裴霞 吳曉 郭鵬 王昕 溫昆
摘 要:為了解決單機(jī)調(diào)度問題,提高設(shè)備的可靠性和穩(wěn)定性,根據(jù)連續(xù)故障檢測和離散故障檢測的特點(diǎn),以最小化拖期成本和維護(hù)成本為目標(biāo),建立了考慮分段線性惡化和維護(hù)不可用時(shí)間的單機(jī)調(diào)度模型,基于系統(tǒng)可靠性理論研究考慮機(jī)器可靠性的單機(jī)調(diào)度問題,采用決策條件統(tǒng)一化處理方法對(duì)維護(hù)策略進(jìn)行對(duì)比,通過單因素和雙因素調(diào)參分析確定相關(guān)參數(shù)變化對(duì)生產(chǎn)調(diào)度優(yōu)化的影響。結(jié)果表明:模型求解時(shí)間與單位時(shí)間拖期成本的減少呈近似指數(shù)級(jí)增長,單位拖期成本越大,求解速度越快;單位時(shí)間拖期成本的變化不會(huì)引起維護(hù)成本的大幅度改變,成本函數(shù)不存在柔性周期維護(hù)中的跳躍節(jié)點(diǎn),不能“自適應(yīng)”調(diào)節(jié);預(yù)防性維護(hù)時(shí)間與故障小修比值對(duì)離散檢測下的維護(hù)決策有較大影響。采用決策條件統(tǒng)一化處理方法,可減少計(jì)算時(shí)間和檢測成本,較好地解決了離散故障檢測中易出現(xiàn)的過度維護(hù)或維護(hù)不足等問題,有助于降低運(yùn)營成本,提高經(jīng)濟(jì)效益。
關(guān)鍵詞:生產(chǎn)管理;連續(xù)故障檢測;離散故障檢測;工時(shí)惡化;單機(jī)調(diào)度;整數(shù)規(guī)劃
中圖分類號(hào):TH186 ? 文獻(xiàn)標(biāo)識(shí)碼:A ? doi:10.7535/hbkd.2020yx05001
Abstract:In order to solve the single machine scheduling problem, and improve the reliability and stability of the equipment, a single machine scheduling model considering piecewise linear deterioration and maintenance unavailability time was established according to the characteristics of continuous fault detection and discrete fault detection. Based on the system reliability theory, the single machine scheduling problem considering machine reliability was studied, and the advantages and disadvantages of maintenance strategy were compared by unified processing of decision conditions. The influence of related parameter changes on production scheduling optimization was determined by single factor and two factor adjustment analysis. The results show that the solution time of the model increases exponentially with the decreasing direction of unit delay cost, and the greater the unit delay cost, the faster the solution speed. The change of delay cost per unit time will not cause a significant change in maintenance cost, and the cost function does not have jumping nodes in flexible periodic maintenance, so it can not be adjusted adaptively. Ratio of preventive maintenance time to fault minor maintenance time has great influence on maintenance decision under discrete detection. The unified processing method of decision conditions can reduce the calculation time and detection cost, and better solve the problems of excessive maintenance or insufficient maintenance in discrete fault detection. These will help to reduce operating costs and improve economic benefits.
Keywords:production management;continuous fault detection; discrete fault detection; deteriorating jobs; single machine scheduling; integer programming
伴隨著工業(yè)互聯(lián)網(wǎng)的興起[1],產(chǎn)業(yè)數(shù)字化轉(zhuǎn)型成為傳統(tǒng)行業(yè)的發(fā)展趨勢,一站式機(jī)械零部件制造云平臺(tái)應(yīng)運(yùn)而生[2],生產(chǎn)調(diào)度與設(shè)備維護(hù)相互影響且互為耦合[3]。如何在保證加工質(zhì)量和效率的同時(shí)提高設(shè)備的可靠性和穩(wěn)定性已成為制造行業(yè)的熱點(diǎn)之一。生產(chǎn)調(diào)度研究最早可追溯到20世紀(jì)50年代,它是以一個(gè)或多個(gè)指標(biāo)最優(yōu)為目標(biāo),在一定約束條件下安排工件加工位置和時(shí)間的決策過程,有研究對(duì)此進(jìn)行了探討。鄭先鵬等[4]通過對(duì)生產(chǎn)調(diào)度問題中的作業(yè)車間調(diào)度問題目標(biāo)進(jìn)行分解,設(shè)計(jì)改進(jìn)了自適應(yīng)遺傳算法求解問題,并指出該問題是典型的NP-hard問題。單機(jī)調(diào)度模型也是生產(chǎn)調(diào)度模型中的一種,在實(shí)際加工過程中工件開工與加工時(shí)間不是固定的,由設(shè)備性能衰退或作業(yè)延遲處理帶來的加工懲罰加大了單機(jī)調(diào)度問題的難度。如何在考慮工時(shí)惡化的情況下,實(shí)現(xiàn)生產(chǎn)調(diào)度與設(shè)備維護(hù)策略的最佳適配,對(duì)于降低車間運(yùn)作成本和按時(shí)交貨至關(guān)重要。
工時(shí)惡化效應(yīng)自GUPTA等[5]首次提出以來,受到了業(yè)界和學(xué)術(shù)界的廣泛關(guān)注。其中,GAWIEJNOWICZ等[6]對(duì)近40年來在時(shí)間依賴調(diào)度領(lǐng)域的研究進(jìn)行了全面回顧,闡述了不同任務(wù)的處理時(shí)間取決于任務(wù)的開始時(shí)間,重點(diǎn)討論了時(shí)間依賴性調(diào)度問題的計(jì)算復(fù)雜度以及求解這些問題的算法。JAFARI等[7]研究了分段線性工時(shí)惡化單機(jī)調(diào)度問題,證明該問題為NP-hard問題。GUO等[8]研究了以最小化總延遲為目標(biāo)的工時(shí)階梯惡化單機(jī)調(diào)度問題。隨后,CHENG等[9]研究了以完工時(shí)間最小為目標(biāo)的工時(shí)階梯惡化單機(jī)調(diào)度問題。近年來,LI等[10]提出了同時(shí)考慮加工時(shí)間可控和工時(shí)惡化效應(yīng)的單機(jī)調(diào)度問題;LIANG等[11]研究了具有工時(shí)惡化效應(yīng)和資源分配的單機(jī)調(diào)度問題,并設(shè)計(jì)了啟發(fā)式算法與分支定界算法求解相關(guān)問題;陳海潮等[12]研究了具有線性惡化的并行機(jī)調(diào)度問題;GUO等[13]研究了具有工時(shí)階梯惡化效應(yīng)的并行機(jī)調(diào)度問題;在此基礎(chǔ)上,GUO等[14]提出了同時(shí)考慮工時(shí)階梯惡化和安裝次數(shù)的并行機(jī)調(diào)度問題,并設(shè)計(jì)了混合離散布谷鳥搜索算法求解。
設(shè)備在生命周期內(nèi)會(huì)經(jīng)歷不同的性能衰退狀態(tài)。維護(hù)作為一種支持功能,在保證產(chǎn)品質(zhì)量和交貨期、提高滿意度等方面起著重要作用,維護(hù)不當(dāng)會(huì)產(chǎn)生“過維護(hù)”(指過度維護(hù))或“欠維護(hù)”(指維護(hù)不足)的狀況?!斑^維度”將加大設(shè)備剩余價(jià)值浪費(fèi),增加維護(hù)成本;“欠維護(hù)”將影響產(chǎn)品質(zhì)量和實(shí)際交付時(shí)間,降低顧客的滿意度。因此,如何根據(jù)實(shí)際生產(chǎn)情況選擇合適的維護(hù)決策方案引起了業(yè)界和學(xué)界的廣泛關(guān)注。KRIM等[15]研究了以完工時(shí)間最小為目標(biāo)的定期預(yù)防性維修單機(jī)調(diào)度問題,并證明該問題是Np-hard問題;LEE等[16]研究了考慮一次維護(hù)的單機(jī)調(diào)度問題,設(shè)計(jì)了動(dòng)態(tài)規(guī)劃算法求解相關(guān)問題;JOO等[17-18]引入遺傳算法求解維護(hù)次數(shù)受限的生產(chǎn)調(diào)度問題,隨后去掉了維護(hù)次數(shù)約束進(jìn)行拓展研究;王昕等[19]研究了考慮周期性維護(hù)與工時(shí)惡化的單機(jī)調(diào)度問題;ZHANG等[20]研究了考慮惡化效應(yīng)和維護(hù)活動(dòng)的單機(jī)調(diào)度問題。基于狀態(tài)的維護(hù)決策研究主要從設(shè)備可靠性約束方面展開討論,崔維偉等[21]在單機(jī)系統(tǒng)里引入了故障小修,為保證決策模型有效,設(shè)計(jì)了遺傳算法和枚舉算法進(jìn)行優(yōu)化對(duì)比;為說明可靠度隨維護(hù)次數(shù)增加而下降的情況,李有堂等[22]在多設(shè)備混聯(lián)系統(tǒng)中引入了役齡遞減因子與故障率遞增因子;楊宏兵等[3]通過建立Markov決策模型獲得模型最優(yōu)方程,設(shè)計(jì)了強(qiáng)化學(xué)習(xí)算法求解預(yù)防性維護(hù)單機(jī)調(diào)度問題。
綜上可知,考慮設(shè)備維護(hù)和惡化效應(yīng)的生產(chǎn)調(diào)度研究已較為豐富,但部分研究理論作出的假設(shè)使其成果不能得到很好的應(yīng)用。例如設(shè)備維護(hù)策略多樣,而多數(shù)研究集中于單次維護(hù)策略下的生產(chǎn)調(diào)度優(yōu)化,忽略了改變維護(hù)策略、優(yōu)化建模方向等方式。此外,工時(shí)惡化函數(shù)多樣,但多數(shù)研究采用一般線性函數(shù),使用分段線性惡化描述的還較少,且多數(shù)研究從生產(chǎn)時(shí)間角度進(jìn)行優(yōu)化,忽略了生產(chǎn)與維護(hù)之間的矛盾關(guān)系。
本文根據(jù)連續(xù)故障檢測(通常根據(jù)設(shè)備狀況設(shè)置故障率閾值Zcm,根據(jù)故障率閾值比對(duì)決策預(yù)防性維護(hù)位置)和離散故障檢測(通常根據(jù)最優(yōu)設(shè)備利用率下的維護(hù)周期T來設(shè)置維護(hù)決策)的特點(diǎn),以最小化拖期成本和維護(hù)成本為目標(biāo),建立考慮分段線性惡化和維護(hù)不可用時(shí)間的單機(jī)調(diào)度模型,基于系統(tǒng)可靠性理論,研究了考慮機(jī)器可靠性的單機(jī)調(diào)度問題,采用決策條件的統(tǒng)一化處理實(shí)現(xiàn)維護(hù)策略的優(yōu)劣對(duì)比,通過單因素和雙因素調(diào)參分析確定相關(guān)參數(shù)變化對(duì)生產(chǎn)調(diào)度優(yōu)化的影響。
1 問題描述
假設(shè)生產(chǎn)車間中有n個(gè)工件集合為Jj={J1,J2,…,Jn}在機(jī)器M上加工,工件基本加工時(shí)間aj={a1,a2,…,an},惡化率bj={b1,b2,…,bn},交貨期dj={d1,d2,…,dn},機(jī)器在同一時(shí)刻只能加工一個(gè)工件且在加工過程中不允許中斷??紤]機(jī)械加工設(shè)備性能衰退造成的工時(shí)惡化效應(yīng),將加工設(shè)備分為正常作業(yè)、惡化作業(yè)、失效3個(gè)作業(yè)狀態(tài)。pj為實(shí)際加工時(shí)間,sj為連續(xù)加工時(shí)間,h為設(shè)備惡化期,σ為設(shè)備惡化系數(shù),α為單位時(shí)間拖期懲罰成本,Δ為極大常數(shù)。一旦該設(shè)備連續(xù)加工時(shí)間超過設(shè)備惡化期,將面臨加工性能惡化。采用分段線性函數(shù)表述工時(shí)惡化情況,表達(dá)式如下:pj=aj, sj≤h,
aj+bj×(sj-h), s>h。
故障率能較好地表征設(shè)備狀態(tài)條件?;诠收下实木S護(hù)策略,可通過采用連續(xù)故障檢測或離散故障檢測獲取故障率數(shù)據(jù),從而對(duì)設(shè)備故障率作出準(zhǔn)確評(píng)估。維護(hù)成本主要分為維護(hù)動(dòng)作成本和維護(hù)時(shí)間成本,維護(hù)動(dòng)作成本MM包含故障小修、預(yù)防性維護(hù)及維護(hù)檢測的操作成本,維護(hù)時(shí)間成本MT用停機(jī)時(shí)間表示,故障小修和預(yù)防性維護(hù)會(huì)導(dǎo)致停機(jī)。
假設(shè)所有工作均在零時(shí)刻準(zhǔn)備就緒,設(shè)備完成維護(hù)活動(dòng)后,性能可恢復(fù)至初始狀態(tài)。采用GRAHAM等[23]提出的三參數(shù)表示法描述狀態(tài)維護(hù)策略下考慮工時(shí)惡化的單機(jī)生產(chǎn)調(diào)度問題:1|nr,pj=aj+max{0,bj×(sj-h)},dpm|ω1Dmax+ω2Mmax。(1) ?式中:1表示單機(jī);nr表示工件加工和設(shè)備維護(hù)均不可中斷;dpm表示基于條件的動(dòng)態(tài)維護(hù);ω1 和ω2分別是生產(chǎn)部門和維護(hù)部門的權(quán)重系數(shù);ω1Dmax+ω2Mmax表示將從成本角度出發(fā),以最小化工件延誤成本和設(shè)備維護(hù)成本為目標(biāo)。
2 數(shù)學(xué)模型
2.1 連續(xù)故障檢測維護(hù)模型的建立
n個(gè)工件調(diào)度后有n個(gè)位置,位置下標(biāo)為l,其他模型符號(hào)與定義如表1所示。
3.1 連續(xù)/離散檢測策略比較
兩種策略決策條件不同,通過決策條件“統(tǒng)一化”(連續(xù)故障檢測根據(jù)設(shè)備狀況設(shè)置故障率閾值Zcm,通過對(duì)故障率與故障率閾值進(jìn)行比較來決策預(yù)防性維護(hù)位置;離散故障檢測是根據(jù)最優(yōu)設(shè)備利用率下的維護(hù)周期T來決策維護(hù)位置。為了對(duì)兩種檢測方法進(jìn)行對(duì)比,通過系統(tǒng)故障率分布函數(shù),將離散故障檢測的維護(hù)周期T轉(zhuǎn)化為故障率,該轉(zhuǎn)化過程定義為決策條件“統(tǒng)一化”)實(shí)現(xiàn)T與故障率的轉(zhuǎn)化。
將離散檢測策略最優(yōu)維護(hù)周期代入T=100×tc/tr,得T=200,令t=200,代入λ(t)=t/5 000中得故障率為0.04。因此,在算例對(duì)比分析中,連續(xù)故障率檢測策略設(shè)置故障率閾值Zcm=0.04,離散故障率檢測策略設(shè)置最優(yōu)維護(hù)周期T=200?;炯庸r(shí)間aj服從[1,100]的均勻分布,交貨期dj服從aj+U(0,3aj],n∈{5,10},保持加工環(huán)境不變,各生成5組算例。計(jì)算結(jié)果如表4所示,其中,CD表示連續(xù)檢測,DD表示離散檢測。
對(duì)表4分析可知:同一算例連續(xù)檢測和離散檢測所得的最優(yōu)調(diào)度方案相同,拖期成本也相同,而離散檢測的成本總是少于連續(xù)檢測的成本。模型運(yùn)算時(shí)間上,離散檢測模型計(jì)算時(shí)間比連續(xù)檢測模型的計(jì)算時(shí)間長,特別是算例規(guī)模變大時(shí),區(qū)別更為明顯。為了同時(shí)優(yōu)化計(jì)算時(shí)間和成本,可采取決策條件“統(tǒng)一化”方法。通過數(shù)值仿真計(jì)算得出連續(xù)檢測策略下的調(diào)度序列,再用離散檢測的最優(yōu)維護(hù)周期進(jìn)行檢測并決策維護(hù)操作點(diǎn),實(shí)現(xiàn)計(jì)算時(shí)間和檢測成本的減少。
3.2 單位時(shí)間拖期成本的影響
針對(duì)同一算例,采用單因素控制法調(diào)整單位時(shí)間拖期成本參數(shù)。大量數(shù)據(jù)實(shí)驗(yàn)結(jié)果顯示,在調(diào)整α參數(shù)時(shí),兩種方案所表示的趨勢相同,故選取一種進(jìn)行分析。當(dāng)α足夠小時(shí),Gurobi求解器不能在限定時(shí)間內(nèi)獲得規(guī)模為10的小規(guī)模算例的最優(yōu)解。圖1和圖2分別顯示了2個(gè)算例單位時(shí)間拖期成本對(duì)總成本目標(biāo)和運(yùn)算時(shí)間的影響情況。
對(duì)圖1分析可知:總成本和拖期成本與單位時(shí)間拖期成本α呈線性相關(guān),線性函數(shù)斜率與算例中的作業(yè)數(shù)據(jù)有關(guān)。維護(hù)成本基本無變化,不存在周期性維護(hù)[19]中的多個(gè)跳躍點(diǎn)節(jié)點(diǎn)(跳躍點(diǎn)節(jié)點(diǎn)是指在某一個(gè)參數(shù)比值對(duì)應(yīng)的節(jié)點(diǎn),目標(biāo)函數(shù)值會(huì)往靠近固定周期維護(hù)目標(biāo)值的方向突變)。圖2顯示了模型求解時(shí)間與α的關(guān)系,可以發(fā)現(xiàn):單位時(shí)間拖期成本α越大,求解速度越快。
3.3 維護(hù)與小修時(shí)間比值的影響
離散故障率檢測的決策條件T對(duì)tc/tr比值依賴性強(qiáng),為探究該參數(shù)比值對(duì)兩種方案的影響,需進(jìn)行調(diào)參分析。保持tr=5,Zcm=0.04不變,令tc={1,5,10,15,20,25,30,35,40},改變維護(hù)時(shí)間參數(shù)進(jìn)行實(shí)驗(yàn),得到如表5所示的調(diào)度方案成本。將總成本進(jìn)行分解,得到tc/tr比值變化下的各項(xiàng)成本情況,如圖3所示。
由表5可知:維護(hù)時(shí)間tc的增加不影響連續(xù)檢測CD維護(hù)決策下的調(diào)度方案,但對(duì)離散檢測DD維護(hù)決策有較大影響。CD維護(hù)決策由故障率閾值決定,因此維護(hù)位置不發(fā)生改變。若以CD調(diào)度方案為標(biāo)準(zhǔn),DD調(diào)度方案則存在過維護(hù)或欠維護(hù)的情況。例如表5中tc=1為過維護(hù),tc=35和tc=40為欠維護(hù)。
圖3為tc/tr比值變化下的各項(xiàng)成本情況。通過分析可知,tc主要影響DD的維護(hù)成本,對(duì)拖期成本影響不大。當(dāng)tc=1時(shí),使用離散檢測策略導(dǎo)致了過維護(hù),但各項(xiàng)成本值均低于使用連續(xù)檢測策略下的情況,這說明基于故障率閾值條件決策維護(hù)得到的結(jié)果并不總是最優(yōu)的。
4 結(jié) 論
本文研究了狀態(tài)維護(hù)策略與工時(shí)惡化作用下的單機(jī)調(diào)度問題,基于連續(xù)故障檢測和離散故障檢測兩種維護(hù)策略的特點(diǎn),分別以最小化最大拖期成本和維護(hù)成本為目標(biāo),建立了考慮分段線性惡化和維護(hù)不可用時(shí)間的單機(jī)調(diào)度模型。通過對(duì)計(jì)算結(jié)果進(jìn)行分析,得到如下結(jié)論。
1)離散檢測模型運(yùn)算時(shí)間比連續(xù)檢測長,但成本更少,采用決策條件“統(tǒng)一化”處理,可減少檢測成本與模型運(yùn)算時(shí)間。
2)維護(hù)成本基本不隨單位時(shí)間拖期成本發(fā)生變化,不存在周期性維護(hù)中的多個(gè)跳躍節(jié)點(diǎn),不能“自適應(yīng)”調(diào)節(jié),模型運(yùn)算時(shí)間隨單位時(shí)間拖期成本的減少呈指數(shù)級(jí)增長。
3)預(yù)防性維護(hù)時(shí)間與故障小修時(shí)間比值對(duì)離散檢測維護(hù)決策有較大影響,存在過維護(hù)或欠維護(hù)狀態(tài),但基于故障率閾值條件的連續(xù)檢測維護(hù)決策得到的調(diào)度方案不一定最優(yōu)。
本文基于系統(tǒng)可靠性理論,探討了考慮機(jī)器可靠性的單機(jī)調(diào)度問題,但研究中也存在著不足之處。在模型建立方面,僅考慮了分段線性惡化和維護(hù)不可用時(shí)間,有必要考慮負(fù)載、可變時(shí)長維護(hù)等因素帶來的成本不確定性,在維護(hù)策略的選擇上應(yīng)設(shè)計(jì)算例與其他策略進(jìn)行優(yōu)劣對(duì)比;在數(shù)據(jù)來源方面,僅參考相關(guān)文獻(xiàn)隨機(jī)生成數(shù)據(jù)。未來應(yīng)與機(jī)械加工企業(yè)合作,獲取真實(shí)的生產(chǎn)數(shù)據(jù),使研究結(jié)果更能直接反映實(shí)際情況,進(jìn)一步探索將狀態(tài)維護(hù)策略與兩階段線性工時(shí)惡化應(yīng)用到更為復(fù)雜的生產(chǎn)系統(tǒng)中。
參考文獻(xiàn)/References:
[1] 姚錫凡,景軒,張劍銘,等.走向新工業(yè)革命的智能制造[J/OL].計(jì)算機(jī)集成制造系統(tǒng),2020:1-30[2020-03-12]. http://kns.cnki.net/kcms/detail/11.5946.TP.20200312.1339.010.html.
YAO Xifan, JING Xuan,ZHANG Jianming,et al.Towards smart manufacturing for the new industrial revolution[J/OL].Computer Integrated Manufacturing Systems, 2020:1-30[2020-03-12]. http://kns.cnki.net/kcms/detail/11.5946.TP.20200312.1339.010.html.
[2] 孫學(xué)珊,楊欣,李民.工業(yè)云平臺(tái)的構(gòu)建與服務(wù)新模式研究[J].中國市場, 2019(2): 191-192.
SUN Xueshan, YANG Xin, LI Min.Research on the construction of industrial cloud platform and new service mode[J]. China Marketing,2019(2): 191-192.
[3] 楊宏兵,沈露,成明,等. 帶退化效應(yīng)多態(tài)生產(chǎn)系統(tǒng)調(diào)度與維護(hù)集成優(yōu)化[J]. 計(jì)算機(jī)集成制造系統(tǒng), 2018, 24(1): 80-88.
YANG Hongbing,SHEN Lu,CHENG Ming,et al.Integrated optimization of scheduling and maintenance in multi-state production systems with deterioration effects[J]. Computer Integrated Manufacturing Systems, 2018,24(1): 80-88.
[4] 鄭先鵬, 王雷.面向作業(yè)車間調(diào)度問題的遺傳算法改進(jìn)[J]. 河北科技大學(xué)學(xué)報(bào), 2019, 40(6): 496-502.
ZHENG Xianpeng,WANG Lei.Improved genetic algorithm for job shop scheduling[J]. Journal of Hebei University of Science and Technology, 2019, 40(6): 496-502.
[5] GUPTA J N D, GUPTA S K. Single facility scheduling with nonlinear processing times[J].Computers & Industrial Engineering, 1988, 14(4): 387-393.
[6] GAWIEJNOWICZ S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems[J].Journal of Scheduling, 2020. doi:10.1007/s10951-019-00630-w.
[7] JAFARI A A, LOTFI M M. Single machine scheduling to minimize the maximum tardiness under piecewise linear deteriorating jobs[J]. Scientia Iranica, 2017. doi:10.24200/sci.2017.4408.
[8] GUO P, CHENG W M, WANG Y. A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs[J]. Journal of Industrial Management Optimization, 2017, 10(4): 1071-1090.
[9] CHENG T C E, KRAVCHENKO S A, LIN B M T. Scheduling step-deteriorating jobs to minimize the total completion time[J].Computers Industrial Engineering, 2020. doi:10.1016/j.cie.2020.106329.
[10] LI L, WANG J J. Scheduling jobs with deterioration effect and controllable processing time[J].Neural Computing Applications, 2016, 29: 1163-1170.
[11] LIANG X X, LIU M, FENG Y B, et al. Solution algorithms for single-machine resource allocation scheduling with deteriorating jobs and group technology[J]. Engineering Optimization, 2020, 52(7): 1184-1197.
[12] 陳海潮, 程文明, 郭鵬, 等. 混和進(jìn)化算法求解具有分段惡化效應(yīng)的并行機(jī)調(diào)度問題[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用, 2020, 29(4): 10-17.
CHEN Haichao,CHENG Wenming,GUO Peng,et al.Hybrid evolutionary algorithm for solving parallel machine scheduling problems with step-piece deteriorating processing time[J].Computer System & Applications,2020, 29(4): 10-17.
[13] GUO P, CHENG W M, ZENG M. Scheduling step-deteriorating jobs on parallel machines by mixed integer programming[J]. Journal of Donghua University(English Edition), 2015, 32(5): 709-714.
[14] GUO P, CHENG W M, WANG Y. Parallel machine scheduling with step-deteriorating jobs and setup times by a hybrid discrete cuckoo search algorithm[J]. Engineering Optimization, 2015, 47(11): 1564-1585.
[15] KRIM H, RACHID B, DUVIVIER D, et al. Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance[J]. Computational Optimization and Applications, 2020,75(1): 291-320.
[16] LEE C Y, LEON V J. Machine scheduling with a rate-modifying activity[J]. European Journal of Operational Research, 2001, 128(1): 119-128.
[17] JOO C M, KIM B S. Genetic algorithms for single machine scheduling with time-dependent deterioration and rate-modifying activities[J]. Expert Systems with Applications, 2013, 40(8): 3036-3043.
[18] JOO C M, KIM B S. Machine scheduling of time-dependent deteriorating jobs with determining the optimal number of rate modifying activities and the position of the activities[J]. Journal of Advanced Mechanical Design Systems & Manufacturing, 2015. doi:10.1299/jamdsm.2015jamdsm0007 .
[19] 王昕, 吳曉, 郭鵬, 等. 考慮周期性維護(hù)與工時(shí)惡化的單機(jī)調(diào)度研究 [J]. 河北科技大學(xué)學(xué)報(bào), 2020, 41(3): 201-209.
WANG Xin, WU Xiao, GUO Peng, et al. Single machine scheduling with time-based maintenance and step-deteriorating jobs[J].Journal of Hebei University of Science and Technology, 2020, 41(3): 201-209.
[20] ZHANG X, YIN Y, WU C C. Scheduling with non-decreasing deterioration jobs and variable maintenance activities on a single machine[J]. Engineering Optimization, 2017,49(1):84-97.
[21] 崔維偉, 陸志強(qiáng). 單機(jī)系統(tǒng)的生產(chǎn)調(diào)度與預(yù)防性維護(hù)的集成優(yōu)化[J]. 上海交通大學(xué)學(xué)報(bào), 2012, 46(12): 2009-2013.
CUI Weiwei,LU Zhiqiang. Integrating production scheduling and preventive maintenance planning for a single machine[J]. Journal of Shanghai Jiaotong University, 2012, 46(12): 2009-2013.
[22] 李有堂, 程鑰, 任澤海.基于可靠性的混聯(lián)系統(tǒng)的動(dòng)態(tài)預(yù)防性維護(hù)策略[J]. 蘭州理工大學(xué)學(xué)報(bào), 2018, 44(6): 35-38.
LI Youtang,CHENG Yue,REN Zehai.Dynamic preventive maintenance strategy for hybrid system based on reliability[J].Journal of Lanzhou University of Technology,2018, 44(6): 35-38.
[23] GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5(1): 287-326.
[24] 金琳, 黃開敏, 周曉軍.租賃設(shè)備的多階段預(yù)防性維護(hù)策略及優(yōu)化[J]. 計(jì)算機(jī)集成制造系統(tǒng), 2013, 19(12): 2947-2953.
JIN Lin, HUANG Kaimin,ZHOU Xiaojun.Multi-period preventive maintance policy and optimization for leased equipment[J].Computer Integrated Manufacturing Systems,2013, 19(12): 2947-2953.
[25] 于捷, 申桂香, 賈亞洲.基于三參數(shù)威布爾分布的數(shù)控機(jī)床的可靠性評(píng)價(jià)[J]. 現(xiàn)代制造工程, 2007(5): 26-28.
YU Jie, SHEN Guixiang,JIA Yazhou.Reliability evaluation on CNC lathes based on the three Weibull distributions[J].Modern Manufacturing Engineering, 2007(5): 19-20.