賴(lài)可欣 田婭 吳惠霞
摘 ?要: 聲動(dòng)力療法(SDT)是通過(guò)超聲和聲敏劑的協(xié)同作用,并利用多種機(jī)制共同作用達(dá)到殺死癌細(xì)胞的目的.超聲的機(jī)械波穿透力強(qiáng),SDT利用超聲激活聲敏劑產(chǎn)生局部毒性,與傳統(tǒng)治療方法相比,對(duì)正常細(xì)胞和組織傷害較小,是一種新型的治療癌癥的方法.聲敏劑是影響SDT的重要因素,單一有機(jī)聲敏劑有一定的生物應(yīng)用缺陷,現(xiàn)在主要的研究方向是將聲敏劑和納米技術(shù)相結(jié)合,使用納米載體負(fù)載有機(jī)聲敏劑和新型無(wú)機(jī)聲敏劑.目前為止,SDT仍處于臨床前和臨床研究階段,大量體外和體內(nèi)實(shí)驗(yàn)表明:SDT對(duì)于多種癌細(xì)胞有殺傷作用,具有廣闊的應(yīng)用前景.簡(jiǎn)述了SDT作用機(jī)制、聲敏劑的種類(lèi)和當(dāng)前應(yīng)用研究的進(jìn)展.
關(guān)鍵詞: 聲動(dòng)力療法(SDT); 聲敏劑; 納米技術(shù)
中圖分類(lèi)號(hào): O 613.7 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號(hào): 1000-5137(2020)04-0405-11
Abstract: Sonodynamic therapy (SDT) works by the synergistic effect of ultrasound and sonosensitizers to kill cancer cells through multiple mechanisms.As a mechanical wave,ultrasound can penetrate deep tissues.Compared with traditional treatment methods,SDT uses ultrasound to activate the sonosensitizers to produce local toxicity and causes less damage to normal cells and tissues.Sonosensitizers play an important role in the process of SDT.Due to the biological defects of the traditional organic sonosensitizers,the major research direction is to combine sonosensitizers with nanotechnology by using nanocarriersor developing new inorganic sonosensitizers.So far,SDT is still in the preclinical and clinical research stage.Recent in vitro and in vivo studies have showed that SDT can kill a variety of cancer cells and have broad application prospects.We briefly described the mechanism of SDT,the type of sonosensitizers and the current applications of SDT.
Key words: sonodynamic therapy(SDT); sonosensitizers; nanotechnology
0 ?引 ?言
聲動(dòng)力療法(SDT)是一種利用超聲和聲敏劑協(xié)同作用的非侵入性腫瘤治療方法.其主要原理是利用低強(qiáng)度超聲(0.5~4.0 W·cm-2)照射于富集聲敏劑的腫瘤部位,激活聲敏劑,產(chǎn)生活性氧(ROS),從而殺死腫瘤細(xì)胞[1].
SDT無(wú)創(chuàng)且受腫瘤位置影響較小,可通過(guò)自組裝納米粒子增強(qiáng)的滲透和保留效應(yīng)(EPR效應(yīng))準(zhǔn)確靶向癌細(xì)胞以提高腫瘤積累量,經(jīng)超聲激發(fā)產(chǎn)生局部毒性,與傳統(tǒng)放射化療相比,副作用較小.SDT是在光動(dòng)力療法(PDT)基礎(chǔ)上發(fā)展起來(lái)的,其原理相似.第一代的聲敏劑是廣泛使用的光敏劑.與PDT相比,SDT的主要優(yōu)點(diǎn)是超聲作為機(jī)械波具有高組織穿透性,這克服了PDT的穿透深度限制,為SDT在深部惡性腫瘤治療中的應(yīng)用提供了可能.研究者已將各種納米載體和有機(jī)聲敏劑結(jié)合,以改善聲敏劑的生物相容性,并開(kāi)發(fā)了新型無(wú)機(jī)聲敏劑[2].近期的體外和體內(nèi)研究表明:SDT對(duì)于實(shí)體瘤、白血病、動(dòng)脈粥樣硬化等有潛在治療效果.另外,SDT還可以和其他診療手段進(jìn)行聯(lián)合,比如超聲靶向微泡破壞技術(shù)(UTMD)、化療、磁共振成像(MRI)、近紅外熒光成像(NIR-FLI)等.
1 ?SDT作用機(jī)制
對(duì)SDT潛在機(jī)制的研究眾多,但確切的機(jī)制有待闡明.大多數(shù)研究人員支持多種機(jī)制協(xié)同作用導(dǎo)致細(xì)胞死亡:超聲產(chǎn)生空化現(xiàn)象和聲機(jī)械/聲化學(xué)過(guò)程,空化產(chǎn)生的能量促使水熱解,以及通過(guò)聲致發(fā)光(SL)轉(zhuǎn)移能量,以激活聲敏劑,從而提高機(jī)體內(nèi)ROS濃度,引起一系列生物效應(yīng),最終導(dǎo)致細(xì)胞凋亡.
1.1 超聲空化效應(yīng)
超聲波在液態(tài)介質(zhì)中引起壓力變化,導(dǎo)致組織液中產(chǎn)生氣泡,從而產(chǎn)生了空化現(xiàn)象[3].根據(jù)超聲條件和組織或細(xì)胞狀態(tài),空化效應(yīng)分為穩(wěn)定空化(非慣性空化)和慣性空化.前者產(chǎn)生溫和的氣泡,氣泡由于超聲作用處于連續(xù)的振動(dòng)和振蕩狀態(tài),形狀和尺寸發(fā)生變化.而慣性空化與ROS的產(chǎn)生密切相關(guān),慣性空化氣泡吸收大量聲能,氣泡振動(dòng)導(dǎo)致劇烈坍塌,在坍塌期間,會(huì)產(chǎn)生高溫和高壓,從而釋放出大量的能量,因此慣性空化能夠誘導(dǎo)水熱解離,生成羥基自由基[4].塌陷產(chǎn)生的極端物理?xiàng)l件會(huì)對(duì)細(xì)胞骨架、細(xì)胞膜結(jié)構(gòu)和生物酶的活性構(gòu)成破壞性的影響,甚至可以殺死周?chē)募?xì)胞.
此外,空化會(huì)導(dǎo)致SL現(xiàn)象和聲致穿孔現(xiàn)象.SL現(xiàn)象通過(guò)能量轉(zhuǎn)移激發(fā)聲敏劑的電子軌道,當(dāng)激發(fā)電子返回基態(tài)時(shí)產(chǎn)生ROS.生成的ROS積聚在細(xì)胞質(zhì)和細(xì)胞器內(nèi),破壞脂質(zhì)、蛋白質(zhì)和DNA,使細(xì)胞組織惡化,與其他因素共同作用,最終導(dǎo)致細(xì)胞凋亡.聲致穿孔效應(yīng)是指氣泡在超聲作用下振動(dòng),使細(xì)胞膜產(chǎn)生短暫性微孔,使得細(xì)胞膜和血管透化,促進(jìn)藥物有效地進(jìn)入到病變組織.
1.2 氧化應(yīng)激
ROS是一類(lèi)化學(xué)性質(zhì)活潑的含氧原子或原子團(tuán),包括單線態(tài)氧、超氧陰離子、羥基自由基等.在超聲空化作用下,聲敏劑將從基態(tài)激活到激發(fā)態(tài),可以直接與周?chē)难醴肿踊蚱渌孜锓肿臃磻?yīng),形成自由基.或者在返回基態(tài)時(shí)釋放能量,釋放的能量與周?chē)难醴肿庸餐饔?,?dǎo)致單線態(tài)氧的產(chǎn)生.單線態(tài)氧被認(rèn)為是聲動(dòng)力學(xué)活動(dòng)的主要介質(zhì),具有氧化周?chē)|(zhì)的能力,導(dǎo)致靶病理細(xì)胞不可逆轉(zhuǎn)的破壞,直接介導(dǎo)細(xì)胞毒性.另外過(guò)氧化氫和超氧陰離子也可通過(guò)脂質(zhì)過(guò)氧化的鏈反應(yīng)機(jī)制誘導(dǎo)細(xì)胞損傷或凋亡.過(guò)量的ROS不僅會(huì)導(dǎo)致氧化應(yīng)激,使機(jī)體損傷,還會(huì)引起細(xì)胞骨架收縮、染色質(zhì)濃縮和DNA片段化,最終導(dǎo)致細(xì)胞凋亡[2,5].與正常細(xì)胞相比,腫瘤細(xì)胞處于乏氧環(huán)境,因此可調(diào)高ROS濃度,使其高于腫瘤細(xì)胞能承受的閾值,導(dǎo)致其死亡,而對(duì)正常細(xì)胞的影響較小.
理論上可以通過(guò)兩種方法破壞體內(nèi)氧化還原平衡,導(dǎo)致細(xì)胞死亡:1) 提高ROS濃度,促進(jìn)ROS生成或抑制ROS清除;2) 降低ROS濃度,加入ROS清除劑,如黃酮及其衍生物.在實(shí)際應(yīng)用中,前者使用較多.
1.3 超聲誘導(dǎo)細(xì)胞凋亡
細(xì)胞凋亡是細(xì)胞死亡的一種形式,細(xì)胞凋亡過(guò)程中的細(xì)胞通常以細(xì)胞骨架收縮、染色質(zhì)濃縮、DNA斷裂和半胱天冬酶(Caspase)活化為特征.已知惡性細(xì)胞具有較高的代謝水平,SDT能損傷這些細(xì)胞的線粒體,使半胱天冬酶活化,導(dǎo)致線粒體膜電位(MMP)降低,并誘導(dǎo)細(xì)胞凋亡[6].
SDT中誘導(dǎo)細(xì)胞凋亡的機(jī)制主要有2種:1) SDT通過(guò)下調(diào)Bcl-2家族蛋白的表達(dá)水平和產(chǎn)生過(guò)量的ROS引起細(xì)胞凋亡.LI等[7]評(píng)估了卟啉鈉介導(dǎo)的SDT(DVDMS-SDT)對(duì)體外和體內(nèi)肝細(xì)胞癌的抗腫瘤作用.結(jié)果表明DVDMS-SDT增加了G2/M期細(xì)胞比例,降低了CDK1和Cyclin B1蛋白水平.生成的ROS上調(diào)了p53和Bax的表達(dá),下調(diào)了Bcl-2的表達(dá),導(dǎo)致caspase-3的激活,最終引發(fā)細(xì)胞凋亡.2) SDT通過(guò)線粒體膜中的鈣離子(Ca2+)過(guò)載誘導(dǎo)細(xì)胞凋亡.過(guò)載的Ca2+改變線粒體膜的穿透率.DAI等[8]研究了血卟啉單甲醚(HMME)介導(dǎo)的SDT誘導(dǎo)C6膠質(zhì)瘤細(xì)胞凋亡的機(jī)制,數(shù)據(jù)顯示ROS產(chǎn)生水平增加、MMP降低和細(xì)胞色素c釋放增加,證明SDT誘導(dǎo)細(xì)胞凋亡,并且與早期凋亡過(guò)程中的過(guò)載Ca2+相關(guān).
1.4 其他機(jī)制
SDT可以破壞細(xì)胞骨架,短時(shí)間暴露于低強(qiáng)度脈沖超聲會(huì)使得細(xì)胞骨架發(fā)生流化和再固化.流化的不穩(wěn)定性為惡性細(xì)胞選擇性攝取聲敏劑提供了可能.
SDT還可以增強(qiáng)抗腫瘤免疫力.M1巨噬細(xì)胞分泌促炎細(xì)胞因子,對(duì)促炎起主要作用.M2巨噬細(xì)胞能減少炎癥反應(yīng),在組織修復(fù)中發(fā)揮重要作用.M1巨噬細(xì)胞具有抗腫瘤能力,而M2巨噬細(xì)胞不具備.SDT將促進(jìn)腫瘤內(nèi)的M2巨噬細(xì)胞向M1巨噬細(xì)胞轉(zhuǎn)換,還可以通過(guò)抑制新血管的生成,有效切斷腫瘤血供,同時(shí)產(chǎn)生熱療效果來(lái)破壞腫瘤組織[9].
2 ?聲敏劑
聲敏劑的選擇是SDT治療的重要環(huán)節(jié).聲敏劑本身沒(méi)有抑制活性且毒性較低,僅暴露在超聲后才具有生物活性.可用聚焦超聲使聲敏劑在待治療的腫瘤部位激活,與化療和放射療法相比,全身毒性較低.理想的聲敏劑應(yīng)對(duì)正常細(xì)胞沒(méi)有顯著毒性,能準(zhǔn)確靶向腫瘤細(xì)胞,并且對(duì)超聲波具有高敏感性和穩(wěn)定性.
初代的聲敏劑是光敏劑,比如卟啉或氧雜蒽酮類(lèi)化合物.但是其水溶性較差、血液循環(huán)時(shí)間短,在生物微環(huán)境中較不穩(wěn)定,無(wú)法在腫瘤部位大量聚集,另外這些分子在某些情況下毒性顯著,限制了其臨床應(yīng)用.為了克服這些缺陷,人們將各類(lèi)納米粒子與SDT結(jié)合使用:1)使用納米材料負(fù)載有機(jī)小分子聲敏劑;2)開(kāi)發(fā)具有聲敏劑特征的無(wú)機(jī)納米材料.這些納米聲敏劑顯示出巨大的應(yīng)用潛力.
2.1 有機(jī)聲敏劑
有機(jī)聲敏劑主要分為:卟啉及其衍生物、氧雜蒽酮類(lèi)化合物、抗腫瘤藥物、非甾體類(lèi)抗炎藥和其他聲敏劑[3,10].
2.1.1 卟啉及其衍生物
實(shí)際研究中最常用的聲敏劑是卟啉及其衍生物的這類(lèi)初代聲敏劑,通過(guò)修飾降低其光學(xué)毒性,生成了一系列卟啉衍生物,如原卟啉IX(PpIX)、HMME、卟啉衍生物鎵配合物(ATX-70,ATX-S10)和卟啉新衍生物(DCPH-P-Na(I))[11-13],如圖1所示.PpIX是血卟啉衍生物,通過(guò)在亞鐵螯合酶催化下與亞鐵螯合,轉(zhuǎn)化為最終產(chǎn)物血紅素.除了PpIX本身的外源性供應(yīng)外,PpIX在組織或細(xì)胞中的積累可以通過(guò)加入其前體來(lái)產(chǎn)生,例如5-氨基乙酰丙酸(ALA)及其衍生物[9,14-15].使用ALA的主要優(yōu)點(diǎn)是ALA本身不是超聲敏化劑,代謝迅速,可以降低皮膚光毒性的風(fēng)險(xiǎn).
酞菁(Pc)是苯并氮雜卟啉,作為SDT的聲敏劑,對(duì)其的研究相對(duì)較少.羧基官能化的鋅(II)酞菁具有良好的水溶性和高的單線態(tài)氧產(chǎn)率[16].XU等[17]制備了4-α-(3-羧基苯氧基)鋅(II)酞菁(ZnPcC4)與牛血清白蛋白(BSA)結(jié)合物(ZnPcC4-BSA),測(cè)定了體外聲動(dòng)力學(xué)活性,ZnPcC4和ZnPcC4-BSA都顯示出對(duì)HepG2肝癌細(xì)胞有殺傷作用,ZnPcC4-BSA具有更高的聲動(dòng)力學(xué)活性,半抑制濃度(IC50)值為7.5 μmol·L-1.
2.1.2 氧雜蒽酮類(lèi)化合物
氧雜蒽酮類(lèi)化合物是一系列染色劑,包括赤蘚紅B、玫瑰紅(RB)、曙紅和羅丹明.RB是熒光素的四氯四碘化衍生物,單獨(dú)使用沒(méi)有細(xì)胞毒性,RB與聚焦超聲的聯(lián)合使用可以選擇性地抑制腫瘤生長(zhǎng),且不會(huì)損害正常的組織.為了改善RB的高水溶性和較差的生物利用度,CHEN等[18]設(shè)計(jì)合成和表征了一系列兩親性RB衍生物(RBD),結(jié)果表明引入適當(dāng)?shù)募籽趸垡叶伎梢栽鰪?qiáng)細(xì)胞攝取,并改善細(xì)胞內(nèi)ROS的產(chǎn)生,合成的衍生物具有與卟啉鈉相似的相對(duì)效力,如圖2所示.
2.1.3 抗腫瘤藥物和非甾體類(lèi)抗炎藥
超聲可增加一些抗癌和化療藥物對(duì)病變細(xì)胞的殺傷能力,如順鉑、阿霉素等[3,19-20].阿霉素是一種蒽環(huán)類(lèi)抗生素,常用于治療多種癌癥,可導(dǎo)致DNA損傷、細(xì)胞凋亡、氧自由基和羥基自由基的產(chǎn)生以及空化效應(yīng)的增強(qiáng).但是,阿霉素較大的副作用和全身毒性限制了最大耐受劑量,可利用脂質(zhì)體負(fù)載增加藥物聚集量,同時(shí)減少毒性脫靶效應(yīng).喹諾酮類(lèi)非甾體抗炎藥和超聲作用也具有協(xié)同抗癌的作用,包括左氧氟沙星(LVFX)、環(huán)丙沙星(CPFX)、加替沙星(GFLX)、洛美沙星(LFLX)和司帕沙星(SPFX)[21].
2.1.4 其他聲敏劑
姜黃素是姜黃根莖的提取物,可以保護(hù)動(dòng)脈壁中的炎癥細(xì)胞免于過(guò)多的脂質(zhì)積累,姜黃素和羥基?;S素可用作動(dòng)脈粥樣硬化臨床治療的新型超聲敏感劑.近期姜黃素被證明是一種有效的抗敏感劑,可以抵抗各種細(xì)菌,已證明姜黃素的聲動(dòng)力作用對(duì)耐甲氧西林金黃色葡萄球菌(MRSA)[22]和食源性細(xì)菌[23]具有滅活作用.
竹紅菌素B(HB)是從中草藥中分離的活性成分,被廣泛用作治療類(lèi)風(fēng)濕性關(guān)節(jié)炎、胃病和皮膚病的藥物.JIA等[24]研究了人乳腺癌MDA-MB-231細(xì)胞對(duì)HB介導(dǎo)的SDT的生物反應(yīng),結(jié)果表明,HB介導(dǎo)的SDT顯著誘導(dǎo)細(xì)胞凋亡,產(chǎn)生大量ROS并破壞線粒體活性.另外EL-SIKHRY等[25]證明HB的衍生物SL-017可作為聲敏劑,用于靶向線粒體,觸發(fā)MMP的喪失,誘導(dǎo)ROS的產(chǎn)生,最終導(dǎo)致線粒體斷裂,如圖3所示.
2.2 負(fù)載有機(jī)聲敏劑的納米材料
將SDT與納米技術(shù)相結(jié)合主要有以下優(yōu)勢(shì):1) 使用自組裝的納米粒子可以通過(guò)EPR效應(yīng)優(yōu)先在腫瘤部位積累藥物,并且在藥物傳遞過(guò)程中為聲敏劑提供保護(hù)屏障;2) 通過(guò)在納米粒子表面修飾官能團(tuán),以改善材料的生物相容性;3) 納米粒子可以根據(jù)生理環(huán)境的變化(例如pH、氧化還原電位和酶)產(chǎn)生特異性響應(yīng),從而控制聲敏劑的釋放.納米材料的尺寸與治療效果密切相關(guān),目前研究的納米粒子粒徑多為1~200 nm,過(guò)大的粒徑會(huì)使納米粒子更傾向于被吞噬細(xì)胞識(shí)別和清除.
根據(jù)載體攜帶聲敏劑的方式可分為兩類(lèi)[2]:一類(lèi)是包封,將聲敏劑物理包封在納米粒子內(nèi)部;另一類(lèi)是將聲敏劑與納米底物進(jìn)行共價(jià)偶聯(lián).聲敏劑可以直接結(jié)合在納米粒子的表面,也可以先連接到聚合物主鏈上,獲得的聚合物-聲敏劑綴合物,再進(jìn)一步自組裝成納米粒子.包封所得的復(fù)合材料更容易產(chǎn)生特異性響應(yīng),而利用共價(jià)偶聯(lián)的方式攜帶的聲敏劑載體具有更高的載藥量、持續(xù)的藥物釋放和更好的穩(wěn)定性.
一般來(lái)說(shuō),納米粒子的設(shè)計(jì)包括3個(gè)組成部分[26]:1) 成像劑和治療劑;2) 為所載藥物提供物理保護(hù)的載體,分為有機(jī)載體和無(wú)機(jī)載體;3) 在載體表面附著表面活化劑,改善材料的生物相容性,或?yàn)槿笔图{米材料提供額外的性質(zhì),例如長(zhǎng)循環(huán)時(shí)間、屏障穿透能力和靶特異性結(jié)合能力.納米粒子示意圖如圖4所示.
2.2.1 有機(jī)載體
有機(jī)納米載體可以通過(guò)較小的有機(jī)分子或聚合物自組裝獲得.通過(guò)調(diào)節(jié)載體表面性質(zhì)、化學(xué)結(jié)構(gòu)和微形態(tài),納米粒子可以產(chǎn)生特異性響應(yīng),有效地控制包封的超聲敏化劑的釋放.
脂質(zhì)或兩親聚合物可以組裝成脂質(zhì)體或膠束結(jié)構(gòu),內(nèi)部為中空結(jié)構(gòu),通過(guò)調(diào)節(jié)內(nèi)表面的親水性程度,可加載親水性或疏水性治療劑[27].WAN等[28]將血卟啉和阿霉素共同加載到Pluronic F68納米膠束(聚環(huán)氧乙烷和聚環(huán)氧丙烷的三嵌段共聚物)中,得到復(fù)合材料HPDF納米膠束,研究了HPDF納米膠束對(duì)人耐藥乳腺癌MCF-7/ADR的聲動(dòng)力效果.HPDF納米膠束與低強(qiáng)度超聲結(jié)合可有效抑制細(xì)胞增殖,與游離阿霉素相比,HPDF納米膠束顯著逆轉(zhuǎn)MCF-7/ADR細(xì)胞的耐藥性.ZHOU等[29]將二氫卟酚e6(Ce6)摻入脂質(zhì)體的脂質(zhì)雙層中,并用天冬酰胺-甘氨酸-精氨酸(NGR)修飾,同時(shí)在復(fù)合材料中封裝了阿霉素,該復(fù)合材料能夠在腫瘤部位聚集,顯示出良好的靶向性和高的選擇性.
聚合物-藥物偶聯(lián)物主要有3個(gè)組分:作為載體的水溶性聚合物骨架,疏水性藥物分子和用于響應(yīng)性的靶向部分[30].由于強(qiáng)的兩親性質(zhì),聚合物-藥物綴合物傾向于在水溶液中自組裝成核殼納米結(jié)構(gòu).GAO等[31]制備了殼聚糖(CS)/孟加拉玫瑰紅ω-羧基庚基酯(RBD)復(fù)合納米粒子(RBDCNs).復(fù)合納米粒子粒徑為150~200 nm,CS的加入使RBD的熒光強(qiáng)度顯著降低,證明RBD成功載入.根據(jù)體外實(shí)驗(yàn),復(fù)合材料在HT29和HepG2細(xì)胞中實(shí)現(xiàn)有效的細(xì)胞攝取.
2.2.2 無(wú)機(jī)載體
介孔二氧化硅(MSNs)是納米粒子的典型代表,在制備中使用硅烷混合物可便捷地?fù)饺胨x擇的官能團(tuán)和加載治療劑或顯像劑,改變合成條件可調(diào)整硅球尺寸并且有較高的載藥量.WANG等[32]合成了用Ce6、羧基聚(乙二醇)硅烷和前列腺干細(xì)胞抗原(PSCA)單克隆抗體修飾的摻鈥的二氧化硅空心球(HHSN-C/P-mA).研究結(jié)果表明,所合成的復(fù)合材料能夠在酸性微環(huán)境下降解,經(jīng)超聲照射后,HHSN-C/P-mA產(chǎn)生ROS殺死癌細(xì)胞并激活材料所負(fù)載的替拉扎明藥物,產(chǎn)生治療效果,具有很好的協(xié)同治療作用.
金納米粒子(AuNPs)由于其固有的生物惰性和無(wú)毒性被廣泛用作藥物傳遞的納米載體,其表面可用活性靶向單元(蛋白質(zhì)、肽、單克隆抗體和小分子等)功能化,以避免非特異性攝取,從而實(shí)現(xiàn)腫瘤特異性靶向[33-34].AuNPs與PpIX結(jié)合經(jīng)超聲作用對(duì)BALB/c小鼠的結(jié)腸癌表現(xiàn)出顯著的抑制作用[35].另外AuNPs本身可以被超聲激活發(fā)揮治療效果,AuNPs作為超聲空化的成核位點(diǎn),降低空化閾值,提高空化率從而增強(qiáng)SDT作用.
2.3 無(wú)機(jī)聲敏劑
二氧化鈦(TiO2)納米粒子(TiO2NPs)具有化學(xué)惰性,TiO2NPs中的高活性電子和空穴可與氧或水分子反應(yīng)生成各種類(lèi)型的ROS[4,36-37].然而,純TiO2NPs只能產(chǎn)生有限的ROS,這可能是因?yàn)榭栈a(chǎn)生的能量不足以激發(fā)TiO2.可以通過(guò)在TiO2納米晶體表面上形成缺氧的TiO2-x層來(lái)增強(qiáng)聲動(dòng)力效果,制得結(jié)晶無(wú)序的核-殼結(jié)構(gòu)(TiO2@TiO2-x)[38].TiO2-x層具有豐富的氧缺陷,在超聲作用時(shí)有助于電子和空穴與能帶結(jié)構(gòu)的分離.還可以用銀納米粒子與TiO2結(jié)合增加催化活性[39],或構(gòu)建具有高ROS產(chǎn)生能力的親水性Au-TiO2(HAu-TiO2)納米平臺(tái)作為改進(jìn)SDT的有效聲敏劑.另外TiO2NPs在水和血液中的有限分散性可能會(huì)導(dǎo)致聚集和沉淀,會(huì)增加對(duì)健康細(xì)胞的副作用,因此常用高分子聚合物材料對(duì)TiO2NPs進(jìn)行化學(xué)改性[40].
[2] XU H,ZHANG X,HAN R,et al.Nanoparticles in sonodynamic therapy:state of the art review [J].RSC Advances,2016,6(56):50697-50705.
[3] CHEN H,ZHOU X,GAO Y,et al.Recent progress in development of new sonosensitizers for sonodynamic cancer therapy [J].Drug Discovery Today,2014,19(4):502-509.
[4] CANAVESE G,ANCONA A,RACCA L,et al.Nanoparticle-assisted ultrasound:a special focus on sonodynamic therapy against cancer [J].Chemical Engineering Journal,2018,340:155-172.
[5] KWON S,KO H,YOU D G,et al.Nanomedicines for reactive oxygen species mediated approach:an emerging paradigm for cancer treatment [J].Accounts of Chemical Research,2019,52(7):1771-1782.
[6] TRENDOWSKI M.The promise of sonodynamic therapy [J].Cancer Metastasis Reviews,2014,33(1):143-160.
[7] LI E,SUN Y,LYU G,et al.Sinoporphyrin sodium based sonodynamic therapy induces anti-tumor effects in hepatocellular carcinoma and activates p53/caspase 3 axis [J].International Journal of Biochemistry and Cell Biology,2019,113:104-114.
[8] DAI S,XU C,TIAN Y,et al.In vitro stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells [J].Oncology Letters,2014,8(4):1675-1681.
[9] GAO Z,ZHENG J,YANG B,et al.Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model [J].Cancer Letters,2013,335(1):93-99.
[10] LIU R G,ZHANG Q Y,LANG Y H,et al.Sonodynamic therapy,a treatment developing from photodynamic therapy [J].Photodiagnosis and Photodynamic Therapy,2017,19:159-166.
[11] PANG X,XU C,JIANG Y,et al.Natural products in the discovery of novel sonosensitizers [J].Pharmacology & Therapeutics,2016,162:144-151.
[12] SU X,WANG X,ZHANG K,et al.Sonodynamic therapy induces apoptosis of human leukemia HL-60 cells in the presence of protoporphyrin IX [J].General Physiology and Biophysics,2016,35(2):155-164.
[13] WANG X,JIA Y,SU X,et al.Combination of protoporphyrin IX-mediated sonodynamic treatment with doxorubicin synergistically induced apoptotic cell death of a multidrug-resistant leukemia K562/DOX cell line [J].Ultrasound in Medicine & Biology,2015,41(10):2731-2739.
[14] GENG C,ZHANG Y,HIDRU T H,et al.Sonodynamic therapy:a potential treatment for atherosclerosis [J].Life Sciences,2018,207:304-313.
[15] NAKANO Y,KITAGAWA T,OSADA Y,et al.5-Aminolevulinic acid suppresses prostaglandin E2 production by murine macrophages and enhances macrophage cytotoxicity against glioma [J].World Neurosurgy,2019,127:669-676.
[16] KE M R,HUANG J D,WENG S M.Comparison between non-peripherally and peripherally tetra-substituted zinc (II) phthalocyanines as photosensitizers:synthesis,spectroscopic,photochemical and photobiological properties [J].Journal of Photochemistry and Photobiology A:Chemistry,2009,201(1):23-31.
[17] XU H N,CHEN H J,ZHENG B Y,et al.Preparation and sonodynamic activities of water-soluble tetra-alpha-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate [J].Ultrasonics Sonochemistry,2015,22:125-131.
[18] CHEN H J,ZHOU X B,WANG A L,et al.Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy [J].European Journal of Medicinal Chemistry,2018,145:86-95.
[19] BERNARD V,SKORPIKOVA J,MORNSTEIN V,et al.Biological effects of combined ultrasound and cisplatin treatment on ovarian carcinoma cells [J].Ultrasonics,2010,50(3):357-362.
[20] YU T,YANG Y,ZHANG J,et al.Circumvention of cisplatin resistance in ovarian cancer by combination of cyclosporin a and low-intensity ultrasound [J].European Journal of Pharmaceutics and Biopharmaceutics,2015,91:103-110.
[21] LIU B,WANG J,WANG X,et al.Spectrometric studies on the sonodynamic damage of protein in the presence of levofloxacin [J].Journal of Fluorescence,2010,20(5):985-992.
[22] WANG X,IP M,LEUNG A W,et al.Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication [J].Ultrasonics,2014,54(8):2109-2114.
[23] WANG X,IP M,LEUNG A W,et al.Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli [J].Ultrasonics,2015,62:75-79.
[24] JIA Y,WANG X,LIU Q,et al.Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway [J].Ultrasonics,2017,73:154-161.
[25] EL-SIKHRY H E,MILLER G G,MADIYALAKAN M R,et al.Sonodynamic and photodynamic mechanisms of action of the novel hypocrellin sonosensitizer,SL017:mitochondrial cell death is attenuated by 11,12-epoxyeicosatrienoic acid [J].Investigational New Drugs,2011,29(6):1328-1336.
[26] LIM E,KIM T,PAIK S,et al.Nanomaterials for theranostics:recent advances and future challenges [J].Chemical Reviews,2015,115(1):327-394.
[27] DAI Z J,LI S,GAO J,et al.Sonodynamic therapy (SDT):a novel treatment of cancer based on sonosensitizer liposome as a new drug carrier [J].Medical Hypotheses,2013,80(3):300-302.
[28] WAN G,LIU Y,SHI S,et al.Hematoporphyrin and doxorubicin co-loaded nanomicelles for the reversal of drug resistance in human breast cancer cells by combining sonodynamic therapy and chemotherapy [J].RSC Advances,2016,6(102):100361-100372.
[29] ZHOU C,XIE X,YANG H,et al.Novel class of ultrasound-triggerable drug delivery systems for the improved treatment of tumor [J].Molecular Pharmaceutics,2019,16(7):2956-2965.
[30] GU Y,ZHONG Y,MENG F,et al.Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy [J].Biomacromolecules,2013,14(8):2772-2780.
[31] GAO Y,LI Z,WANG C,et al.Self-assembled chitosan/rose bengal derivative nanoparticles for targeted sonodynamic therapy:preparation and tumor accumulation [J].RSC Advances,2015,5(23):17915-17923.
[32] WANG Y,LIU Y,WU H,et al.Functionalized holmium-doped hollow silica nanospheres for combined sonodynamic and hypoxia-activated therapy [J].Advanced Functional Materials,2019,29(3):1805764.
[33] BEIK J,KHATERI M,KHOSRAVI Z,et al.Gold nanoparticles in combinatorial cancer therapy strategies [J].Coordination Chemistry Reviews,2019,387:299-324.
[34] MORSHED R A,MUROSKI M E,DAI Q,et al.Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer [J].Molecular Pharmaceutics,2016,13(6):1843-1854.
[35] SAZGARNIA A,SHANEI A,MEIBODI N T,et al.A novel nanosonosensitizer for sonodynamic therapy:in vivo study on a colon tumor model [J].Journal of Ultrasound in Medicine,2011,30(10):1321-1329.
[36] NINOMIYA K,NODA K,OGINO C,et al.Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles:its application to targeted sonodynamic therapy [J].Ultrasonics Sonochemistry,2014,21(1):289-294.
[37] HARADA Y,OGAWA K,IRIE Y,et al.Ultrasound activation of TiO2 in melanoma tumors [J].Journal of Controlled Release,2011,149(2):190-195.
[38] HAN X,HUANG J,JING X,et al.Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-ii biowindow [J].ACS Nano,2018,12(5):4545-4555.
[39] STUCCHI M,BIANCHI C L,ARGIRUSIS C,et al.Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light [J].Ultrasonics Sonochemistry,2018,40(Part A):282-288.
[40] NAGHIBI S,HOSSEINI H R M,SANI M A F.Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method [J].Ceramics International,2013,39(7):8377-8384.
[41] EBRAHIMI FARD A,ZAREPOUR A,ZARRABI A,et al.Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells [J].Journal of Magnetism and Magnetic Materials,2015,394:44-49.
[42] QIAN X,ZHANG J,GU Z,et al.Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy [J].Biomaterials,2019,211:1-13.
[43] CHEN J,WANG X,LIU Y,et al.pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction [J].Chemical Engineering Journal,2019,369:394-402.
[44] OSMINKINA L A,NIKOLAEV A L,SVIRIDOV A P,et al.Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer [J].Microporous and Mesoporous Materials,2015,210:169-175.
[45] GONCALVEZ K O,VIEIRA D P,COURROL L C.Study of THP-1 macrophage viability after sonodynamic therapy using methyl ester of 5-aminolevulinic acid gold nanoparticles [J].Ultrasound in Medicine & Biology,2018,44(9):2009-2017.
[46] WANG X,WANG P,ZHANG K,et al.Initiation of autophagy and apoptosis by sonodynamic therapy in murine leukemia L1210 cells [J].Toxicology in Vitro,2013,27(4):1247-1259.
[47] NESBITT H,SHENG Y,KAMILA S,et al.Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer [J].Journal of Controlled Release,2018,279:8-16.
[48] SUN Y,WANG H,WANG P,et al.Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas [J].Biomaterials Science,2019,7(3):985-994.
[49] WANG X,JIA Y,WANG P,et al.Current status and future perspectives of sonodynamic therapy in glioma treatment [J].Ultrasonic Sonochemistry,2017,37:592-599.
[50] LOGAN K,F(xiàn)OGLIETTA F,NESBITT H,et al.Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel,doxorubicin and Rose Bengal [J].European Journal of Pharmaceutics and Biopharmaceutics,2019,139:224-231.
[51] GORGIZADEH M,AZARPIRA N,LOTFI M,et al.Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor:in vitro and in vivo studies [J].Photodiagnosis and Photodynamic Therapy,2019,27:27-33.
[52] HUANG P,QIAN X,CHEN Y,et al.metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy [J].Journal of the American Chemical Society,2017,139(3):1275-1284.
[53] ZHENG X,LIU W,GE J,et al.Biodegradable natural product-based nanoparticles for near-infrared fluorescence imaging-guided sonodynamic therapy [J].ACS Applied Materials & Interfaces,2019,11(20):18178-18185.
(責(zé)任編輯:郁慧,包震宇)