徐漢中,鄔潤輝,2,邵春收,單喜軍,龔俊利,2
密閉金屬空腔中多孔介質(zhì)相變耦合傳熱模型研究
徐漢中1,鄔潤輝1,2,邵春收1,單喜軍1,龔俊利1,2
(1. 北京航天長征飛行器研究所,北京,100076;2. 試驗(yàn)物理與計(jì)算數(shù)學(xué)國家級重點(diǎn)實(shí)驗(yàn)室,北京,100076)
針對外加瞬間高能熱源,由密閉金屬空腔、腔體中多孔介質(zhì)、多孔介質(zhì)中可相變工質(zhì)組合成的耦合態(tài)目標(biāo)傳熱特性在航空航天領(lǐng)域的特殊應(yīng)用需求,基于金屬腔體、多孔介質(zhì)中不可壓縮流動相變工質(zhì)的能量守恒、動量守恒、質(zhì)量守恒等原理,以低氣壓環(huán)境下應(yīng)用的復(fù)雜物理結(jié)構(gòu)的密閉金屬腔體為研究對象,建立了由高能高效熱源-金屬空腔-多孔介質(zhì)-多孔介質(zhì)中可相變工質(zhì)的相變過程的傳熱特性的數(shù)值計(jì)算模型,通過典型物理參數(shù)狀態(tài)的仿真,獲取了密閉腔體內(nèi)溫度、壓力、相變等特征參數(shù)隨時間和空間變化的數(shù)值模擬結(jié)果,關(guān)鍵參數(shù)的仿真結(jié)果與已有試驗(yàn)結(jié)果對比一致性好,同時溫度、壓力、相變等特征參數(shù)的變化規(guī)律與傳熱傳質(zhì)理論相吻合。結(jié)果表明該建模方案思路的正確性以及仿真結(jié)果的有效性。該傳熱模型可推廣應(yīng)用于激勵熱源的優(yōu)化設(shè)計(jì)、密閉耦合態(tài)目標(biāo)的綜合性能優(yōu)化。
密閉金屬腔體多孔介質(zhì);相變工質(zhì);傳熱模型;數(shù)值模擬
多孔介質(zhì)廣泛應(yīng)用于熱能存貯[1]、能源再生應(yīng)用[2]、消聲、減震、隔熱和電磁屏蔽、高溫導(dǎo)熱和傳熱等領(lǐng)域[3~6],其中多孔介質(zhì)及其工質(zhì)相變的傳熱傳質(zhì)模型研究是在各個領(lǐng)域應(yīng)用必不可少的研究環(huán)節(jié),因此通過采用理論建模和地面試驗(yàn)相結(jié)合的方法形成可準(zhǔn)確模擬多孔介質(zhì)傳熱傳質(zhì)過程的仿真模型是多孔介質(zhì)應(yīng)用領(lǐng)域的重要技術(shù)支撐,國內(nèi)外分別開展了理論模型和相關(guān)試驗(yàn)研究工作[7~9],開展了多孔介質(zhì)導(dǎo)熱系數(shù)計(jì)算模型,多孔介質(zhì)內(nèi)部的導(dǎo)熱、相變與傳質(zhì)計(jì)算模型,多孔介質(zhì)材料作為一種強(qiáng)化傳熱裝置的傳熱特性分析模型,多孔介質(zhì)的孔徑分布特性的優(yōu)化模型,多孔介質(zhì)傳熱物性參數(shù)的地面模擬試驗(yàn)等研究工作,形成了多孔介質(zhì)傳熱傳質(zhì)特性的數(shù)學(xué)與數(shù)值計(jì)算仿真模擬,為不同結(jié)構(gòu)的多孔介質(zhì)傳熱傳質(zhì)特性分析提供了重要的分析手段。
而目前多孔介質(zhì)在航空航天領(lǐng)域的新應(yīng)用,需要針對外加瞬間高能熱源,建立由密閉金屬空腔、腔體中多孔介質(zhì)、多孔介質(zhì)中可相變工質(zhì)組合成的耦合態(tài)目標(biāo)傳熱模型,目前針對多組件耦合相變傳熱模型的建模和計(jì)算方法研究成果較少。本文在繼承已有多孔介質(zhì)傳熱模型算法的基礎(chǔ)上,針對新應(yīng)用需求提出了一種適用于模擬密閉耦合目標(biāo)中,瞬間高能熱源激勵條件下,由熱源-金屬空腔-多孔介質(zhì)-多孔介質(zhì)中可相變工質(zhì)的相變過程的傳熱特性的數(shù)值計(jì)算模型建模方法,通過建立多部件耦合傳熱特性分析模型,給出了密閉耦合態(tài)目標(biāo)的全目標(biāo)區(qū)域,溫度場、壓力場、速度場以及相變工質(zhì)的相變特征隨時間和空間變化的數(shù)值模擬結(jié)果,仿真模型的建立為激勵熱源的優(yōu)化設(shè)計(jì)、密閉耦合態(tài)目標(biāo)的綜合性能優(yōu)化提供重要的理論仿真平臺。
本文研究的對象包含金屬腔體、多孔介質(zhì)、多孔介質(zhì)中可相變可流動的工質(zhì)等,其傳熱過程是多個物理過程的耦合,因此建立傳熱模型時涉及到非定常動量方程,對流換熱與導(dǎo)熱方程,固-液-氣的相變模型,同時需要給出輻射換熱、變溫、變熱流邊界的邊界條件,整個傳熱過程滿足質(zhì)量守恒、動量守恒以及能量守恒。
傳熱模型遵循能量守恒方程,具體計(jì)算表達(dá)式為[10]
針對本文研究對象為金屬腔體、多孔介質(zhì)、多孔介質(zhì)中相變工質(zhì)、金屬空腔中工質(zhì)蒸汽流動等特性耦合的復(fù)雜特性,分別建立多孔介質(zhì)中工質(zhì)流動、金屬空腔中工質(zhì)流動的動量守恒和質(zhì)量守恒方程,具體如下:
a)多孔介質(zhì)中,相變工質(zhì)流動的動量守恒方程為[10]
由于多孔介質(zhì)中相變工質(zhì)流動的是不可壓縮流體,因此質(zhì)量守恒方程為[11]
b)金屬空腔中工質(zhì)蒸汽流動的動量守恒為
金屬空腔中工質(zhì)蒸汽流動的質(zhì)量守恒方程同 式(7)。
多孔介質(zhì)、相變工質(zhì)產(chǎn)生相變后由多孔介質(zhì)流動至金屬空腔的傳熱特性模擬的計(jì)算邊界條件表達(dá)式如下[10]:
在確定計(jì)算邊界條件后,通過求解上述能量守恒方程、動量守恒方程、質(zhì)量守恒方程以及工質(zhì)相變判據(jù)方程,可以完成金屬空腔中多孔介質(zhì)相變耦合傳熱特性的仿真計(jì)算和分析。
為了驗(yàn)證提出的金屬空腔中多孔介質(zhì)相變耦合傳熱模型的數(shù)值模型計(jì)算功能,以某裝置為例(該裝置由金屬空腔、多孔介質(zhì)、可相變工質(zhì)等組成),開展密閉金屬腔體熱激勵作用下工質(zhì)的相變過程仿真。圖1為該環(huán)節(jié)傳熱仿真模型,傳熱過程為一定溫度的初始熱源(裝置底部)將能量傳導(dǎo)至金屬殼體,進(jìn)而至多孔介質(zhì),溫度達(dá)到工質(zhì)的汽化溫度后,工質(zhì)相變?yōu)闅鈶B(tài),氣體工質(zhì)向金屬空腔內(nèi)流動,為電弧放電提供氣源。
在仿真計(jì)算時,以初始熱源加載時刻為零時刻,傳熱仿真時間段以熱源加載為起點(diǎn),以密閉腔體氣源開始供給于電弧放電為終點(diǎn),且典型的仿真時間段設(shè)置為5 s。典型的仿真結(jié)果包括不同時刻的溫度、壓力、相變等的二維空間分布。
圖1 典型的二維仿真模型
計(jì)算的主要輸入?yún)?shù)為:
a)初始熱源:均勻分布的溫度場,且整個傳熱計(jì)算時間內(nèi)均勻分布的溫度場輸出值不變,均值為2000 ℃。
b)工質(zhì)的相變溫度:700 ℃。
c)多孔介質(zhì)的孔隙率:70%。
d)多孔介質(zhì)的平均孔徑:10 μm。
以熱源加載為零時刻,圖2~4給出了0.1 s、2 s、4 s和5 s等4個時刻溫度、壓力、相變等二維空間分布結(jié)果。
圖2 溫度場隨時間和空間的變化結(jié)果
續(xù)圖2
由圖2可以看出,熱源加載后,熱傳導(dǎo)作用下附近的溫度首先升高,隨著時間的推移,多孔介質(zhì)的溫升速率相對高于中心腔體的溫升速率;在5 s時刻密閉腔體內(nèi)一半以上區(qū)域的溫度都達(dá)到900 K,此時溫度滿足了裝置試驗(yàn)需求。
圖3 蒸汽壓力隨時間和空間的變化結(jié)果
由圖3可以看出,密閉腔體中的初始壓力為 1×105Pa,在熱源激勵下,隨著腔體內(nèi)溫度的不斷升高,工質(zhì)相變、汽化,腔內(nèi)壓力也不斷升高,特別是熱源附近的空腔中,在5 s時局部最大壓力達(dá)到4.5×105Pa,該仿真結(jié)果與某裝置工作時工質(zhì)的汽化條件相吻合。
圖4為不同時刻的相變特征。
圖4 工質(zhì)相變隨時間和空間的變化結(jié)果
由圖4可以看出,無熱源激勵條件下,腔體內(nèi)多孔介質(zhì)吸附的工質(zhì)以固態(tài)或液態(tài)存在。在熱激勵條件下,隨著溫度的不斷升高,達(dá)到工質(zhì)由固-氣、液-氣相變的溫度時,多孔介質(zhì)中工質(zhì)不斷汽化為工質(zhì)蒸汽,蒸汽由多孔介質(zhì)脫附流向金屬空腔,隨著時間的推移,相變量不斷增大,空腔中蒸汽量也不斷增大,從而腔內(nèi)壓力也增大,腔內(nèi)的工質(zhì)質(zhì)量將為電弧放電提供源源不斷的放電用氣源。在5 s時刻多孔介質(zhì)中工質(zhì)相變可達(dá)到50%作用。
為進(jìn)一步驗(yàn)證仿真模型和仿真結(jié)果,選取典型的仿真結(jié)果和已有的試驗(yàn)結(jié)果進(jìn)行定性對比(具體見表1),結(jié)果表明已建立的傳熱計(jì)算模型可有效應(yīng)用于計(jì)算開塞前密閉陰極部件熱傳遞問題,結(jié)果吻合較好。說明該仿真模型可以指導(dǎo)工程應(yīng)用。
表1 主要性能參數(shù)仿真結(jié)果與試驗(yàn)結(jié)果對比
Tab.1 Comparison of Parameter Simulation & Experiment Results
序號參數(shù)名稱仿真結(jié)果已有試驗(yàn)結(jié)果對比對比結(jié)果 1加熱裝置反應(yīng)溫度/℃20001800~2000基本吻合
續(xù)表1
序號參數(shù)名稱仿真結(jié)果已有試驗(yàn)結(jié)果對比對比結(jié)果 2陰極腔內(nèi)壓力/Pa5s內(nèi)陰極管附近達(dá)到4×105陰極腔內(nèi)達(dá)到4×105~4.5×105,塞子頂開基本吻合 3陰極腔內(nèi)溫度/℃5s時刻陰極腔內(nèi)溫度為1100開塞前陰極腔內(nèi)溫度為1100基本吻合
本文針對復(fù)雜物理結(jié)構(gòu)的密閉金屬腔體,提出了一種適用于熱源-金屬空腔-多孔介質(zhì)-多孔介質(zhì)中可相變工質(zhì)的相變過程的傳熱特性的數(shù)值計(jì)算模型建模方法,建立了相變耦合傳熱計(jì)算模型,理論仿真與試驗(yàn)結(jié)果對比分析驗(yàn)證了建模方法的可行性、合理性,為該類型工程裝置的優(yōu)化設(shè)計(jì)提供重要的基礎(chǔ)理論支撐。
[1] 趙長穎, 等. 多孔介質(zhì)的相變和熱化學(xué)儲熱性能[J]. 科學(xué)通報(bào), 2016(61): 1897-1911.
Zhao Changyin, et al. Heat transfer of phase change materials (PCMs) and thermo chemical heat storage in porous materials[J]. Chinese Science Bulletin, 2016(61): 1897-1911.
[2] 張一江, 等. 多孔過渡金屬氧化物材料在能源環(huán)境中的應(yīng)用進(jìn)展[J]. 中國陶瓷, 2017, 53(2): 1-12.
Zhang Yijiang, et al. Research progress on applications of porous transition metal oxide materials in energy and environment[J]. China Ceramics, 2017, 53(2): 1-12.
[3] 謝濤, 等. 氣凝膠納米多孔隔熱材料傳熱計(jì)算模型的研究[J]. 工程熱物理學(xué)報(bào), 2014, 35(2): 299-304.
Xie Tao, et al. Study on theoretical model for the effective thermal conductivity of silica aerogel composite insulating materials[J]. Journal of Engineering Thermophysics, 2014, 35(2): 299-304.
[4] 張虎, 等. 氣氛壓力對納米多孔材料等效熱導(dǎo)率的影響[J]. 工程熱物理學(xué)報(bào), 2013, 34(4): 756-759.
Zhang Hu, et al. The influence of gas pressure on the effective thermal conductivity of nano-porous material[J]. Journal of Engineering Thermophysics, 2013, 34(4): 756-759.
[5] 李慧燕, 等. 多孔材料傳熱特性的試驗(yàn)[J]. 低溫與超導(dǎo), 2008, 36(4): 15-17.
Li Huiyan, et al. An experimental study on heat transfer characteristics of porous material[J]. Cryogenics and Superconductivity, 2008, 36(4): 15-17.
[6] 吳志根, 等. 多孔介質(zhì)在高溫相變蓄熱中的強(qiáng)化換熱[J]. 化工學(xué)報(bào), 2012, 63(S1): 119-122.
Wu Zhigen, et al. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Journal, 2012, 63(S1): 119-122.
[7] 袁越錦, 等. 顆粒堆積多孔介質(zhì)干燥多尺度多層結(jié)構(gòu)傳熱傳質(zhì)模型及模擬[J]. 工程熱物理學(xué)報(bào), 2015, 36(12): 2726-2729.
Yuan Yuejin, et al. Multi-Scale and multi-layer structural modeling and simulation of heat and mass transfer processes for drying of grain packing porous media[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2726-2729.
[8] 牛利嬌, 等. 具有預(yù)制孔隙多孔介質(zhì)冷凍干燥的多相傳遞模型[J]. 化工學(xué)報(bào), 2017, 68(5): 1833-1844.
Niu Lijiao, et al. Multiphase transport model for freeze-drying of porous media with prefabricated porosity[J]. CIESC Journal, 2017, 68(5): 1833-1844.
[9] 左遠(yuǎn)志, 等. 多孔介質(zhì)中熔融鹽流體高溫斜溫層蓄熱的熱特性[J]. 工程熱物理學(xué)報(bào), 2014, 35(2): 305-310.
Zuo Yuanzhi, et al. Thermal analysis on the single-phase flow through porous media in the high-temperature molten salt thermocline thermal energy storage system[J]. Journal of Engineering Thermophysics, 2014, 35(2): 305-310.
[10] Wang Haidong, Guo Zengyuan. Thermon gas as the thermal energy carrier in gas and metals[J]. Chinese Science Bulletin, 2010, 55(29): 3350-3355.
[11] 朱杰. 多孔介質(zhì)內(nèi)的相變傳熱傳質(zhì)過程研究[D]. 大連: 大連理工大學(xué), 2007.
Zhu Jie. Research on heat and mass transfer in the process of phase change of porous media[D]. Dalian: Dalian University of Technology, 2007.
Study on the Coupled Heat Transfer Model of Porous Media inEnclosed Metallic Cavity
Xu Han-zhong1, Wu Run-hui1,2, Shao Chun-shou1, Shan Xi-jun1, Gong Jun-li1,2
(1. Beijing Institute of Space Long March Vehicle, Beijing, 100076;2. National Key Laboratory of Science and Technology on Test Physics & Numerical Mathematics, Beijing, 100076)
Aiming at the heat source with external instantaneous high energy.According to the special requirements in the field of aerospace, the heat transfer characteristics of the variegated medium coupling state target’s are studied by considering the enclosed metal cavity, porous medium in the cavity, phase change in the porous media etc. The simulation model is obtained, based on the heat energy conservation, momentum conservation and mass conservation principle, and the heat-transfer mode is supposed from heat source to metal cavity, then to metal cavity porous medium, porous medium’s phase, its heat-transfer and so on. The parameters of temperature, pressure, velocity and phase change are computed, and the results are in conformity with tests also with theory of heat transfer medium as the incentive heat source is constant. This reveal the heat-transfer mode is right and the simulation model is valid. The heat transfer model can be popularized and applied to the optimization design of incentive heat source.
enclosed metal cavity; porous foam materials; phase transition working medium; heat transfer model; numerical simulation
O531
A
1004-7182(2020)02-0038-06
10.7654/j.issn.1004-7182.20200208
徐漢中(1975-),男,高級工程師,主要研究方向?yàn)榛鸸ぱb置技術(shù)。
鄔潤輝(1976-),女,研究員,主要研究方向?yàn)榈入x子體技術(shù)。
邵春收(1985-),男,高級工程師,主要研究方向?yàn)榭傮w技術(shù)。
單喜軍(1970-),男,高級工程師,主要研究方向?yàn)闄C(jī)構(gòu)結(jié)構(gòu)。
龔俊利(1962-),男,技師,主要研究方向?yàn)樵囼?yàn)技術(shù)。
2018-12-24;
2019-07-22
國家自然科學(xué)基金項(xiàng)目資助(61302029, 61571031, 61571031,61871018)