI K,PENG J. Detailed explanation of ABAQUS geotechnical engineering example[M]. Beijing:Posts and Telecom Press,2017:221—239. (In Chinese)
[25] ?周琴玲. 黃土地區(qū)長(zhǎng)短樁復(fù)合地基承載和沉降性狀分析[D]. 西安:西安建筑科技大學(xué)土木工程學(xué)院,2012:28—35.
ZHOU Q L. The bearing capacity and settlement of long-short pile composite foundation in loess area[D]. Xian:College of Civil Engineering,Xian University of Architecture and Technology,2012:28—35. (In Chinese)