• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      人工智能在胰腺疾病診斷及治療中的應(yīng)用及展望

      2020-08-21 08:52:27郭秀鏐丁鶯徐秋萍
      中國現(xiàn)代醫(yī)生 2020年17期
      關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)機器學(xué)習(xí)胰腺癌

      郭秀鏐 丁鶯 徐秋萍

      [摘要] 人工智能是計算機科學(xué)的一個分支,是一門新的技術(shù)科學(xué)。以強大的計算和學(xué)習(xí)能力而廣泛應(yīng)用于臨床實踐的各個領(lǐng)域。本文回顧了人工智能在胰腺疾病診斷及治療中的應(yīng)用,特別是在急性胰腺炎的嚴(yán)重程度及預(yù)后評估、胰腺癌的診斷和預(yù)后等方面。然而人工智能是以“大數(shù)據(jù)”為基礎(chǔ)的,多中心數(shù)據(jù)庫的建立仍需要我們進一步努力。此外,隨著人工胰腺在糖尿病應(yīng)用中的普及,人機關(guān)系在醫(yī)療實踐中占的比重也會越來越大。人工智能技術(shù)將會給臨床診療活動帶來更多的便利。

      [關(guān)鍵詞] 人工智能;胰腺疾病;人工神經(jīng)網(wǎng)絡(luò);胰腺炎;胰腺癌;機器學(xué)習(xí)

      [中圖分類號] R57;R-05? ? ? ? ? [文獻標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2020)17-0188-05

      Application and prospect of artificial intelligence in diagnosis and treatment of pancreatic diseases

      GUO Xiuliu? ? DING Ying? ? XU Qiuping

      Zhejiang University School of Medicine,Hangzhou? ?310020,China

      [Abstract] Artificial intelligence is a branch of computer science and a new technical science. It is widely used in various fields of clinical practice with strong computing and learning capabilities. This article reviews the application of artificial intelligence in the diagnosis and treatment of pancreatic diseases, especially in the assessment of the severity and prognosis of acute pancreatitis, and the diagnosis and prognosis of pancreatic cancer. However, artificial intelligence is based on "big data", and the establishment of a multi-center database still requires our further efforts. In addition, with the popularization of artificial pancreas in the application of diabetes, human-machine relationship will also become more and more important in medical practice. Artificial intelligence technology will bring more convenience to clinical diagnosis and treatment activities.

      [Key words] Artificial intelligence;Pancreatic diseases;Artificial neural network;Pancreatitis; Pancreatic cancer;Machine learning

      人工智能(Artificial intelligence,AI)是一門新的技術(shù)科學(xué),主要研究開發(fā)能夠模擬、延伸和擴展人類智能的理論、方法、技術(shù)和應(yīng)用系統(tǒng)。21世紀(jì)人工智能得到了飛速發(fā)展,在醫(yī)療、軍事、化學(xué)工業(yè)、地質(zhì)勘探等各個領(lǐng)域都取得了驚人的成果。早在20世紀(jì)50年代后期,人工智能就在醫(yī)療領(lǐng)域有了研究,在醫(yī)學(xué)診斷中有了初步的探索[1]。70余年來,在經(jīng)歷了曲折的發(fā)展之后,目前人工智能在我國臨床診斷、治療,病原學(xué)檢測,疾病預(yù)后預(yù)測及醫(yī)療影像等方面應(yīng)用廣泛,為我國的醫(yī)療事業(yè)做出巨大貢獻[2]。其中在胰腺疾病的診斷及治療方面,已經(jīng)有多種人工智能技術(shù)在應(yīng)用,如胰腺炎的診斷及預(yù)測、胰腺惡性腫瘤的診斷及鑒別診斷、人工胰島的應(yīng)用等。本文就人工智能在胰腺疾病診斷及治療中的應(yīng)用及展望作出綜述。現(xiàn)報道如下。

      1 人工智能在醫(yī)學(xué)研究中的主要方法

      1956年,在由一些心理學(xué)、神經(jīng)生理學(xué)、計算機學(xué)等學(xué)科參加的達特茅斯會議中,“人工智能”的概念首次被提出,并希望可以用計算機來構(gòu)造擁有與人類智慧同樣本質(zhì)特性的機器。人工智能研究領(lǐng)域范圍很廣,包括專家系統(tǒng)、機器學(xué)習(xí)、進化計算、模糊邏輯、計算機視覺、自然語言處理、推薦系統(tǒng)等。其中機器學(xué)習(xí)與醫(yī)學(xué)研究關(guān)系最為密切。機器學(xué)習(xí)(Machine learning,ML)其實是一種實現(xiàn)人工智能的方法[3]。簡而言之就是使用算法來解析已有的臨床數(shù)據(jù),從中學(xué)習(xí),然后對臨床事件做出決策和預(yù)測。與傳統(tǒng)的為解決特定任務(wù)、硬編碼的軟件程序不同,機器學(xué)習(xí)是用大量的數(shù)據(jù)來“訓(xùn)練”,通過各種算法從數(shù)據(jù)中學(xué)習(xí)如何完成任務(wù)。傳統(tǒng)的機器學(xué)習(xí)算法包括決策樹、聚類、貝葉斯分類、支持向量機、EM、Adaboost等。從學(xué)習(xí)方法上來分,機器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)(如分類問題)、無監(jiān)督學(xué)習(xí)(如聚類問題)、半監(jiān)督學(xué)習(xí)、集成學(xué)習(xí)、深度學(xué)習(xí)和強化學(xué)習(xí)等。目前,深度學(xué)習(xí)(Deep learning,DL)[4]方法在醫(yī)學(xué)研究中應(yīng)用最為廣泛。由于醫(yī)療數(shù)據(jù)具有龐大、復(fù)雜、無序的特殊性,傳統(tǒng)的機器學(xué)習(xí)方法并不能勝任這樣繁雜的任務(wù)。而深度學(xué)習(xí)采用了深度神經(jīng)網(wǎng)絡(luò)(DNN)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等方法,與傳統(tǒng)計算機回歸分析的單層結(jié)構(gòu)不同,神經(jīng)網(wǎng)絡(luò)是復(fù)雜的多層感知模型,包括了輸入層、模擬神經(jīng)元層、輸出層三個部分。其在數(shù)據(jù)處理能力上可以分析傳統(tǒng)的回歸分析所無法處理的非線性數(shù)據(jù)。只要選擇合適的輸入層與輸出層,通過網(wǎng)絡(luò)模型對大量臨床數(shù)據(jù)的學(xué)習(xí)和調(diào)試,就能找到一個輸入層與輸出層的函數(shù)關(guān)系,一個無限靠近現(xiàn)實真相的關(guān)聯(lián)關(guān)系。使用訓(xùn)練成功的網(wǎng)絡(luò)模型,對臨床工作具有巨大的推動作用。

      2 人工智能在胰腺疾病診斷及治療中的應(yīng)用

      2.1人工智能與胰腺炎

      急性胰腺炎是一種常見的急腹癥,其發(fā)病率與死亡率均較高[5-6]。自從人工智能發(fā)展以來,其在急性胰腺炎預(yù)測方面就有了不少研究與探索。上世紀(jì)九十年代,Pofahl WE等[7]對神經(jīng)網(wǎng)絡(luò)在預(yù)測急性胰腺炎患者住院時間(Length of stay,LOS)中的作用展開了研究。他們建立了一種反向傳播神經(jīng)網(wǎng)絡(luò),并對195例急性胰腺炎患者的病例資料進行回顧,其中156例用于對神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練,在剩余39例中進行測試。結(jié)果表明,相比于其他方法,神經(jīng)網(wǎng)絡(luò)模型在預(yù)測LOS>7 d中具有最高的靈敏度(75%)。盡管該研究并未涉及急性胰腺炎發(fā)病早期的預(yù)測,但也證實了人工智能在急性胰腺炎領(lǐng)域擁有廣闊的研究前景。之后Keogan MT[8]團隊也利用人工智能對急性胰腺炎患者的預(yù)后進行預(yù)測。他們建立的人工神經(jīng)網(wǎng)絡(luò)模型(ANN)利用CT和實驗室數(shù)據(jù)對92例急性胰腺炎患者的預(yù)后進行預(yù)測。輸入節(jié)點為CT、實驗室數(shù)據(jù),輸出節(jié)點為患者住院時間。最后ANN成功地預(yù)測了患者有無超過平均住院時間(Az=0.83±0.05)。相比于Ranson分級(Az=0.68±0.06,P<0.02)和Balthazar分級(Az=0.62±0.06,P<0.003),他們建立的人工神經(jīng)網(wǎng)絡(luò)模型有著明顯優(yōu)勢。但與線性判別分析(Az=0.82±0.05,P=0.53)相比,其結(jié)果不具有差異。此外,對于急性胰腺炎嚴(yán)重程度的預(yù)測,有研究者建立了一個神經(jīng)網(wǎng)絡(luò)預(yù)后模型[9]。該模型經(jīng)增強CT掃描證實其敏感性為100%,入院時特異性為70%。Pearce CB等[10]利用機器學(xué)習(xí)來提高APACHEⅡ評分和C反應(yīng)蛋白的入院值對急性胰腺炎嚴(yán)重程度的預(yù)測作用。選取了256例患者作為研究對象,采用年齡、CRP、呼吸頻率、空氣中PO2、動脈pH、血肌酐、白細胞計數(shù)和GCS評分這8個項目作為輸入節(jié)點,其受試者-操作特征曲線(AUC)下的面積為0.82(SD 0.01),預(yù)測嚴(yán)重程度的最佳臨界值為0.87,特異度為0.71。預(yù)測結(jié)果明顯優(yōu)于入院APACHE Ⅱ評分(AUC 0.74)和歷史入院APACHE Ⅱ數(shù)據(jù)(AUC 0.68~0.75)(P=0.0036)。表明機器學(xué)習(xí)技術(shù)顯著改善了入院后首次觀察值的預(yù)測性能,并減少了預(yù)測因素的數(shù)量。另一項研究[11]將神經(jīng)網(wǎng)絡(luò)預(yù)測急性胰腺炎嚴(yán)重程度的準(zhǔn)確性與APACHE Ⅱ和GCS評分進行比較,結(jié)果顯示ANN在預(yù)測嚴(yán)重病程進展(P<0.05和P< 0.01)、預(yù)測多器官功能障礙綜合征的發(fā)展(P<0.05和P<0.01)以及預(yù)測AP死亡(P<0.05)方面優(yōu)于APACHE Ⅱ或GS評分系統(tǒng),其靈敏度和特異度分別達到89%、96%。急性胰腺炎是一種很復(fù)雜的疾病,根據(jù)之前的研究可以得出,想要利用人工智能預(yù)測急性胰腺炎的嚴(yán)重程度,危險因素的選擇十分關(guān)鍵[12]。Andersson B等[13]設(shè)計的人工神經(jīng)網(wǎng)絡(luò)模型,首次將疼痛持續(xù)時間作為危險變量提出。然而,Hong WD等[14]指出該研究的幾個局限性:樣本量小,缺少數(shù)據(jù)點,急性胰腺炎發(fā)病和數(shù)據(jù)收集之間的時間間隔不清楚,所以該研究結(jié)果有待進一步闡明。急性胰腺炎癥狀出現(xiàn)后第一周內(nèi)持續(xù)的器官衰竭一個致命結(jié)局的標(biāo)志,Hong WD等[14]認(rèn)為,這可以作為使用人工神經(jīng)網(wǎng)絡(luò)分析急性胰腺炎患者持續(xù)性器官衰竭的預(yù)測因素之一。同時,他們也提到了該研究的一些局限性,如數(shù)據(jù)是回顧性的,樣本量較小,可能會造成結(jié)果的一些偏差。另有一篇綜述[15]表示,與當(dāng)前的評分系統(tǒng)相比,神經(jīng)網(wǎng)絡(luò)預(yù)測疾病嚴(yán)重程度的準(zhǔn)確性更高,需要的變量更少,并且能更早地作出評估。但是van den Heever M等[15]也發(fā)現(xiàn),現(xiàn)有的大部分研究,其數(shù)據(jù)來源的數(shù)據(jù)庫大多是為管理目的而設(shè)計的,對臨床或研究人員價值有限,希望未來能建立智能數(shù)據(jù)庫,促進多中心數(shù)據(jù)收集。

      急性胰腺炎本身病程十分復(fù)雜,在疾病發(fā)展過程中會出現(xiàn)各種各樣的并發(fā)癥[16]。Fei Y等[17]的一項研究利用人工神經(jīng)網(wǎng)絡(luò)模型來預(yù)測門脾靜脈血栓形成的能力,并與傳統(tǒng)Logistic回歸進行比較。結(jié)果顯示所建立的人工神經(jīng)網(wǎng)絡(luò)模型靈敏度為80%,特異度為85.7%,陽性預(yù)測值為77.6%,陰性預(yù)測值為90.7%。準(zhǔn)確率為83.3%。綜合性能優(yōu)于Logistic回歸模型。如果能加入更多的臨床因素或生物標(biāo)志,該模型的預(yù)測能力也許會進一步提高。于是Fei Y等[18]改進了研究方法,采用徑向基函數(shù)(RBF)人工神經(jīng)網(wǎng)絡(luò)(ANN)模型預(yù)測AP誘發(fā)PVT的風(fēng)險,結(jié)果得出RBF神經(jīng)網(wǎng)絡(luò)模型預(yù)測PVT的敏感性、特異性和準(zhǔn)確性分別為76.2%、92.0%和88.1%。該研究證明RBF神經(jīng)網(wǎng)絡(luò)模型是預(yù)測AP后PVT風(fēng)險的有效工具,并且提出AMY、D-二聚體、PT和HCT是AP誘發(fā)PVT的重要預(yù)測因子。以同樣的方法,F(xiàn)ei Y等[19]人對重癥急性胰腺炎(SAP)并發(fā)急性肺損傷(ALI)的危險性也做了相關(guān)探索,并得到陽性結(jié)果。最近還有一項研究[20]表明基于CECT的放射組學(xué)模型在預(yù)測AP復(fù)發(fā)方面效果良好。這可能為一些復(fù)發(fā)患者就預(yù)防措施方面提供重要幫助。

      慢性胰腺炎是各種病因引起胰腺組織和功能不可逆改變的慢性炎癥性疾病,終末期有嚴(yán)重的并發(fā)癥,包括內(nèi)外分泌功能不全和胰管腺癌。慢性胰腺炎是胰管腺癌的危險因素之一[21],人工智能在慢性胰腺炎領(lǐng)域尚未做深入研究,現(xiàn)有研究主要利用人工智能相關(guān)算法鑒別診斷胰腺癌與慢性胰腺炎[22-25]。目前主要采用的方法是利用實時內(nèi)鏡超聲(EUS)彈性成像提供關(guān)于胰腺病變特征的附加信息,再通過人工神經(jīng)網(wǎng)絡(luò)分析,最后使用計算機輔助診斷來評估實時EUS彈性成像在胰腺局灶性病變中的準(zhǔn)確性。其中一項研究[26]中神經(jīng)網(wǎng)絡(luò)計算方法的敏感性為87.59%,特異性為82.94%,陽性預(yù)測值為96.25%,陰性預(yù)測值為57.22%,說明使用人工智能方法可以提供快速準(zhǔn)確的診斷。自身免疫性胰腺炎(AIP)是慢性胰腺炎的一個獨特亞型,其臨床表現(xiàn)與胰腺導(dǎo)管腺癌(PDA)有許多相似之處。Zhang Y等[27]利用多種特征提取算法對CT和PET圖像進行紋理特征提取,結(jié)果顯示病灶紋理分析有助于準(zhǔn)確區(qū)分AIP和PDA。

      [5] 急性胰腺炎協(xié)作組.中國6223例急性胰腺炎病因及病死率分析[J]. 胰腺病學(xué)2006,6(6):321-325.

      [6] Koutroumpakis E,Slivka A,F(xiàn)urlan A,et al. Management and outcomes of acute pancreatitis patients over the last decade: A US tertiary-center experience[J]. Pancreatology:official journal of the International Association of Pancreatology (IAP),2017,17(1): 32-40.

      [7] Pofahl WE,Walczak SM,Rhone E,et al. Use of an artificial neural network to predict length of stay in acute pancreatitis[J]. Am Surg,1998,64(9):868-872.

      [8] Keogan MT,Lo JY,F(xiàn)reed KS,et al. Outcome analysis of patients with acute pancreatitis by using an artificial neural network[J]. Acad Radiol,2002,9(4):410-419.

      [9] Nazarenko GI,Sidorenko VI,Lebedev DS. Prognosis of the severity of acute pancreatitis by the neural network method[J]. Vestn Khir Im I I Grek,2005,164(1):50-54.

      [10] Pearce CB,Gunn SR,Ahmed A,et al. Machine learning can improve prediction of severity in acute pancreatitis using admission values of APACHE Ⅱ score and C-reactive protein[J]. Pancreatology,2006,6(1-2):123-131.

      [11] Mofidi R,Duff MD,Madhavan KK,et al. Identification of severe acute pancreatitis using an artificial neural network[J]. Surgery,2007,141(1):59-66.

      [12] Bartosch-Harlid A,Andersson B,Aho U,et al. Artificial neural networks in pancreatic disease[J]. Br J Surg,2008, 95(7):817-826.

      [13] Andersson B,Andersson R,Ohlsson M,et al. Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks[J]. Pancreatology,2011,11(3):328-335.

      [14] Hong WD,Chen XR,Jin SQ,et al. Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis[J]. Clinics(Sao Paulo),2013, 68(1):27-31.

      [15] Yan den Heever M,Mittal A,Haydock M,et al. The use of intelligent database systems in acute pancreatitis--a systematic review[J]. Pancreatology,2014,14(1):9-16.

      [16] Hines OJ,Pandol SJ. Management of severe acute pancreatitis[J]. BMJ (Clinical research ed),2019,367:6227.

      [17] Fei Y,Hu J,Li WQ,et al. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis[J]. J Thromb Haemost,2017,15(3):439-445.

      [18] Fei Y,Hu J,Gao K,et al. Risk prediction for portal vein thrombosis in acute pancreatitis using radial basis function[J]. Ann Vasc Surg,2018,47:78-84.

      [19] Fei Y,Gao K,Li WQ. Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis[J]. Pancreatology,2018, 18(8): 892-899.

      [20] Chen Y,Chen TW,Wu CQ,et al. Radiomics model of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis[J]. Eur Radiol,2019, 29(8): 4408-4417.

      [21] Huang CT,Lin CK,Lee TH,et al. Pancreatic fibrosis and chronic pancreatitis: Mini-review of non-histologic diagnosis for clinical applications[J]. Diagnostics (Basel,Switzerland),2020,10(2):87.

      [22] Yeaton P,Sears RJ,Ledent T,et al. Discrimination between chronic pancreatitis and pancreatic adenocarcinoma using artificial intelligence-related algorithms based on image cytometry-generated variables[J]. Cytometry,1998,32(4):309-316.

      [23] Norton ID,Zheng Y,Wiersema MS,et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis[J]. Gastrointest Endos,2001,54(5): 625-629.

      [24] Saftoiu A,Vilmann P,Gorunescu F,et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer[J]. Gastrointest Endosc,2008,68(6):1086-1094.

      [25] Zhu M,Xu C,Yu J,et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images:A diagnostic test[J]. PLoS One,2013,8(5):e63820.

      [26] Saftoiu A,Vilmann P,Gorunescu F,et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses[J]. Clin Gastroenterol Hepatol,2012,10(1):84-90.

      [27] Zhang Y,Cheng C,Liu Z,et al. Differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma based on multi-modality texture features in (18)F-FDG PET/CT[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2019,36(5):755-762.

      [28] Exarchakou A,Papacleovoulou G,Rous B,et al. Pancreatic cancer incidence and survival and the role of specialist centres in resection rates in England,2000 to 2014:A population-based study[J]. Pancreatology,https://doi.org/10.1016/j.pan.2020.01.012.

      [29] O'Reilly D,F(xiàn)ou L,Hasler E,et al. Diagnosis and management of pancreatic cancer in adults: A summary of guidelines from the UK National Institute for Health and Care Excellence[J]. Pancreatology:official journal of the International Association of Pancreatology(IAP)[et al],2018,18(8): 962-970.

      [30] Okon K,Tomaszewska R,Nowak K,et al. Application of neural networks to the classification of pancreatic intraductal proliferative lesions[J]. Anal Cell Pathol,2001, 23 (3-4): 129-136.

      [31] Xing F,Su H,Neltner J,et al. Automatic Ki-67 counting using robust cell detection and online dictionary learning[J].IEEE Trans Biomed Eng,2014,61(3):859-870.

      [32] Momeni-Boroujeni A,Yousefi E,Somma J. Computer-assisted cytologic diagnosis in pancreatic FNA:An application of neural networks to image analysis[J]. Cancer Cytopathol,2017,125(12):926-933.

      [33] Kuwahara T,Hara K,Mizuno N,et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary mucinous neoplasms of the pancreas[J].Clin Transl Gastroenterol,2019,10(5):1-8.

      [34] Li S,Jiang H,Wang Z,et al. An effective computer aided diagnosis model for pancreas cancer on PET/CT images[J].Comput Methods Programs Biomed,2018,165:205-214.

      [35] Chung WY,Correa E,Yoshimura K,et al. Using probe electrospray ionization mass spectrometry and machine learning for detecting pancreatic cancer with high performance[J]. American Journal of Translational Research,2020,12(1):171-179.

      [36] Turksoy K,Cinar A. Adaptive control of artificial pancreas systems-a review[J]. J Healthc Eng,2014,5(1):1-22.

      [37] Boughton CK,Hovorka R. Advances in artificial pancreas systems[J]. Science Translational Medicine,2019,11(484):4949.

      [38] Thamprajamchit S,Ongphiphadhanakul B,Krittiyawong S,et al. A simple prediction rule and a neural network model to predict pancreatic beta-cell reserve in young adults with diabetes mellitus[J]. J Med Assoc Thai,2001, 84(3):332-338.

      [39] El-Jabali AK. Neural network modeling and control of type 1 diabetes mellitus[J]. Bioprocess Biosyst Eng,2005, 27(2):75-79.

      [40] Zecchin C,F(xiàn)acchinetti A,Sparacino G,et al. Jump neural network for real-time prediction of glucose concentration[J]. Methods Mol Biol,2015,1260:245-259.

      [41] Samadi S,Turksoy K,Hajizadeh I,et al. Meal detection and carbohydrate estimation using continuous glucose sensor data[J]. IEEE J Biomed Health Inform,2017,21(3):619-627.

      [42] Asadi S,Nekoukar V. Adaptive fuzzy integral sliding mode control of blood glucose level in patients with type 1 diabetes:In silico studies[J]. Math Biosci,2018,305:122-132.

      (收稿日期:2020-03-03)

      猜你喜歡
      人工神經(jīng)網(wǎng)絡(luò)機器學(xué)習(xí)胰腺癌
      胰腺癌治療為什么這么難
      利用人工神經(jīng)網(wǎng)絡(luò)快速計算木星系磁坐標(biāo)
      人工神經(jīng)網(wǎng)絡(luò)實現(xiàn)簡單字母的識別
      電子制作(2019年10期)2019-06-17 11:45:10
      基于機器學(xué)習(xí)的圖像特征提取技術(shù)在圖像版權(quán)保護中的應(yīng)用
      基于網(wǎng)絡(luò)搜索數(shù)據(jù)的平遙旅游客流量預(yù)測分析
      時代金融(2016年27期)2016-11-25 17:51:36
      前綴字母為特征在維吾爾語文本情感分類中的研究
      STAT1和MMP-2在胰腺癌中表達的意義
      基于支持向量機的金融數(shù)據(jù)分析研究
      早診早治趕走胰腺癌
      上海工運(2015年11期)2015-08-21 07:27:00
      基于聲發(fā)射和人工神經(jīng)網(wǎng)絡(luò)的混凝土損傷程度識別
      靖宇县| 淮阳县| 宝坻区| 安化县| 会同县| 宁河县| 万荣县| 塔河县| 萨迦县| 会昌县| 德保县| 大石桥市| 含山县| 竹溪县| 育儿| 沙河市| 宁城县| 盐城市| 兴城市| 仲巴县| 多伦县| 遂昌县| 阿拉善左旗| 武夷山市| 阿图什市| 无极县| 临城县| 囊谦县| 奉节县| 于都县| 邢台县| 新野县| 江西省| 临桂县| 陆河县| 隆安县| 林州市| 岳西县| 布尔津县| 钟祥市| 河曲县|