• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      零和自由半環(huán)上的e-可逆矩陣

      2020-04-29 10:47:00趙曉璐邵勇

      趙曉璐 邵勇

      摘要:文中研究了交換的零和自由半環(huán)上的e-可逆矩陣。通過e-可逆矩陣所具有的性質(zhì),給出了e-可逆矩陣的等價刻畫。借助e-可逆矩陣、e-可逆對角矩陣及置換矩陣之間的內(nèi)在聯(lián)系,給出了e-可逆矩陣半群的一個確定的極大子群的半直積分解。

      關(guān)鍵詞:零和自由半環(huán);e-可逆矩陣;極大子群;半直積

      中圖分類號:O151.21

      DOI:10.16152/j.cnki.xdxbzr.2020-02-014

      e-invertible matrices over zerosumfree semirings

      ZHAO Xiaolu, SHAO Yong

      Abstract: In this paper, the e-invertible matrices over commutative zerosumfree semirings are studied. Through the properties of e-invertible matrices, the equivalent characterizations of e-invertible matrices are given. The semidirect product decomposition of a certain maximal subgroup of the e-invertible matrix semigroup is given by investigating the internal relation among e-invertible matrices, e-invertible diagonal matrices and permutation matrices.

      Key words: zerosumfree semiring; e-invertible matrix; matrix semigroup; semidirect product

      眾所周知,布爾代數(shù)、模糊代數(shù)、分配格、坡等都是交換的零和自由半環(huán)。從20世紀(jì)50年代開始,很多學(xué)者都致力于零和自由半環(huán)上可逆矩陣的研究。1952年,Luce[1]討論了至少含有兩個元素的布爾代數(shù)上的矩陣,證明了矩陣是可逆的當(dāng)且僅當(dāng)它是正交矩陣;1988年,Zhao[2]證明了模糊代數(shù)上的矩陣是可逆的當(dāng)且僅當(dāng)它是置換矩陣;1991年,Zhao[3]得到了分配格上矩陣可逆的充要條件;2004年,Han[4]等給出了坡矩陣可逆的等價刻畫;2007年,Tan[5]研究了交換的零和自由半環(huán)上的可逆矩陣,得到了矩陣可逆的充要條件。2018年,Zhang 和Shao[6-7]將可逆矩陣的概念進(jìn)行了推廣,給出了半環(huán)上e-可逆矩陣的定義,并且研究了交換半環(huán)上e-可逆矩陣,給出其等價刻畫。本文主要研究交換的零和自由半環(huán)上的e-可逆矩陣,給出交換的零和自由半環(huán)上e-可逆矩陣的一些等價刻畫和e-可逆矩陣半群的極大子群中元素的基本形式,進(jìn)一步得到極大子群的結(jié)構(gòu)。

      1 預(yù)備知識

      本節(jié)將給出文中要用到的定義以及e-可逆矩陣的相關(guān)引理。

      參考文獻(xiàn):

      [1]LUCE R D.A note on Boolean matrix theory[J]. Proceedings of the American Mathematical Society, 1952, 3(3):382-388.

      [2]趙飏. 模糊矩陣的逆[J].遼寧教育學(xué)院學(xué)報, 1998,15(5):37-37.

      ZHAO Y.Inverse of fuzzy matrix[J]. Journal of Liaoning Educational Institute, 1998, 15(5):37-37.

      [3]ZHAO C K.Invertible conditions for a matrix over distributive lattice[J].Acta Scientiarum Naturalium Universitatis Neimongol, 1991, 22(4):477-480.

      [4]HAN S C, LI H X. Invertible incline matrices and Cramer′s rule over inclines[J]. Linear Algebra and its Applications, 2004,389:121-138.

      [5]TAN Y J. On invertible matrices over antirings[J].Linear Algebra and its Applications,2007,423(2/3):428-444.

      [6]張麗霞, 邵勇.關(guān)于交換半環(huán)上一類矩陣的研究 [J].計算機工程與應(yīng)用, 2017, 53(20):56-60.

      ZHANG L X, SHAO Y. Study on a class of matrices over commutative semirings[J]. Computer Engineering and Applications, 2017,53(20): 56-60.

      [7]ZHANG L X,SHAO Y.e-invertible matrices over commutative semirings[J].Indian Journal of Pure and Applied Mathematics, 2018, 49(2):227-238.

      [8]GOLAN J S. Semirings and their Applications [M].London:Kluwer Academic Publishers, 1999.

      [9]VECHTOMOV E M. Two general structure theorems on submodules, Abelian Groups and Modules[J]. Tomsk State University,2000, 15:17-23.

      [10]REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring [J]. Journal of Algebra, 1984, 88(2):350-360.

      [11]DOLZAN D, OBLAK P. Invertible and nilpotent matrices over antirings [J]. Linear Algebra and its Applications, 2009, 430(1):271-278.

      [12]TAN Y J. On invertible matrices over commutative semirings [J]. Linear and Multilinear Algebra,2013,61(6):710-724.

      [13]SIRASUNTORN N, UDOMSUB N.Inversion of matrices over Boolean semirings [J].Thai Journal of Mathematics, 2009, 7(1):105-113.

      [14]MORA W, WASANAWICHIT A, KEMPRASIT Y. Invertible matrices over idempotent semirings[J].Chamchuri Journal of Mathematics, 2009, 1(2):55-61.

      [15]SOMBATBORIBOON S, MORA W, KEMPRASIT Y. Some results concerning invertible matrices over semirings[J].Science Asia, 2011,37(2):130-135.

      [16]SARARNRAKSKUL R I, SOMBATBORIBOON S, LERTWICHITSILP P. Invertible matrix over semifields [J].East-West Journal of Mathematics, 2010, 12(1): 85-91.

      [17]楊陽, 任苗苗, 邵勇. 保持ai-半環(huán)上矩陣的Moore-Penrose逆的線性算子[J].計算機工程與應(yīng)用, 2015,51(8):37-41.

      YANG Y, REN M M, SHAO Y.Linear operators preserving Moore-Penrose inverses of matrices over ai-semirings[J]. Computer Engineering and Applications, 2015, 51(8): 37-41.

      [18]陳艷平, 譚宜家.關(guān)于半環(huán)上矩陣的廣義逆[J].福州大學(xué)學(xué)報(自然科學(xué)版),2007,35(6):797-801.

      CHEN Y P, TAN Y J. On the generalized inverse of matrices over a semiring[J]. Journal of Fuzhou University(Natural Science Edition),2007,35(6):797-801.

      [19]尹嬌嬌, 邵勇, 韓金.反環(huán)上的e-可逆矩陣 [J].山東大學(xué)學(xué)報(理學(xué)版), 2019, 54(10):6-12.

      YIN J J, SHAO Y, HAN J. e-invertible matrix over antirings[J]. Journal of Shandong University(Natural Science), 2019, 54(10):6-12.

      [20]張后俊, 儲茂權(quán).交換半環(huán)上半線性空間的維數(shù)[J].山東大學(xué)學(xué)報(理學(xué)版), 2015, 50(6):45-52.

      ZHANG H J, CHU M Q. Dimensions of semilinear spaces over commutative semirings[J].Journal of Shandong University(Natural Science), 2015, 50(6): 45-52.

      [21]ALPERIN J L, BELL R B. Groups and Representations[M]. New York: Springer-Verlag, 1995.

      (編 輯 張 歡)

      收稿日期:2020-02-18

      基金項目:國家自然科學(xué)基金資助項目(11971383,11801239)

      作者簡介:趙曉璐,女,河南焦作人,從事半環(huán)代數(shù)理論的研究。

      通信作者:邵勇,男,陜西戶縣人,教授,從事半環(huán)代數(shù)理論的研究。

      河西区| 永定县| 宜川县| 镇远县| 鹿泉市| 台湾省| 东平县| 桂阳县| 梅州市| 博罗县| 勐海县| 东光县| 贵溪市| 阳东县| 许昌县| 中山市| 呼伦贝尔市| 铜陵市| 南京市| 德州市| 平昌县| 昌吉市| 枞阳县| 青河县| 阜南县| 志丹县| 内黄县| 陆川县| 佛学| 台东县| 托克托县| 平湖市| 九龙城区| 陇川县| 文安县| 石阡县| 梁山县| 浦北县| 惠水县| 洛宁县| 陇西县|