• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      肝纖維化發(fā)病機制及大黃酸對肝纖維化的作用

      2020-07-27 09:07:44郭冶盧鳳美劉東璞
      醫(yī)學信息 2020年12期
      關鍵詞:肝損傷肝纖維化

      郭冶 盧鳳美 劉東璞

      摘要:《黃帝內經》里記載“肝者,將軍之官,謀慮出焉”,可見肝臟是維持生命活動重要的器官,一旦因炎癥、病毒、寄生蟲等發(fā)生疾病,纖維化是肝損傷發(fā)展為肝硬化的必經階段。肝纖維化是指各種病因引起的肝細胞發(fā)生炎癥及壞死等變化,進而刺激肝臟中細胞外基質的合成與降解平衡失調,致纖維膠原生成及溶解減少,發(fā)生可逆性動態(tài)病理過程。大黃酸具有抗氧化應激與炎癥、抗細胞凋亡、抗纖維化、調節(jié)糖脂代謝及抗癌等作用,尤其抗肝纖維化作用的研究受到越來越多學者的關注。研究表明,給予大黃酸預防或治療,可抑制肌成纖維細胞增生及纖維膠原轉運與合成,加速膠原溶解,減少膠原的形成與沉積,可逆轉肝纖維化。本文就肝纖維化的發(fā)病機制及大黃酸抗肝纖維化的功效作一綜述,以期為臨床治療提供參考。

      關鍵詞:肝纖維化;大黃酸;肝損傷

      Abstract:It is recorded in Huangdi's internal classic that "the liver is the official of the general, and how to plan". It can be seen that the liver is an important organ to maintain life activities. Once diseases occur due to inflammation, viruses, parasites, etc., fibrosis is the necessary stage for liver damage to develop into cirrhosis. Hepatic fibrosis refers to the reversible dynamic pathological process, which is caused by inflammation and necrosis of liver cells caused by various causes, and then stimulates the imbalance of synthesis and degradation of extracellular matrix in liver, resulting in the decrease of generation and dissolution of fibrocollagen. Rhein has the functions of anti oxidative stress and inflammation, anti apoptosis, anti fibrosis, regulation of glycolipid metabolism and anti-cancer. Especially, more and more scholars have paid attention to the research of anti fibrosis. The prevention or treatment of rhein can inhibit the proliferation of myofibroblasts and the transport and synthesis of fibrocollagen, accelerate the dissolution of collagen, reduce the formation and deposition of collagen, and reverse it hepatic fibrosis. This article reviews the pathogenesis of hepatic fibrosis and the effect of rhein on hepatic fibrosis.

      Key words:Hepatic fibrosis;Rhein;Liver damage

      肝臟是人體內最大的實質性器官,其功能較為復雜,包括代謝、合成、生物轉化、分泌、排泄膽汁等,各種外源性和內在的因素,都可以導致肝臟疾病。常見的肝臟疾病包括肝炎、肝硬化、肝癌等,是導致人們健康負擔的重要原因,同時也加重社會經濟成本。據(jù)報道[1],全球肝硬化患者死亡人數(shù)截止到2013年約122.1萬。肝纖維化(hepatic fibrosis)是肝臟疾病發(fā)生、發(fā)展的中間環(huán)節(jié),通過調節(jié)肝臟中細胞外基質(extracellular matrix,ECM)合成與降解的平衡,去除病因,給予適當干預,可治療并逆轉肝纖維化。隨著人類對疾病的認識與研究,越來越多的藥物被開發(fā)利用,尤其我國重視對中醫(yī)藥的開發(fā),對延緩或治愈疾病,改善患者生活質量具有重要意義。天然蒽醌類化合物大黃的主要有效成分大黃酸自我國古代以來就作為瀉下藥應用,南北朝醫(yī)家陶弘景有云“大黃,其色也。將軍之號,當取其駿快也”?,F(xiàn)代藥理研究表明[2,3],大黃酸具有廣泛的藥理活性,包括抗炎、抗氧化應激、抗腫瘤、抗纖維化、調脂、降糖、抑菌、抗病毒等作用,其中大黃酸對抗纖維化作用受到臨床廣泛關注。基于此,本文就肝纖維化的發(fā)病機制及大黃酸預防或治療肝纖維化的功效作一綜述。

      1肝纖維化的發(fā)病機制

      1.1肝纖維化概述? 肝纖維化是各種慢性肝炎、肝癌等肝病發(fā)展的一個典型組織病理學特征[4],持續(xù)性肝臟炎癥、酒精等破壞受趨化因子及其信號轉導途徑作用于肝細胞、肝星狀細胞(hepatic stellate cells,HSCs)、門靜脈成纖維細胞(portalfibroblast,PF)等,主要受活化的肝星狀細胞(activated HSCs,aHSCs)刺激分化,大量細胞因子被激活,合成并增殖大量ECM,從而形成了肝纖維化進展的重要因素。在肝纖維化早期階段,膠原沉積在竇周間隙(Disse間隙)內皮下,可使間隙變小甚至完全消失,進而肝竇毛細血管化,肝細胞間的物質運輸受阻,終因缺血缺氧、變性壞死,導致功能障礙[5];在肝纖維化晚期階段,肝臟內纖維膠原組織廣泛增生和異常沉積,主要分布在門管區(qū)和肝小葉內,生成假小葉及結節(jié),即持續(xù)纖維化形成肝硬化,門靜脈高壓,嚴重者甚至發(fā)展為肝功能衰竭、肝細胞癌[6,7],唯一的根治途徑仍是去除有害刺激和肝移植[8]。

      截止到目前,即使臨床上廣泛應用非侵入性檢測方法,但活檢仍然是診斷肝纖維化分期的金標準[9]。早發(fā)現(xiàn)、去除病因、給予適當干預、通過抑制HSC的增值活性和多種信號通路間串擾的綜合調節(jié)及協(xié)調肝臟中ECM合成與降解的失衡、靶向阻斷結合納米顆粒治療、TIMP-1-shRNA的干細胞移植技術、Smad3蛋白可能是抗肝纖維化的潛在靶標[10]。研究表明[11],在細胞和基因水平上阻斷基質金屬蛋白酶-13(MMP-13)和結締組織生長因子(connective tissue growth factor,CTGF)對抑制肝纖維化具有潛在的治療意義。深入研究逆轉肝纖維化的有效途徑,仍是人類追求肝臟健康的有用價值取向。

      1.2參與肝纖維化的細胞因子

      1.2.1 aHSCs? 正常人體內,肝臟中星狀細胞的特征與肺、腎、胰腺等其他纖維化器官中的特征類似[12]。HSCs是靜止的儲脂細胞,可通過脂滴中維生素A的量檢測HSCs的表達情況[13,14],一旦肝組織受損或發(fā)生炎癥反應,星狀細胞內脂滴丟失,大量炎細胞趨化聚集,刺激并激活靜止的肝星狀細胞(quiescent HSCs,qHSCs),aHSCs轉化成可以釋放大量α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA)的肌成纖維細胞(myofibroblast,MFB)即成纖維樣細胞,含纖維膠原蛋白的ECM沉積失調,并伴隨著炎癥介質的作用,與此同時aHSCs激活并釋放大量細胞因子和基質金屬蛋白酶/金屬蛋白酶組織抑制劑(matrix metalloproteinases,MMPs)/(tissue inhibitor of metalloproteinases,TIMPs),其中大量活化的TIMP,抑制MMP降解ECM,促肝纖維化形成[15,16]??梢娫诟卫w維化過程中,HSCs起著重要調控作用。

      1.2.2轉化生長因子β(TGF-β)? TGF-β被認為是肝臟疾病中的中樞調節(jié)因子,作為多肽超家族,有3個同種型(TGF-β1,TGF-β2和TGF-β3)與纖維化有關[17],其中TGF-β1與肝纖維化關系最密切,其通過激活HSCs的活化與增殖,并被證實為活性氧(ROS)和ECM產生的主要細胞因子[18]。CTGF在TGF-β1的調節(jié)下,參與細胞增殖和組織重塑,并刺激自身的表達。干擾素-γ(IFN-γ)、腫瘤壞死因子-α(TNF-α)和表皮生長因子(EGF)能通過刺激Smad7蛋白的表達抑制TGF-β/Smad傳導通路的活性,從而抑制HF的進展[19]。TGF-β、PDGF、白細胞介素-1β(IL-1β)、IL-17及腸源性脂多糖(LPS)促HSC活化,活化的HSC釋放IL-1β或TNF-α,并介導MMP/TIMP失衡[20]。有研究表明[21,22],在四氯化碳復制的肝纖維化大鼠中,IL-1β通過自分泌或旁分泌誘導產生趨化因子或細胞因子,使得TNF-α和IL-6的含量顯著升高。因此,肝損傷后發(fā)生肝纖維化,其與細胞因子間有著密切關聯(lián)。

      1.2.3甲胎蛋白(α-FetoProtein,αFP)? αFP是一種糖蛋白質,主要來自胎兒期的肝臟,為生理產物。在孕其3個月時開始合成,5~6個月時達到高峰,隨后降到極微。αFP正常檢測時值應在20 ng/ml以內,如超出正常值,則提示機體異常。肝細胞癌的在臨床檢測中主要指標為αFP,其中Hep3B單核培養(yǎng)物可分泌高水平的αFP,但是人HSCs與Hep3B細胞共培養(yǎng)后,αFP顯著降低,且細胞凋亡明顯增加。Muhanna N等[23]通過體內外實驗證明,在肝纖維化早期,aHSCs通過氧化應激介導的腫瘤細胞吞噬和凋亡,直接表達抗腫瘤作用。另有研究表明[24,25],在肝纖維化晚期,肝硬化患者腸道過度生長的菌群和門靜脈內毒素的內源性傳感器TLR4可能共同促進肝纖維化進展。反應性氧化劑物質(如酒精、病毒、鐵或銅過載、膽汁淤積等)通過氧化應激反應,可能有助于肝纖維化的發(fā)作和進展[26]。促纖維化的細胞因子發(fā)生衰老、凋亡或自噬可能是逆轉纖維化的關鍵因素[11,27],如肝纖維化的逆轉與肝星狀細胞的凋亡有關[28]。Hong F等[29]成功的建立并驗證了索拉菲尼在培養(yǎng)的人HSC和硫代乙酰胺(TAA)誘導的大鼠肝纖維化中的抑制作用,及抗肝纖維化的最小有效劑量和最佳治療時間,充分說明肝纖維化是一種可逆的傷口愈合反應。大量研究顯示,通過實驗檢測αFP、α-SMA、CTGF、MMPs及膠原等因子的表達[30-32],可用于驗證某種藥物干預抑制和減少肝細胞凋亡及肝星狀細胞活化來逆轉肝纖維化,從而延緩肝病進展[33-34]。在肝損傷時,多種細胞因子串擾作用發(fā)生存活和失活,直接或間接影響肝纖維化發(fā)展。

      1.2.4 α-平滑肌肌動蛋白(α-SMA)? 研究表明[35-37],肌動蛋白(actin)是組成含大量微絲的細胞骨架的主要成分,生物體內有6種肌動蛋白異構體,α型肌動蛋白是按等電點聚焦電泳不同分出的3種類型之一,進一步可分為心肌型、骨骼肌型和平滑肌型。在正常生理狀態(tài)下,α-SMA表達主要見于成人平滑肌源型的細胞,其次在心肌和骨骼肌發(fā)育過程中呈現(xiàn)短暫表達,具有收縮和形成細胞骨架的作用。在病理過程中,α-SMA是HSCs活化的標志物,血小板衍生生長因子-D(PDGF-D)未能激活并促進α-SMA的增生,能促進TIMP-1的表達,增強肝纖維化進展[38]。

      1972年Gabbiani G等[39]首次通過離體肉芽組織驗證了成纖維細胞分化為一種結構和功能類似于平滑肌細胞類型,而又非平滑肌細胞的細胞結構,這種細胞結構在結締組織收縮中起重要作用,并提出將其命名為“myo-fibroblast”,譯為“肌成纖維細胞”,簡稱MFB。MFB不存在正常組織中,其來源取決于損傷的組織和特定損傷組織的類型,如肝、腎、肺、心等器官能夠退化高度重塑的組織成分[40];在發(fā)生損傷炎癥等病理情況下,高度動態(tài)的成纖維細胞轉化為活化的α-SMA陽性表達的MFB[41]。對于不同纖維化疾病,肌成纖維細胞的來源目前尚不確定[42,43],通常皮膚成纖維細胞是固著靜止的,但皮膚損傷后被激活,活化的成纖維細胞遷移合成肉芽組織,同時分化為表達α-SMA的MFB,皮膚損傷后同時被激活的細胞因子如TGF-β促進PFs向MFB分化,再從肉芽組織到真皮(或疤痕)的轉變,即纖維性瘢痕的細胞外基質,之后細胞增殖和生物合成活性的變化,可能是MFB在傷口愈合結束時消失的發(fā)展機制[44];在心肌纖維化時,肌成纖維細胞主要來自因心肌廣泛受損激活的成年哺乳動物心臟中最為豐富的成纖維細胞[45,46];Shao S等[47]研究表明,基質細胞衍生因子-1(SDF-1)和Wnt信號通路在高血壓大鼠心肌纖維化實驗中,通過體外誘導骨髓間充質干細胞分化肌成纖維細胞(MFs);陳威等[48]研究表明,腎小管-間質細胞α-SMA的表達與腎間質纖維化程度呈正相關。TGF-β/Smad信號通路介導脫氫表雄酮(dehydroepiandrosterone,DHEA)誘導α-SMA高表達的多囊卵巢綜合征(polycystic ovary syndrome,PCOS),從抑制TGF-β下游信號因子來上調MMP2表達,從平衡纖維化生物標志物表達的角度來對抗卵巢纖維化并抑制纖維化過度產生,從而防治PCOS[49,50];肝臟纖維化時肌成纖維細胞主要來源于肝內活化的肝星狀細胞、活化的門靜脈成纖維細胞和間皮細胞[41];促炎癥和促纖維化細胞因子的減少,以及促α-SMA和I型膠原活化的肌成纖維細胞衰老及凋亡,活化的部分肝星狀細胞逆轉為靜止樣肝星狀細胞表型[51]。由此可見,肝纖維化受細胞因子的雙向調節(jié),影響著自身的發(fā)展趨勢。

      1.3肝纖維化與MMPs/TIMPs? MMPs是金屬離子鈣鎂鋅依賴性肽鏈內切酶家族,幾乎在肝纖維化、纖維蛋白溶解、肝細胞癌及肝再生中各自發(fā)揮著重要作用。通常裂解ECM的是鋅依賴性內切酶,至少包括28個成員,其家族成員具有相似的分子結構,主要裂解ECM,不同MMP可有不同裂解ECM的效率,同種MMP可裂解多種ECM成分,而其一種ECM成分又可被多種MMP裂解,除此之外還可激活其他MMPs類,也有學者稱其為蛋白水解酶家族[52]。MMPs按底物不同分為:①膠原酶(collagenases):包括間質膠原酶(MMP-1、-8)和膠原酶3(MMP-13),MMP13是嚙齒動物主要的纖維膠原降解酶[53];②明膠酶(gelatinases):包括明膠酶A(MMP-2)和明膠酶B(MMP-9),主要是Ⅳ型膠原酶的2種變現(xiàn)形式;③間質溶解素(stromelysins):MMP-3、-7、-10、-11,其中MMP-7在腎纖維化的發(fā)病機制中起重要作用[54],MMP-3存在于肝臟中,但動態(tài)變化尚不清楚;④模型基質金屬蛋白酶(membrane-type MMPs):MMP-14、-15、-16、-17、-24、-25,可促進膠原酶A的激活,并降解間質膠原蛋白;⑤金屬彈性蛋白酶(metalloelastase):MMP-12,其來源于巨噬細胞,可降解ECM中彈性蛋白酶和纖連蛋白等[55];⑥基質溶素(matrilysins);⑦釉質溶解素(enamelysin)等,其中正常肝臟中MMPs含量少,多表達MMP-1、-2、-3、-11、-13組成型[56]。Chan MF等[57]研究表明,MMP12通過對炎癥和血管生成的影響來預防損傷后的角膜纖維化。Vincenti MP等[58]研究發(fā)現(xiàn),兔具有與人膠原酶MMP-1和MMP-13同源的不同基因,而小鼠和大鼠表現(xiàn)出有MMP-13的同源物。MMP-13主要來源于瘢痕相關巨噬細胞(scar-associated macrophages,SAMs),肝巨噬細胞通過產生趨化因子CXCL9和MMP-13,從而促進纖維化消退[59]。Fallowfield JA等[60]在慢性CCl4致肝纖維化模型中消耗SAMs,導致MMP-13的表達減少5倍,而在MMP-13基因敲除的小鼠中纖維化的逆轉被延遲??梢娫诟卫w維化過程中,MMPs的表達差異具有研究意義。

      TIMPs家族是一個多基因編碼的蛋白群,作為MMPs的特異性抑制劑,可以抑制MMPs在ECM合成過程中的拮抗作用,使MMPs被激活受到阻礙并使其活性受限而降低[61]。目前普遍認為TIMPs和MMPs合成和分泌來自相同的細胞因子,主要來自于HSC、kupffer細胞、MFB,TIMPs主要由TIMP-1、-2、-3、-4組成,均可與MMPs成員以1∶1的比例結合來抑制MMPs的活性[62];也有證據(jù)表明[63],TIMPs可能具有與MMPs無關的其他活性作用。總之,除TIMPs其他作用潛力有待深入研究外,還應深入研究它的活化表型加速肝纖維化作用。

      此外,在生理條件下,Disse間隙中ECM合成與降解的穩(wěn)態(tài)受MMPs/TIMPs之間的平衡協(xié)調,MMPs的活性受TIMPs的控制,TIMP-1的含量與肝纖維化程度呈平行關系,活化的HSCs增加TIMP-1的表達。TIMP-1本身可能不會引起肝纖維化,一旦MMPs/TIMPs失衡,ECM異常沉積和降解減少,可加重HF[56]。Robert S等[21]研究證實,松弛素(RLN)能使MMPs(MMP-1,-3,-8,-9和-13)的表達增加,TIMPs(TIMP-1和-4)的表達降低,并通過降低纖維連接蛋白(FN)、α-SMA和Smad2磷酸化的表達來抑制ECM的過度合成,從而抑制纖維化形成。Liang J等[64]研究表明,藥物可控制TIMP2的表達來減少肝實質內ECM沉積,從而減輕了肝纖維化。為此遵從“未病先防,既病防變”原則,從最開始肝纖維化著手預防和治療,延緩或治愈肝臟疾病,才是健康的基石。

      2大黃酸與肝纖維化的關系

      2.1大黃酸的藥理機制? 大黃酸(rhein,4,5-二羥基-2-羧基蒽醌)是分布在蓼科植物中的單蒽核類物質[65],主要在古老中藥大黃內提取,也存在何首烏、虎杖、蘆薈等中藥中[66]。近年來研究發(fā)現(xiàn)[67,68],大黃酸具有抗氧化應激與炎癥、抗細胞凋亡、抗纖維化、調節(jié)糖脂代謝及抗癌等作用,其臨床益處可能增強更多的潛在機制,尤其大黃酸抗纖維化作用更為實用。Huang CH等[69]研究表明,大黃酸誘導小鼠囊胚氧化應激和凋亡,在胚胎發(fā)育過程中具有免疫毒性作用。Mao Y等[70]研究發(fā)現(xiàn),大黃酸能夠通過腎小管上皮細胞(HK-2細胞)中的ROS依賴性線粒體途徑誘導細胞凋亡,通過線粒體解偶聯(lián)蛋白2(UCP2)抑制促氧化應激并加劇其誘導的HK-2細胞凋亡。Ge H等[71]通過轉基因斑馬魚體內外研究發(fā)現(xiàn),大黃酸抑制NF-κB和NALP3炎性體的表達來減輕潰瘍性結腸炎的炎癥反應。此外,大黃酸可誘導肝癌細胞HepG2和宮頸癌細胞Hela中β-連環(huán)蛋白(β-catenin)的降解并抑制腫瘤細胞的生長[72],并直接靶向脯氨酰異構酶Pin1和c-Jun之間的相互串擾,從而表現(xiàn)出抑制Pin1的腫瘤,促進其活性[73];同時,其還可導致細胞周期阻滯、半胱氨酸天冬氨酸蛋白酶介導細胞凋亡、胞內酸性小炮誘導細胞自噬、ERK抑制介導細胞分化。Tang N等[74]通過檢測形態(tài)學特征及膠質纖維酸性蛋白(GFAP)表達的變化驗證了大黃酸對大鼠F98膠質瘤細胞的抗瘤癌特性。大黃酸也有調節(jié)糖脂代謝作用,陳衛(wèi)東等[75]和Wang S等[76]研究表明,增加2型糖尿病大鼠腎組織沉默接合型信息調節(jié)因子2同源蛋白1(SIRT1)mRNA及蛋白的表達,改善胰島素抵抗和血脂紊亂,對糖尿病腎病大鼠的腎臟起保護作用,改善了慢性高脂飲食肥胖小鼠的識別記憶障礙。Zeng CC等[77]通過抑制高血糖、高脂血癥等與機體內多種分子靶標相互串擾作用,從而改善糖尿病腎病病變過程中的病理進展。

      2.2大黃酸對纖維化的作用? 大黃酸作為一種天然自噬調節(jié)因子,可通過調節(jié)AMPK/mTOR信號途徑有效抑制腎小管細胞的自噬活性[78];通過TGF-β/Smad和Wnt/β-catenin信號通路,顯著降低了腎細胞中TGF-β引起的Klotho啟動子轉錄,從而起到抗腎纖維化作用[79]。蘇健等[80]研究表明,抗纖維化因子肝細胞生長因子(hepatocyte growth factor,HGF)及骨形態(tài)發(fā)生蛋白(bone-morphorgenetic proteins,BMP7)的表達皆較模型組明顯升高,移植腎組織間質纖維化減輕,證明大黃酸對慢性移植腎腎?。╟hronical allograft nephropathy,CAN)有治療作用。屈艷等[81]通過大黃酸抑制miR-21及干預TGF-β1/Smad7通路的研究,證實其抗肺纖維化作用。Tsang SW等[82]在慢性胰腺炎(chronic pancreatitis,CP)小鼠模型中發(fā)現(xiàn),大黃酸顯著降低了與胰腺星狀細胞(pancreatic stellate cells,PSCs)有關的纖維激活因子α-SMA和TGF-β;在體外培養(yǎng)的PSC中,大黃酸顯著抑制TGF-β刺激的成纖維標志物α-SMA、纖維連接蛋白1(fibronectin 1,F(xiàn)N1)、Ⅰ型膠原蛋白α1(type I collagen,COL I-α1)的表達,抑制SHH/GLI1信號傳導,進而證明大黃酸有很強的抗胰腺纖維化作用。Guo MZ等[83]通過四氯化碳造模大鼠肝纖維化進一步檢測TGF-β1和a-SMA的表達,給予大黃酸大、小劑量,從大黃酸抗炎、抗氧化及抑制肝星狀細胞的活化,抑制TGF-β1作用等可能相關角度考慮,從而驗證大黃酸抗肝纖維化作用。盧鳳美等[84]從MMP-13及α-SMA表達量的角度實驗顯示,中藥大黃酸聯(lián)合紅景天可抑制肝纖維化進展。近年來隨著中草藥成分作為“補充和替代醫(yī)療(complementary and alternative medicine,CAM)”里新型生物活性物質的主要來源[85],大黃酸作為特性中藥成分,及早干預肝纖維化是有效的,對慢性肝病進展有舉足輕重的理論與實踐意義。

      3總結

      肝纖維化逆轉機制的研究正在不斷進展,為尋求更多的干預途徑,針對特異性生物因子的表達和多種信號通路間串擾的調節(jié),其發(fā)病機制及治療靶點為目前國內外研究現(xiàn)狀。而纖維化作為器官損傷和衰竭的共同途徑,不僅肝纖維化,還包括心肌、腎、肺、胰腺、腸等纖維化,對機體器官正常運行都具有舉足輕重的作用。隨著現(xiàn)代社會中醫(yī)藥的不斷發(fā)展研究,截至到目前,大黃酸是大黃有效成分中抗氧化應激、清除超氧陰離子自由基能力最強的,也是多臟器纖維化治療的選用藥物之一。隨著大黃酸的應用越來越廣泛,肝臟可能成為大黃酸抗纖維化作用的再一個靶標。

      參考文獻:

      [1]Naghavi M,Wang H,Lozano R.Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013:a systematic analysis for the global burden of disease study 2013[J].Lancet,2015,385(9963):117-171.

      [2]Hao K,Qi Q,Wan P,et al.Prediction of human pharmacokinetics from preclinical information of rhein,an antidiabetic nephropathy drug,using a physiologically based pharmacokinetic model[J].Basic & Clinical Pharmacology & Toxicology,2014,114(2):160-167.

      [3]Zhu W,Wang XM,Zhang L,et al.Pharmacokinetic of Rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: a single dose study[J].Am J Chin Med,2005,33(6):839-850.

      [4]Mormone E,George J,Nieto N.Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches[J].Chem Biol Interact,2011,193(3):225-231.

      [5]Bottcher K,Pinzani M.Pathophysiology of liver fibrosis and the methodological barriers to the development of anti-fibrogenic agents[J].Adv Drug Deliv Rev,2017(121):3-8.

      [6]Marra F,Tacke F.Roles for Chemokines in Liver Disease[J].Gastroenterology,2014,147(3):577-594.

      [7]Peri K.Cellular basis of hepatic fibrosis and its role in inflammation and cancer[J].Frontiers in Bioscience,2013,S5(1):217-230.

      [8]Hibi T,Eguchi S,Egawa H.Evolution of living donor liver transplantation: a global perspective[J].J Hepatobiliary Pancreat Sci,2018,25(8):388-389.

      [9]Li CX,Li RT,Zhang W.Progress in non-invasive detection of liver fibrosis[J].Cancer Biol Med,2018,15(2):124-136.

      [10]Schon HT,Bartneck M,Borkham-Kamphorst E,et al.Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis[J].Front Pharmacol,2016(7):33.

      [11]Mòdol T,Brice N,Ruizd GM,et al.Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells[J].Journal of Cellular Physiology,2015,230(3):546-553.

      [12]Raghu G,Amatto V C,Behr,et al.Comorbidities in idiopathic pulmonary fibrosis patients:a systematic literature review[J].European Respiratory Journal,2015,46(4):1113-1130.

      [13]Lin Z,Zheng L,Zhang H,et al.Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells[J].BMC Complement Altern Med,2015,15(1):259.

      [14]Chen Y,Mu L,Xing L,et al.Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats[J].Biol Res,2019,52(1):50.

      [15]George J,Tsutsumi M,Tsuchishima M.MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice[J].J Cell Mol Med,2017,21(12):3821-3835.

      [16]Roeb E.Matrix metalloproteinases and liver fibrosis (translational aspects)[J].Matrix Biology,2018(68-69):463-473.

      [17]Xu F,Liu C,Zhou D,et al.TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis.J Histochem Cytochem,2016,64(3):157-167.

      [18]Yang C,Zeisberg M,Mosterman B,et al.Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors[J].Gastroenterology,2003,124(1):147-159.

      [19]Dooley S,Ten Dijke P.TGF-β in progression of liver disease[J].Cell Tissue Res,2012,347(1):245-256.

      [20]Robert S,Gicquel T,Bodin A,et al.Characterization of the MMP/TIMP Imbalance and Collagen Production Induced by IL-1β or TNF-α Release from Human Hepatic Stellate Cells[J].PLoS One,2016,11(4):e0153118.

      [21]Robert S,Gicquel T,Victoni T,et al.Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J].Biosci Rep,2016,36(4):e00360.

      [22]許瓊梅,李躍龍,曹后康,等.溪黃草水提物對四氯化碳誘導大鼠肝纖維化的保護作用及機制研究[J].中國藥房,2018,29(20):2791-2796.

      [23]Muhanna N,Doron S,Abu-Tair L,et al.Early fibrosis inhibits hepatocellular carcinoma mediated by free radical effects[J].Mitochondrion,2013,13(5):391-398.

      [24]Seki E,Brenner DA.Recent advancement of molecular mechanisms of liver fibrosis[J].Journal of Hepato-Biliary-Pancreatic Sciences,2015,22(7):512-518.

      [25]Schnabl B,Brenner DA.Interactions Between the Intestinal Microbiome and Liver Diseases[J].Gastroenterology,2014,146(6):1513-1524.

      [26]Poli G.Pathogenesis of liver fibrosis: role of oxidative stress[J].Molecular Aspects of Medicine,2000,21(3):49-98.

      [27]Frank R.Murphy,Razao Issa,Xiaoying Zhou,et al.Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition implications for reversibility of liver fibrosis[J].Journal of Biological Chemistry,2002,277(13):11069-11076.

      [28]Rockey DC,Bell PD,Hill JA.Fibrosis--A common pathway to organ injury and failure[J].N Engl J Med,2015,372(12):1138-1149.

      [29]Hong F,Chou H,F(xiàn)iel M I,et al.Antifibrotic Activity of Sorafenib in Experimental Hepatic Fibrosis:Refinement of Inhibitory Targets,Dosing,and Window of Efficacy In Vivo[J].Digestive Diseases and Sciences,2013,58(1):257-264.

      [30]Huang Y,Deng X,Liang J.Modulation of hepatic stellate cells and reversibility of hepatic fibrosis[J].Experimental Cell Research,2017,352(2):420-426.

      [31]Taura K,De Minicis S,Seki E,et al.Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis[J].Gastroenterology,2008(135):1729-1738.

      [32]Liu T,Wang X,Karsdal MA,et al.Molecular serum markers of liver fibrosis[J].Biomark Insights,2012(7):105-117.

      [33]Kuwahata M,Kubota H,Kanouchi H,et al.Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease[J].Nutr Res,2012,32(7):522-529.

      [34]Liang B,Guo X L,Jin J,et al.Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury[J].World J Gastroenterol,2015,21(17):5271-5280.

      [35]Hennessey ES,Drummond DR,Sparrow JC.Molecular genetics of actin function[J].Biochemical Journal,1993,291(3):657-671.

      [36]曲東明,韓梅,溫進坤.肌動蛋白結合蛋白[J].細胞生物學雜志,2007(2):219-224.

      [37]吳聰穎.微絲的基本性質與細胞核肌動蛋白[J].中國細胞生物學學報,2019,41(3):381-386.

      [38]Borkham-kamphorst E,Alexi P,Tihaa L,et al.Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities[J].Biochem Biophys Res Commun,2015,457(3):307-313.

      [39]Gabbiani G,Hirschel BJ,Ryan GB,et al.Granulation tissue as a contractile organ[J].Journal of Experimental Medicine,1972,135(4):719-734.

      [40]Hinz B,Phan SH,Thannickal VJ,et al.Recent developments in myofibroblast biology:paradigms for connective tissue remodeling[J].American Journal of Pathology,2012,180(4):1340-1355.

      [41]Kisseleva T.The origin of fibrogenic myofibroblasts in fibrotic liver[J].Hepatology,2017,65(3):1039-1043.

      [42]Postlethwaite AE,Shigemitsu H,Kanangat S.Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis[J].Current Opinion in Rheumatology,2004,16(6):733-738.

      [43]Pardali E,Sanchez-Duffhues G,Gomez-Puerto MC,et al.TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases[J].Int J Mol Sci,2017,18(10):2157.

      [44]Grinnell F.Fibroblasts,myofibroblasts,and wound contraction[J].J Cell Biol,1994,124(4):401-404.

      [45]Zhou P,Pu WT.Recounting Cardiac Cellular Composition[J].Circ Res,2016,118(3):368-370.

      [46]Shinde AV,Humeres C,F(xiàn)rangogiannis NG.The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling[J].Biochim Biophys Acta,2017,1863(1):298-309.

      [47]Shao S,Cai W,Sheng J,et al.Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats[J].American Journal of Translational Research,2015,7(8):1345-1356.

      [48]陳威,楊守京,劉彥仿,等.實驗性慢性腎缺血模型腎小管-間質細胞a-平滑肌肌動蛋白的表達和意義[J].腎臟病與透析腎移植雜志,2004(1):30-34.

      [49]Wang D,Wang W,Qiao L,et al.DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway[J].Journal of Ovarian Research,2018,11(1):6.

      [50]Zhou F,Shi LB,Zhang SY.Ovarian Fibrosis:A Phenomenon of Concern[J].Chin Med J (Engl),2017,130(3):365-371.

      [51]Xiao L,Xu J,Brenner D A,et al.Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts[J].Current Pathobiology Reports,2013,1(3):209-214.

      [52]Sergio D,John B,Takehiro F,et al.Matrix metalloproteinases in liver injury,repair and fibrosis[J].Matrix Biology,2015(44-46):147-156.

      [53]Bennett RG,Heimann DG,Singh S,et al.Relaxin Decreases the Severity of Established Hepatic Fibrosis in Mice[J].Liver International,2014,34(3):416-426.

      [54]Ke B,F(xiàn)an C,Yang L,et al.Matrix Metalloproteinases-7 and Kidney Fibrosis[J].Front Physiol,2017(8):21.

      [55]Pellicoro A,Aucott RL,Ramachandran P,et al.Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP‐12) during experimental liver fibrosis[J].Hepatology,2012,55(6):1965-1975.

      [56]吳燦,黃亮,莫立乾,等.丹參多酚酸鹽通過TGF-β1/Smad和PI3K/AKT/mTOR信號通路抑制大鼠肝纖維化的進展[J].中國醫(yī)院藥學雜志,2019,39(7):670-675.

      [57]Chan MF,Li J,Bertrand A,et al.Protective effects of matrix metalloproteinase-12 following corneal injury[J].Journal of Cell Science,2013,126(17):3948-3960.

      [58]Vincenti MP,Coon CI,Mengshol JA,et al.Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1(matrix metalloproteinase-1)[J].Biochem J,1998(331):341-346.

      [59]Yang L,Kwon J,Popov Y,et al.Vascular endothelial growth factor promotes fibrosis resolution and repair in mice[J].Gastroenterology,2014(146):1339-1350.

      [60]Fallowfield JA,Mizuno M,Kendall TJ,et al.Scar-Associated Macrophages Are a Major Source of Hepatic Matrix Metalloproteinase-13 and Facilitate the Resolution of Murine Hepatic Fibrosis[J].The Journal of Immunology,2007,178(8):5288-5295.

      [61]Zhu Y,Miao Z,Gong L,et al.Transplantation of mesenchymal stem cells expressing TIMP-1-shRNA improves hepatic fibrosis in CCl4-treated rats[J].International Journal of Clinical & Experimental Pathology,2015,8(8):8912-8920.

      [62]Kang YM,Lee HM,Moon SH,et al.Relaxin Modulates the Expression of MMPs and TIMPs in Fibroblasts of Patients with Carpal Tunnel Syndrome[J].Yonsei Med J,2017,58(2):415-422.

      [63]Uchinaka A,Kawaguchi N,Mori S,et al.Tissue inhibitor of metalloproteinase-1 and -3 improves cardiac function in an ischemic cardiomyopathy model rat[J].Tissue Engineering Part A,2014,20(21-22):3073-3084.

      [64]Liang J,Zhang B,Shen RW,et al.Preventive effect of halofuginone on concanavalin A-induced liver fibrosis[J].PLoS One,2013,8(12):e82232.

      [65]Cao YJ,Pu ZJ,Tang YP,et al.Advances in bio-active constituents,pharmacology and clinical applications of rhubarb[J].Chinese Medicine,2017,12(1):36.

      [66]吳佳偉.基于腸道菌群以及腸道屏障完整性探討大黃酸治療結腸炎癥的作用機制[D].南京中醫(yī)藥大學,2019.

      [67]Sun H,Luo G,Chen D,et al.A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein,an Active Anthraquinone Ingredient[J].Front Pharmacol,2016(7):247.

      [68]武超,曹紅燕,孫明瑜.大黃酸在肝病中的應用研究[J].遼寧中醫(yī)雜志,2015,42(12):2382-2387.

      [69]Huang CH,Chan WH.Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development[J].Int J Mol Sci,2017,18(9):2018.

      [70]Mao Y,Zhang M,Yang J,et al.The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells[J].Toxicol Res (Camb),2017,6(3):297-304.

      [71]Ge H,Tang H,Liang Y,et al.Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro[J].Drug Des Devel Ther,2017(11):1663-1671.

      [72]Liu S,Wang J,Shao T,et al.The natural agent rhein induces β-catenin degradation and tumour growth arrest[J].J Cell Mol Med,2017,22(1):589-599.

      [73]Cho JH,Chae JI,Shim JH.Rhein exhibits antitumorigenic effects by interfering with the interaction between prolyl isomerase Pin1 and c-Jun[J].Oncology Reports,2017,37(3):1865-1872.

      [74]Tang N,Jian C,Lu HC,et al.Rhein induces apoptosis and autophagy in human and rat glioma cells and mediates cell differentiation by ERK inhibition[J].Microbial Pathogenesis,2017(113):168-175.

      [75]陳衛(wèi)東,常保超,張燕,等.大黃酸增加2型糖尿病大鼠腎組織SIRT1的表達[J].細胞與分子免疫學雜志,2015,31(5):615-619.

      [76]Wang S,Huang XF,Zhang P,et al.Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice[J].Journal of Nutritional Biochemistry,2016(36):42-50.

      [77]Zeng CC,Liu X,Chen GR,et al.The molecular mechanism of rhein in diabetic nephropathy[J].Evidence-Based Complementray and Alternative Medicine,2014(2014):1-6.

      [78]Tu Y,Gu L,Chen D,et al.Rhein Inhibits Autophagy in Rat Renal Tubular Cells by Regulation of AMPK/mTOR Signaling[J].Scientific Reports,2017(7):43790.

      [79]Zhang Q,Yin S,Liu L,et al.Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice[J].Sci Rep,2016(6):34597.

      [80]蘇健,殷立平,張鑫,等.大黃酸對慢性移植腎腎病大鼠腎組織抗纖維化因子表達的影響[J].中國臨床藥理學與治療學,2011,16(10):1114-1120.

      [81]屈艷,張崇,賈巖龍,等.大黃酸通過抑制miR-21而干預TGF-β1/Smad通路并減輕博萊霉素所致大鼠肺纖維化[J].中國病理生理雜志,2017,33(1):149-153.

      [82]Tsang SW,Zhang H,Lin C,et al.Rhein,a natural anthraquinone derivative,attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis[J].PLoS One,2013,8(12):e82201.

      [83]Guo MZ,Li XS,Xu HR,et al.Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats[J].Acta Pharmacologica Sinica,2002,23(8):739-744.

      [84]盧鳳美,林昔,劉東璞,等.中藥對大鼠肝纖維化MMP-13及α-SMA的影響[J].黑龍江醫(yī)藥科學,2016,39(5):46-47,49.

      [85]Latief U,Ahmad R.Herbal remedies for liver fibrosis:A review on the mode of action of fifty herbs[J].Journal of Traditional & Complementary Medicine,2018,8(3):352-360.

      收稿日期:2020-04-13;修回日期:2020-04-26

      編輯/杜帆

      猜你喜歡
      肝損傷肝纖維化
      何首烏致肝損傷大鼠的動態(tài)血清代謝組學研究
      脫氧核苷酸鈉注射液干預小細胞肺癌化療引起的白細胞下降及肝損傷療效觀察
      NF—κB信號通路抗肝纖維化的研究進展
      葵花護肝片聯(lián)合琥珀酸美托洛爾治療高血壓的臨床觀察
      肝纖維化無創(chuàng)診斷的研究現(xiàn)狀
      扶正化瘀制劑抗肝纖維化和治療慢性肝病的臨床療效
      扶正化瘀方抗肝纖維化的主要作用機制與效應物質
      中西醫(yī)結合抗肝纖維化的研究思路與方法
      異甘草酸鎂預防奧沙利鉑致肝損傷的療效觀察
      肝纖維化早期診斷進展
      凤山县| 泊头市| 巴林左旗| 平利县| 平顺县| 北海市| 安泽县| 八宿县| 固安县| 嘉定区| 阿拉善左旗| 平远县| 高阳县| 白山市| 玉山县| 吉安市| 获嘉县| 贡觉县| 台州市| 友谊县| 临猗县| 徐汇区| 历史| 邛崃市| 年辖:市辖区| 洛浦县| 衡阳县| 泸西县| 佛冈县| 富平县| 四川省| 紫云| 罗平县| 湛江市| 绩溪县| 郓城县| 屏南县| 淳化县| 盐城市| 禹州市| 紫云|