• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      構(gòu)筑釕基納米催化劑用于5-羥甲基糠醛加氫制2,5-二羥甲基四氫呋喃

      2020-06-05 12:44藍(lán)梓桀王聰李輝
      關(guān)鍵詞:胺基氫化生物質(zhì)

      藍(lán)梓桀 王聰 李輝

      摘 要: 合理使用生物質(zhì),對(duì)解決環(huán)境污染和資源短缺問(wèn)題大有裨益.5-羥甲基糠醛(5-HMF)可以由生物質(zhì)衍生的糖類脫水獲得,進(jìn)一步完全氫化可以轉(zhuǎn)化為具有高附加值的2,5-二羥甲基四氫呋喃(DHMTHF).以表面胺基功能化介孔二氧化硅小球(SiO2-NH2)為載體,采用等體積浸漬法制備了高分散釕(Ru)基(Ru-B)納米催化劑(Ru-B/SiO2-NH2).以2-丁醇為溶劑,將制得的Ru-B/SiO2-NH2用于5-HMF加氫制DHMTHF.在160 ℃,2.76 MPa,800 r·min-1的條件下,5-HMF轉(zhuǎn)化率為100%,DHMTHF的產(chǎn)率為87%.與目前報(bào)道的催化劑相比,該催化體系可以在更為溫和的條件下獲得較好的效果.構(gòu)效關(guān)系研究表明:載體表面胺基功能化可以起到錨定和高度分散Ru-B非晶態(tài)合金納米粒子的作用.

      關(guān)鍵詞: 釕(Ru)基(Ru-B); 5-羥甲基糠醛(5-HMF); 2,5-二羥甲基四氫呋喃(DHMTHF); 完全加氫; 生物質(zhì)催化轉(zhuǎn)化

      中圖分類號(hào): O 643.32? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào): 1000-5137(2020)02-0151-07

      Synthesis of Ru-based nanocatalyst for 5-hydroxymethylfurfural hydrogenation to 2,5-dihydroxymethyltetrahydrofuran

      LAN Zijie, WANG Cong, LI Hui*

      (College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China)

      Abstract: Rational use of biomass is of great benefit to solving environmental pollution and resource shortage.5-Hydroxymethylfurfural(5-HMF) can be obtained via dehydration of sugars derived from biomass,which can be converted into high-value-added 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) by further complete hydrogenation.High-dispersionruthenium(Ru)-based(Ru-B) nanocatalyst(Ru-B/SiO2-NH2) was synthesized with surface amino-functionalized mesoporous silica spheres (SiO2-NH2) as the carrier.During the hydrogenation of 5-HMF to DHMTHF,the as-prepared Ru-B/SiO2-NH2was used as the catalyst with 2-butanol as the solvent.Under optimized reaction conditions (reaction temperature:160 ℃,reaction pressure:2.76 MPa),the conversion of 5-HMF was 100% and the selectivity to DHMTHF was 87%.Compared with the catalysts reported so far,better results can be achieved by the present catalytic system under milder conditions.Structure-activity relationship studies show that amino-functionalization on the surface of the carrier can anchor and disperse Ru-B amorphous alloy nanoparticles.

      Key words: ruthenium(Ru)-based(Ru-B); 5-hydroxymethylfurfural(5-HMF); 2,5-dihydroxymethyltetrahydrofuran(DHMTHF); complete hydrogenation; catalytic biomass conversion

      0 引 言

      生物質(zhì),目前被認(rèn)為是燃料和化學(xué)中間體的替代碳源,對(duì)未來(lái)的可持續(xù)發(fā)展具有重要意義[1],其最受關(guān)注的研究方向之一是生物質(zhì)向呋喃衍生物的轉(zhuǎn)化[2].5-羥甲基糠醛(5-HMF)是一種高附加值的平臺(tái)化合物,可以取代化石能源在精細(xì)化學(xué)品、高分子等方面的工業(yè)應(yīng)用.5-HMF通過(guò)氧化可轉(zhuǎn)化為2,5-呋喃二甲酸(FDCA)等[3],醚化可轉(zhuǎn)化為2,5-二(甲氧基甲基)呋喃(BMMF)等[4],氫化可轉(zhuǎn)化為2,5-二羥甲基四氫呋喃(DHMTHF)等.其中,5-HMF完全加氫的產(chǎn)物DHMTHF是一種具有高附加值的化學(xué)品,由于DHMTHF易降解、毒性低,并比其他不飽和呋喃化合物更穩(wěn)定,在特種化學(xué)品領(lǐng)域中具有重要作用,如可以進(jìn)一步轉(zhuǎn)化為工業(yè)中重要的單體1,6-己二醇.DHMTHF的制備方法可分為兩步:首先由菊粉或生物質(zhì)衍生的糖類(葡萄糖、果糖)在固體酸催化劑作用下脫水為5-HMF[5-8];然后5-HMF在金屬催化劑作用下完全氫化為DHMTHF.NAKAGAWA等[9]在8 MPa氫氣(H2)壓力和低溫條件下,對(duì)鈀-銥/二氧化硅(Pd-Ir/SiO2)催化劑進(jìn)行了水相5-HMF加氫性能研究.LIMA等[10]在9 MPa H2壓力和90 ℃條件下將5-HMF在水溶液中兩步氫化制DHMTHF,首先以雷尼銅(Raney?Cu)為催化劑制得2,5-二羥甲基呋喃(DHMF),再以雷尼鎳(Raney?Ni)為催化劑制得DHMTHF.研究發(fā)現(xiàn),在水存在的條件下5-HMF極易與其反應(yīng)生成甲酸和乙酰丙酸等副產(chǎn)物[1].KONG等[11]在6 MPa H2壓力和60 ℃的條件下,以鎳/氧化鋁(Ni/Al2O3)為催化劑,在二氧六環(huán)溶劑中實(shí)現(xiàn)了5-HMF完全氫化制DHMTHF.為了抑制副反應(yīng)的產(chǎn)生,大量研究使用合金催化劑或采用分步反應(yīng)等方法,以至于反應(yīng)過(guò)程復(fù)雜,增加了成本.因此,開發(fā)5-HMF完全氫化制DHMTHF的高效率催化體系具有重要的應(yīng)用價(jià)值和研究意義.本研究以2-丁醇為溶劑,采用單一釕(Ru)金屬催化劑,既避免了水的不利影響,又簡(jiǎn)化了反應(yīng)過(guò)程,降低了成本,并著重探討了SiO2載體表面修飾胺基的作用.

      圖5分別為Ru-B/SiO2和Ru-B/SiO2-NH2的XPS圖.2個(gè)催化劑的Ru 3d5/2能級(jí)中的電子結(jié)合能均與純金屬Ru在Ru 3d5/2的結(jié)合能(280.0 eV)一致,表明Ru主要是以金屬態(tài)存在.由元素硼1 s能級(jí)可見(jiàn),與純單質(zhì)硼樣品的標(biāo)準(zhǔn)電子結(jié)合能(187.1 eV)相比,與Ru形成合金的單質(zhì)硼的電子結(jié)合能均發(fā)生正移,說(shuō)明在Ru-B中部分電子由硼轉(zhuǎn)移到Ru,使Ru富電子,而硼缺電子.上述結(jié)果與超細(xì)Ru-B非晶態(tài)合金表征結(jié)果基本相同[13],表明載體不顯著改變Ru-B非晶態(tài)合金的電子結(jié)構(gòu).

      2.2 催化性能測(cè)試

      采用2%(質(zhì)量分?jǐn)?shù))的Ru-B/SiO2-NH2為催化劑,以2-丁醇為溶劑,在100 ℃,0.34 MPa,800 r·min-1的條件下,5-HMF加氫反應(yīng),進(jìn)程圖如圖6(a)所示.由圖6(a)可知,5-HMF轉(zhuǎn)化率和DHMTHF產(chǎn)率均隨著反應(yīng)時(shí)間的延長(zhǎng)而逐漸提高,當(dāng)反應(yīng)時(shí)間為48 h時(shí),5-HMF轉(zhuǎn)化率和DHMTHF產(chǎn)率均達(dá)到較高值.繼續(xù)延長(zhǎng)反應(yīng)時(shí)間,5-HMF轉(zhuǎn)化率幾乎不再變化,但DHMTHF產(chǎn)率有所下降.這是由于反應(yīng)時(shí)間過(guò)長(zhǎng),生成的DHMTHF會(huì)在催化劑表面繼續(xù)發(fā)生氫解等副反應(yīng),造成產(chǎn)率下降.在相同條件下比較了載體對(duì)催化性能的影響,如圖6(b)所示.比較實(shí)驗(yàn)結(jié)果可見(jiàn),Ru-B/SiO2-NH2上5-HMF轉(zhuǎn)化率和DHMTHF產(chǎn)率均優(yōu)于Ru-B/SiO2.這可歸因于載體表面胺基對(duì)金屬的高分散作用.

      采用2%(質(zhì)量分?jǐn)?shù))Ru-B/SiO2-NH2為催化劑,2-丁醇為溶劑,在100 ℃,0.34 MPa,800 r·min-1的條件下,考察了催化劑質(zhì)量對(duì)催化性能的影響,如圖7(a)所示.當(dāng)催化劑質(zhì)量由0.2 g增加到0.5 g時(shí),DHMTHF產(chǎn)率明顯增加.繼續(xù)增加催化劑質(zhì)量到0.6 g時(shí),DHMTHF產(chǎn)率略有降低,這是由于催化劑過(guò)量導(dǎo)致氫解副反應(yīng)的發(fā)生.接下來(lái)優(yōu)選催化劑用量為0.5 g,考察了Ru負(fù)載量對(duì)催化性能的影響,結(jié)果如圖7(b)所示.隨著Ru負(fù)載量的提高,催化活性顯著提高,這可歸因于Ru的用量增大.繼續(xù)增加Ru負(fù)載量到2.5%(質(zhì)量分?jǐn)?shù))時(shí),DHMTHF產(chǎn)率開始下降,這可能是由于高Ru負(fù)載量時(shí)金屬分散度下降所致.采用0.5 g 2.0%Ru-B/SiO2-NH2為催化劑,2-丁醇為溶劑,在2.76 MPa,800 r·min-1的條件下,考察了反應(yīng)溫度對(duì)催化性能的影響,結(jié)果如圖7(c)所示.隨著反應(yīng)溫度的提高反應(yīng)活性增加,當(dāng)反應(yīng)溫度為160 ℃時(shí),DHMTHF產(chǎn)率達(dá)到87%.繼續(xù)增加反應(yīng)溫度到180 ℃,DHMTHF產(chǎn)率略有下降,這是由于高溫有利于氫解副反應(yīng)所致.與目前報(bào)道的催化劑相比,當(dāng)前催化體系可以在更為溫和的條件下獲得較好的催化活性和選擇性.在優(yōu)化的反應(yīng)的條件下(160 ℃,2.76 MPa),考察了0.5 g 2.0% Ru-B/SiO2-NH2催化劑的穩(wěn)定性,結(jié)果如圖7(d)所示.

      該催化劑循環(huán)使用3次沒(méi)有發(fā)生顯著的催化性能下降.當(dāng)套用第4次之后,5-HMF轉(zhuǎn)化率和DHMTHF產(chǎn)率均明顯下降.這是由于5-HMF加氫反應(yīng)是一個(gè)強(qiáng)放熱反應(yīng),在長(zhǎng)時(shí)間的反應(yīng)過(guò)程中Ru-B非晶態(tài)合金納米顆粒發(fā)生團(tuán)聚,造成活性下降,如圖8所示.

      3 結(jié) 論

      運(yùn)用多種表征技術(shù)證實(shí)本實(shí)驗(yàn)室已成功地制備了介孔SiO2并在其表面修飾了胺基,以上述胺基功能化的介孔SiO2為載體,采用等體積浸漬法制備了負(fù)載型Ru-B非晶態(tài)合金納米顆粒催化劑,用于有機(jī)相5-HMF完全加氫制DHMTHF的反應(yīng).通過(guò)制備參數(shù)和反應(yīng)條件的優(yōu)化,篩選出最優(yōu)條件,得到了催化活性和選擇性較好的催化劑體系和反應(yīng)條件,并能重復(fù)使用3次以上.研究結(jié)果表明該催化劑具有良好的應(yīng)用潛力.

      參考文獻(xiàn):

      [1]???? ROM?N-LESHKOV Y,CHHEDA J N,DUMESIC J A.Phase modifiers promote efficient production of hydroxymethylfurfural from fructose [J].Science,2006,312(5782):1933-1937.

      [2]???? ZHAO P,CUI H,ZHANG Y,et al.Synergetic effect of Br?nsted/Lewis acid sites and water on the catalytic dehydration of glucose to 5-hydroxymethylfurfural by heteropolyacid-based ionic hybrids [J].Chemistry Open,2018,7(10):824-832.

      [3]???? HAYASHI E,YAMAGUCHI Y,KAMATA K,et al.Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid [J].Journal of the American Chemical Society,2019,141(2): 890-900.

      [4]???? LI X L,ZHANG K,CHEN S Y,et al.Cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl) furan under mild conditions [J].Green Chemistry,2018,20(5):1095-1105.

      [5]???? FACHRI B A,ABDILLA R M,RASRENDRA C B,et al.Experimental and modeling studies on the acid-catalyzed conversion of inulin to 5-hydroxymethylfurfural in water [J].Chemical Engineering Research & Design,2016,109:65-75.

      [6]???? SARAVANAN K,PARK K S,JEON S,et al.Aqueous phase synthesis of 5-hydroxymethylfurfural from glucose over large pore mesoporous zirconium phosphates:effect of calcination temperature [J].ACS Omega,2018,3(1):808-820.

      [7]???? BHAUMIK P,CHOU H J,LEE L C,et al.Chemical transformation for 5-hydroxymethylfurfural (HMF) production from saccharides using molten salt system [J].ACS Sustainable Chemistry & Engineering,2018,6(5):5712-5717.

      [8]???? K?RNER P,JUNG D,KRUSE A.Effect of different Br?nsted acids on the hydrothermal conversion of fructose to HMF [J].Green Chemistry,2018,20(10):2231-2241.

      [9]???? NAKAGAWA Y,TAKADA K,TAMURA M,et al.Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd-Ir alloy catalyst [J].ACS Catalysis,2014,4(8):2718-2726.

      [10]???? LIMA S,CHADWICK D,HELLGARDT K.Towards sustainable hydrogenation of 5-(hydroxymethyl) furfural:a two-stage continuous process in aqueous media over RANEY?catalysts [J].RSC Advances,2017,7(50):31401-31407.

      [11]???? KONG X,ZHENG R,ZHU Y,et al.Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural [J].Green Chemistry,2015,17(4):2504-2514.

      [12]???? ZHENG D,CAO X N,WANG X.Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by photoredox catalysis [J].Angewandte Chemie International Edition,2016,55(38):11512-11516.

      [13]???? WANG M,F(xiàn)ENG B,LI H,et al.Controlled assembly of hierarchical metal catalysts with enhanced performances [J].CheM,2019,5(4):805-837.

      (責(zé)任編輯:郁 慧,顧浩然)

      收稿日期: 2019-11-19

      基金項(xiàng)目: 國(guó)家自然科學(xué)基金面上項(xiàng)目(21972093)

      作者簡(jiǎn)介: 藍(lán)梓桀(1992—),男,碩士研究生,主要從事生物質(zhì)能源的催化轉(zhuǎn)化方面的研究.E-mail:lanzijie@outlook.com

      通信作者: 李 輝(1974—),男,教授,主要從事多相催化方面的研究.E-mail: lihui@shnu.edu.cn

      引用格式: 藍(lán)梓桀,王聰,李輝.構(gòu)筑釕基納米催化劑用于5-羥甲基糠醛加氫制2,5-二羥甲基四氫呋喃 [J].上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,49(2):151-157.

      Citation format:?LAN Z J,WANG C,LI H.Synthesis of Ru-based nanocatalyst for 5-hydroxymethylfurfural hydrogenation to 2,5-dihydroxymethyltetrahydrofuran [J].Journal of Shanghai Normal University(Natural Sciences),2020,49(2):151-157.

      猜你喜歡
      胺基氫化生物質(zhì)
      生物質(zhì)揮發(fā)分燃燒NO生成規(guī)律研究
      《生物質(zhì)化學(xué)工程》第九屆編委會(huì)名單
      《造紙與生物質(zhì)材料》(英文)2020年第3期摘要
      吃肉肉的講究
      生物質(zhì)碳基固體酸的制備及其催化性能研究
      胺基修飾熒光碳點(diǎn)的合成及其在Hg(Ⅱ)離子分析中的應(yīng)用
      有機(jī)胺基氨基酸鹽混合吸收劑對(duì)沼氣中CO2的分離特性
      一種氫化丁腈橡膠的制備裝置及其制備方法
      氫化可的松嚴(yán)重副作用1例
      氫化6#溶劑油中芳烴的方法研究
      阜新市| 临泉县| 顺义区| 伊春市| 尤溪县| 宁乡县| 哈密市| 遂溪县| 鄄城县| 张家界市| 安徽省| 新宾| 佛坪县| 英山县| 南投市| 安龙县| 安庆市| 涞水县| 竹山县| 石家庄市| 鄯善县| 扎鲁特旗| 景东| 云梦县| 南安市| 辽宁省| 迭部县| 潞城市| 抚宁县| 金堂县| 安仁县| 崇阳县| 桦川县| 奇台县| 江油市| 黄石市| 繁峙县| 丹东市| 会理县| 嘉善县| 务川|