宋玉鵬 陳建兵 彭勇波
摘要: 針對(duì)二維空間縱向脈動(dòng)風(fēng)場(chǎng)模擬問(wèn)題,采用多維隨機(jī)場(chǎng)理論,基于Davenport脈動(dòng)風(fēng)速譜和相干函數(shù)模型,導(dǎo)出了二維空間均勻脈動(dòng)風(fēng)場(chǎng)的波數(shù)-頻率聯(lián)合功率譜。通過(guò)諧波疊加直接獲得二維空間均勻脈動(dòng)風(fēng)場(chǎng),避免了經(jīng)典譜表達(dá)方法在脈動(dòng)風(fēng)場(chǎng)模擬時(shí)的空間離散和互功率譜矩陣的Cholesky分解或本征正交分解(POD)。為了進(jìn)一步提高風(fēng)場(chǎng)模擬的效率,在數(shù)值程序中引入了快速Fourier變換(FFT)技術(shù)。最后,對(duì)風(fēng)力機(jī)槳葉所在平面進(jìn)行了二維空間脈動(dòng)風(fēng)場(chǎng)模擬,驗(yàn)證了該方法的準(zhǔn)確性和高效性。
關(guān)鍵詞: 脈動(dòng)風(fēng)場(chǎng); 波數(shù)-頻率聯(lián)合功率譜; 二維空間; 譜表達(dá)方法; FFT算法
中圖分類號(hào): TU312+.1; O324 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2020)04-0660-07
DOI:10.16385/j.cnki.issn.1004-4523.2020.04.003
引 言
高層建筑、風(fēng)力發(fā)電高塔、大跨屋蓋、輸電塔線體系和橋梁等高柔大跨結(jié)構(gòu)對(duì)風(fēng)荷載往往十分敏感。由于風(fēng)荷載中的脈動(dòng)分量具有較強(qiáng)的隨機(jī)性,將使上述風(fēng)敏感性結(jié)構(gòu)發(fā)生多種形式的風(fēng)致振動(dòng),甚至可能發(fā)生動(dòng)力失穩(wěn),極大降低結(jié)構(gòu)的安全性[1],因此結(jié)構(gòu)風(fēng)致響應(yīng)分析問(wèn)題一直備受學(xué)術(shù)界和工程界的關(guān)注[2]。結(jié)構(gòu)的隨機(jī)動(dòng)力響應(yīng)分析一般可在頻域和時(shí)域內(nèi)進(jìn)行。頻域方法往往較為簡(jiǎn)便高效,遺憾的是它只適用于線性系統(tǒng)[3-4],而大多數(shù)結(jié)構(gòu)在強(qiáng)動(dòng)載條件下將進(jìn)入非線性階段,甚至一些結(jié)構(gòu)在正常工作條件下就已處于復(fù)雜的非線性狀態(tài),如風(fēng)力發(fā)電系統(tǒng)結(jié)構(gòu)[5]。因此時(shí)域分析方法是結(jié)構(gòu)非線性隨機(jī)動(dòng)力響應(yīng)與可靠性分析的必然選擇[6]。在時(shí)域分析過(guò)程中,脈動(dòng)隨機(jī)風(fēng)場(chǎng)模擬是其中的首要環(huán)節(jié)。
空間中任意一點(diǎn)的風(fēng)速可分解為沿水平方向的平均風(fēng)速U和沿3個(gè)相互垂直方向的脈動(dòng)風(fēng)速。對(duì)于高柔結(jié)構(gòu)體系,3個(gè)脈動(dòng)分量之間的相關(guān)性可以忽略,因此高柔結(jié)構(gòu)的脈動(dòng)風(fēng)場(chǎng)模擬可單獨(dú)考慮為1個(gè)方向的脈動(dòng)分量[1]。本文以風(fēng)力發(fā)電高塔為分析對(duì)象,重點(diǎn)關(guān)注順風(fēng)向分量u。實(shí)測(cè)表明,u同時(shí)隨著時(shí)間和空間位置變化。因此,在風(fēng)場(chǎng)模擬中,通常選取一系列空間點(diǎn)進(jìn)行脈動(dòng)風(fēng)速時(shí)程的模擬。這種方法是將脈動(dòng)風(fēng)場(chǎng)描述為隨機(jī)向量過(guò)程。為此需要引入互功率譜密度矩陣以刻畫(huà)該隨機(jī)向量過(guò)程的統(tǒng)計(jì)特征[7-8]?;诖?,可采用譜表達(dá)方法或者線性濾波等方法進(jìn)行脈動(dòng)風(fēng)場(chǎng)的時(shí)域模擬。其中,譜表達(dá)方法算法簡(jiǎn)單且結(jié)果精度較高,獲得了廣泛的應(yīng)用[9-10]。該方法在風(fēng)場(chǎng)模擬過(guò)程中需要針對(duì)每個(gè)離散頻率點(diǎn)進(jìn)行互功率譜矩陣的Cholesky分解[11-12],當(dāng)離散空間點(diǎn)數(shù)較多時(shí),矩陣分解的效率很低,甚至可能出現(xiàn)數(shù)值不穩(wěn)定的問(wèn)題。雖然國(guó)內(nèi)外學(xué)者對(duì)此提出了改進(jìn)措施,如對(duì)互功率譜矩陣進(jìn)行本征正交分解(POD)、引入快速Fourier變換等[13-15],但仍然難以避免互功率譜矩陣的分解,數(shù)值不穩(wěn)定問(wèn)題依然存在。
事實(shí)上,空間中的風(fēng)場(chǎng)是一個(gè)連續(xù)的“時(shí)-空”隨機(jī)場(chǎng),由于人為的空間離散,導(dǎo)致了上述互功率譜矩陣分解成為不容回避的問(wèn)題,且在實(shí)際應(yīng)用中往往需要在獲得時(shí)程之后進(jìn)一步在空間離散點(diǎn)之間進(jìn)行插值從而引入額外的誤差。早在20世紀(jì)70年代,Shinozuka[16]在研究多變量及多維隨機(jī)過(guò)程問(wèn)題時(shí),將一維空間中的脈動(dòng)風(fēng)場(chǎng)處理為一個(gè)二維隨機(jī)過(guò)程,并獲得了該二維隨機(jī)過(guò)程的功率譜密度函數(shù)的表達(dá)形式。該方法在模擬風(fēng)場(chǎng)時(shí),無(wú)需對(duì)空間進(jìn)行離散,因而避免引入互功率譜矩陣及其Cholesky分解或本征正交分解,表達(dá)形式簡(jiǎn)單。但是,該方法多年來(lái)一直未獲得關(guān)注。近年來(lái),Benowitz[17]及Benowitz 和 Deodatis[18]采用該方法,將脈動(dòng)風(fēng)場(chǎng)考慮為沿時(shí)間和空間變化的隨機(jī)波,推導(dǎo)了一維空間中均勻脈動(dòng)風(fēng)場(chǎng)的波數(shù)-頻率聯(lián)合功率譜,并利用譜表達(dá)方法和二維FFT技術(shù)對(duì)風(fēng)場(chǎng)進(jìn)行了模擬,具有簡(jiǎn)便、高效、模擬精度高等優(yōu)點(diǎn)。由于FFT技術(shù)不能模擬空間中非等間距分布點(diǎn)的風(fēng)場(chǎng),Peng等[19]在此基礎(chǔ)上引入了基于POD的插值方法,模擬了大跨橋梁水平方向的風(fēng)場(chǎng)。為了降低該方法中隨機(jī)變量的個(gè)數(shù),劉章軍等[20]引入了標(biāo)準(zhǔn)正交隨機(jī)變量集的隨機(jī)函數(shù)表達(dá),并模擬了沿水平方向分布的脈動(dòng)風(fēng)場(chǎng)。此后,Peng等[21]進(jìn)一步引入“演變譜”的概念,將該方法拓展于一維空間非均勻脈動(dòng)風(fēng)場(chǎng)的模擬,同時(shí)還引入了基于POD分解的FFT方法,以提高模擬效率。最近,Chen等[22]和Song等[23] 將該方法進(jìn)一步拓展至二維空間的均勻與非均勻風(fēng)場(chǎng)模擬,并提出了結(jié)構(gòu)化非均勻離散策略和基于“舍選法”思想的非均勻離散策略,對(duì)波數(shù)-頻率域進(jìn)行非均勻離散以降低計(jì)算量。
本文針對(duì)二維空間均勻脈動(dòng)風(fēng)場(chǎng)的模擬問(wèn)題,首先簡(jiǎn)要介紹波數(shù)-頻率聯(lián)合功率譜的推導(dǎo)過(guò)程。在此基礎(chǔ)上,進(jìn)一步構(gòu)造出基于聯(lián)合譜的脈動(dòng)風(fēng)場(chǎng)模擬的快速Fourier變換形式。應(yīng)用該方法,對(duì)5 MW風(fēng)力機(jī)標(biāo)準(zhǔn)模型槳葉所在平面進(jìn)行了均勻脈動(dòng)風(fēng)場(chǎng)的模擬,驗(yàn)證了該方法的優(yōu)越性。
從圖3-5可以看到,基于樣本估計(jì)獲得的自功率譜密度函數(shù)、互相關(guān)函數(shù)和相干函數(shù)與目標(biāo)值均吻合良好??梢?jiàn),基于本文的二維空間均勻脈動(dòng)風(fēng)場(chǎng)模擬方法具有很好的精度,能夠滿足實(shí)際工程需要。
從圖3-5也可以看到,本文方法的模擬精度和經(jīng)典方法的模擬精度幾乎相同。為了檢驗(yàn)本文方法的模擬效率,進(jìn)一步比較了經(jīng)典方法和本文方法在模擬風(fēng)力機(jī)風(fēng)輪平面風(fēng)場(chǎng)的耗費(fèi)時(shí)間。對(duì)于該5 MW風(fēng)機(jī)的風(fēng)輪平面,大約需要模擬250個(gè)空間點(diǎn)處的脈動(dòng)風(fēng)速[31]。基于經(jīng)典的風(fēng)場(chǎng)模擬方法模擬250個(gè)點(diǎn)處的脈動(dòng)風(fēng)速時(shí)程,耗時(shí)約為640 s。而本文方法實(shí)際上同時(shí)在169萬(wàn)個(gè)點(diǎn)處進(jìn)行了模擬,耗時(shí)僅約為180 s。因此,本文方法在模擬大型二維均勻脈動(dòng)風(fēng)場(chǎng)時(shí)效率更高,且避免了可能的數(shù)值奇異,不需要對(duì)模擬結(jié)果進(jìn)行空間插值。同時(shí)值得指出,對(duì)于海上風(fēng)機(jī)槳葉旋轉(zhuǎn)問(wèn)題,采用波數(shù)-頻率聯(lián)合功率譜可以方便地通過(guò)空-時(shí)轉(zhuǎn)換實(shí)現(xiàn)旋轉(zhuǎn)槳葉各點(diǎn)的風(fēng)速采樣,同樣不需要進(jìn)行空間插值[32]。但相應(yīng)的FFT模擬算法尚需進(jìn)一步研究。
4 結(jié) 論
脈動(dòng)風(fēng)速場(chǎng)的模擬對(duì)于高層、高聳和大跨結(jié)構(gòu)的設(shè)計(jì)至關(guān)重要。本文針對(duì)二維空間均勻脈動(dòng)風(fēng)場(chǎng)的模擬問(wèn)題,基于波數(shù)-頻率聯(lián)合功率譜方法,引入三維快速Fourier變換技術(shù)代替譜表達(dá)方法中的三重求和,極大地提高了計(jì)算效率。通過(guò)模擬5 MW風(fēng)力機(jī)標(biāo)準(zhǔn)模型風(fēng)輪平面的脈動(dòng)風(fēng)速場(chǎng),對(duì)該方法進(jìn)行了驗(yàn)證。結(jié)論如下:
(1)基于波數(shù)-頻率聯(lián)合功率譜的風(fēng)場(chǎng)模擬方法,不需要對(duì)空間進(jìn)行離散,從而避免引入互功率譜矩陣及其分解,理論基礎(chǔ)嚴(yán)密,實(shí)施更為便捷。
(2)基于聯(lián)合功率譜方法的二維空間風(fēng)場(chǎng)模擬需要在波數(shù)-頻率內(nèi)進(jìn)行三重求和,導(dǎo)致了巨大的計(jì)算量。引入FFT技術(shù)后極大地提高了計(jì)算速度,適合實(shí)際工程應(yīng)用。
值得指出,本文僅考察了二維空間中均勻平穩(wěn)的脈動(dòng)風(fēng)速場(chǎng)模擬,其基本思想可以通過(guò)進(jìn)一步引入演變譜的概念推廣到非均勻非平穩(wěn)脈動(dòng)風(fēng)速場(chǎng)的模擬中。
參考文獻(xiàn):
[1] Simiu E, Scanlan R H. Wind Effects on Structures[M]. 3rd ed. New York: John Wiley & Sons, 1996.
[2] Zeng X S, Peng Y B, Chen J B. Serviceability based damping optimization of randomly wind-excited high-rise buildings[J]. The Structural Design of Tall and Special Buildings, 2017, 26: e1371.
[3] 朱位秋. 隨機(jī)振動(dòng)[M]. 北京: 科學(xué)出版社, 1992.
Zhu Weiqiu. Random Vibration[M]. Beijing: Science Press, 1992.
[4] Li J, Chen J B. Stochastic Dynamics of Structures[M]. Singapore: John Wiley & Sons, 2009.
[5] Hansen M O L. Aerodynamics of Wind Turbines[M]. 2nd ed. London: Earthscan, 2008.
[6] Wang D H, Chen X Z. Analysis of buffeting response of hinged overhead transmission conductor to nonstationary winds[J]. Engineering Structures, 2017, 147:567-582.
[7] Panofsky H A, McCormick R A. Properties of spectra of atmospheric turbulence at 100 metres[J]. Quarterly Journal of the Royal Meteorological Society, 1954, 80(346): 546-564.
[8] Di Paola M. Digital simulation of wind field velocity[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1998, 74-76(2): 91-109.
[9] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[10] 李錦華, 李春祥. 土木工程隨機(jī)風(fēng)場(chǎng)數(shù)值模擬研究的進(jìn)展[J]. 振動(dòng)與沖擊, 2008, 27(9):116-125.
Li Jinhua, Li Chunxiang. Development of numerical simulations for stochastic wind fields in civil engineering[J]. Journal of Vibration and Shock, 2008, 27(9):116-125.
[11] Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound & Vibration, 1972, 25(1):111-128.
[12] 李永樂(lè),周述華,強(qiáng)士中.大跨度斜拉橋三維脈動(dòng)風(fēng)場(chǎng)模擬[J]. 土木工程學(xué)報(bào), 2003, 36(10):60-65.
Li Yongle, Zhou Shuhua, Qiang Shizhong. Simulation of three dimensional fluctuating wind field for large span cable-stayed bridge[J]. China Civil Engineering Journal, 2003, 36(10): 60-65.
[13] Shinozuka M, Yun C B, Seya H. Stochastic methods in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 36(90):829-843.
[14] Di Paola M, Gullo I. Digital generation of multivariate wind field processes[J]. Probabilistic Engineering Mechanics, 2001, 16(1): 1-10.
[15] Liu Z J, Liu Z H, Peng Y B. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods[J]. Journal of Sound and Vibration, 2018, 418: 144-162.
[16] Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of the Acoustical Society of America, 1971, 49(1):357-368.
[17] Benowitz B A. Modeling and simulation of random processes and fields in civil engineering and engineering mechanics[D]. New York: Columbia University, 2013.
[18] Benowitz B A, Deodatis G. Simulation of wind velocities on long span structures: A novel stochastic wave based model[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 147:154-163.
[19] Peng L L, Huang G Q, Kareem A, et al. An efficient space-time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations[J]. Probabilistic Engineering Mechanics, 2016, 43:156-168.
[20] 劉章軍, 葉永友, 劉增輝.脈動(dòng)風(fēng)速連續(xù)隨機(jī)場(chǎng)的降維模擬[J]. 工程力學(xué), 2018, 35(11):8-16.
Liu Zhangjun, Ye Yongyou, Liu Zenghui. Simulation of fluctuating wind velocity continuous stochastic filed by dimension reduction approach[J]. Engineering Mechanics, 2018,35(11):8-16.
[21] Peng L L, Huang G Q, Chen X Z, et al. Simulation of multivariate nonstationary random processes: Hybrid stochastic wave and proper orthogonal decomposition approach[J]. Journal of Engineering Mechanics, 2017, 143(9):04017064.
[22] Chen J B, Song Y P, Peng Y B, et al. Simulation of homogeneous fluctuating wind field in two spatial dimensions via a wavenumber-frequency joint power spectrum[J]. Journal of Engineering Mechanics, 2018, 144(11):04018100.
[23] Song Y P, Chen J B, Peng Y B, et al. Simulation of nonhomogeneous fluctuating wind speed field in two-spatial dimensions via an evolutionary wavenumber-frequency joint power spectrum[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 179: 250-259.
[24] Vanmarcke E. Random Fields: Analysis and Synthesis[M]. Singapore: World Scientific, 2010.
[25] Davenport A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87: 194-211.
[26] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[J]. Journal of Royal Meteorological Society, 1972, 98: 563-589.
[27] Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation[J]. Applied Mechanics Reviews, 1996, 49(1): 29-53.
[28] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Technical Report: NREL/TP-500-38060, Colorado: National Renewable Energy Laboratory, 2009.
[29] Ke S T, Ge Y J, Wang T G, et al. Wind field simulation and wind-induced responses of large wind turbine tower-blade coupled structure[J]. Structural Design of Tall & Special Buildings, 2015, 24(8):571-590.
[30] Bendat J S, Piersol A G. Random Data[M]. 4th ed. Hoboken: John Wiley & Sons, 2010.
[31] 陳 嚴(yán), 張錦源, 王 楠,等. 風(fēng)力機(jī)風(fēng)場(chǎng)模型的研究及紊流風(fēng)場(chǎng)的MATLAB數(shù)值模擬[J]. 太陽(yáng)能學(xué)報(bào), 2006, 27(9):955-960.
Chen Yan, Zhang Jinyuan, Wang Nan, et al. Wind turbine wind field models study and numerical simulation of turbulence wind field with MATLAB [J]. Acta Energiae Solaris Sinica, 2006, 27(9):955-960.
[32] Chen J B, Song Y B, Peng Y B, et al. An efficient rotational sampling method of wind fields for wind turbine blade fatigue analysis[J]. Renewable Energy, 2020, 146: 2170-2187.
Abstract: The wind field in space is essentially a continuous temporal-spatial random field. In this paper, the wavenumber-frequency joint power spectrum based on the multi-dimensional random field theory for the simulation of the longitudinal homogeneous fluctuating wind speed field in two-spatial dimensions is adopted, involving the utilization of Davenport spectrum and coherence model. Benefiting from the spectrum representation method (SRM), the fluctuating wind speed field is then obtained directly by the summation of a series of harmonic components, which avoids the spatial discretization and the Cholesky decomposition or the proper orthogonal decomposition (POD) of the cross power spectrum density matrix in the classical spectrum representation method. Furthermore, the fast Fourier transform (FFT) technique is adopted to further enhance the simulation speed. For illustrative purposes, the simulation of a fluctuating wind speed field in two-spatial dimensions for the blades of a wind turbine is addressed. Numerical results reveal the accuracy and efficiency of the proposed method.
Key words: fluctuating wind speed field; wavenumber-frequency joint power spectrum; two-spatial dimensions; spectrum representation method; FFT algorithm