欒 青,郭建平,馬雅麗,張麗敏,王婧瑄,李偉偉
基于線性生長(zhǎng)假設(shè)的作物積溫模型穩(wěn)定性比較*
欒 青1,2,郭建平2,3**,馬雅麗1,張麗敏2,4,王婧瑄5,李偉偉6
(1.山西省氣候中心,太原 030006;2.中國(guó)氣象科學(xué)研究院,北京 100081;3.南京信息工程大學(xué)氣象災(zāi)害預(yù)警預(yù)報(bào)與評(píng)估協(xié)同創(chuàng)新中心,南京 210044;4.遼寧省葫蘆島市氣象局,葫蘆島 125000;5.內(nèi)蒙古自治區(qū)氣象服務(wù)中心,呼和浩特 010051;6.山西省侯馬市氣象局,侯馬 043000)
利用山西省2個(gè)冬小麥觀測(cè)站、3個(gè)春玉米觀測(cè)站和3個(gè)夏玉米觀測(cè)站長(zhǎng)時(shí)間序列的作物生育期觀測(cè)資料和地面氣象觀測(cè)資料,基于4種作物生長(zhǎng)發(fā)育速率線性假設(shè),建立了作物不同生育階段的活動(dòng)積溫(Aa)和4種有效積溫模型,并對(duì)各積溫模型的穩(wěn)定性進(jìn)行統(tǒng)計(jì)分析與檢驗(yàn)。結(jié)果表明:以變異系數(shù)為指標(biāo)檢驗(yàn)各模型穩(wěn)定性時(shí),活動(dòng)積溫模型最穩(wěn)定,考慮作物三基點(diǎn)溫度的有效積溫模型(Ae4)次之,僅考慮作物下限溫度的有效積溫模型(Ae1)及考慮作物上、下限溫度的有效積溫模型(Ae2和Ae3)最不穩(wěn)定。以生育期模擬偏差和生育期模擬準(zhǔn)確率為指標(biāo)檢驗(yàn)各模型穩(wěn)定性時(shí),Aa模型對(duì)作物生育期的模擬效果最好,穩(wěn)定性最高;4種有效積溫模型中,Ae1、Ae2和Ae3模型模擬效果無(wú)顯著差異,準(zhǔn)確率和穩(wěn)定性高于Ae4模型。各積溫模型在春玉米和夏玉米出苗?抽雄期和抽雄?成熟期的穩(wěn)定性表現(xiàn)一致,出苗?抽雄期各積溫模型的穩(wěn)定性高于抽雄?成熟期;冬小麥在出苗?抽穗期和抽穗?成熟期各積溫模型的穩(wěn)定性表現(xiàn)因地區(qū)不同而有所差異。因此,在實(shí)際應(yīng)用中,還需根據(jù)作物種植區(qū)域、品種類(lèi)型以及生育期選取合適的基點(diǎn)溫度,綜合分析多種積溫模型穩(wěn)定性,選取穩(wěn)定性更高的積溫模型。
積溫;線性假設(shè);穩(wěn)定性;變異系數(shù);模擬準(zhǔn)確率
1735年,Reaumur指出每一種作物品種從種植到成熟都要求一定量的日均溫度的積累[1],提出了積溫學(xué)說(shuō)的雛形[2]并創(chuàng)立了積溫理論。1837年,Boussingault提出了“度·日”(degree-day,℃·d)的概念[3],定義為期間天數(shù)與日平均氣溫的乘積。1923年,Houghton等提出了有效溫度的概念[1]。之后,積溫被廣泛地應(yīng)用于作物生育期預(yù)測(cè)[4]、產(chǎn)量預(yù)報(bào)[5]以及病蟲(chóng)害預(yù)報(bào)[6]等方面,并成為國(guó)內(nèi)外作物模型中非常重要的因子之一。積溫在中國(guó)農(nóng)業(yè)氣象領(lǐng)域的研究和應(yīng)用始于20世紀(jì)50年代,隨著大量研究工作的不斷深入,積溫的概念和計(jì)算方法也得到不斷完善[7]。積溫的計(jì)算大都以作物生長(zhǎng)發(fā)育速率對(duì)溫度反映的生長(zhǎng)假設(shè)為前提,國(guó)際上常用的作物生長(zhǎng)假設(shè)分線性假設(shè)和優(yōu)化假設(shè)(非線性假設(shè))[8-9]。積溫模型有僅考慮下限基點(diǎn)溫度的活動(dòng)積溫和有效積溫[10],考慮上下限兩個(gè)基點(diǎn)溫度的有效積溫,考慮3基點(diǎn)、4基點(diǎn)溫度的有效積溫[9,11]等模型。比較經(jīng)典的積溫模型有李森科線性積溫模型[12]、沈國(guó)權(quán)非線性積溫模式[12]、高亮之非線性積溫模型[13-14]、殷新佑非線性積溫模型[15-16]等。
積溫雖然在科研和業(yè)務(wù)工作中得到了廣泛的應(yīng)用,但越來(lái)越多的研究表明,積溫模型的穩(wěn)定性因作物品種、種植區(qū)域、生育期長(zhǎng)短等不同而存在差異[17]。吳玉潔等[18]分析了3種作物線性生長(zhǎng)假設(shè)下的活動(dòng)積溫和有效積溫的穩(wěn)定性,表明活動(dòng)積溫比有效積溫更穩(wěn)定;肖靜等[19]基于3種不同日均溫計(jì)算了作物階段有效積溫和活動(dòng)積溫,分析證實(shí)活動(dòng)積溫較為穩(wěn)定;姜會(huì)飛等[20]研究表明,以變異系數(shù)為指標(biāo)時(shí)活動(dòng)積溫相對(duì)有效積溫更穩(wěn)定,而以標(biāo)準(zhǔn)偏差為指標(biāo)時(shí)有效積溫絕對(duì)穩(wěn)定度優(yōu)于活動(dòng)積溫;葉彩華等[21]基于積溫在北京櫻花盛花始期模擬中的應(yīng)用研究表明,活動(dòng)積溫和有效積溫穩(wěn)定性強(qiáng)弱關(guān)系隨下限溫度的不同而不同。還有學(xué)者[17,22-23]認(rèn)為,有效積溫比活動(dòng)積溫更穩(wěn)定。可見(jiàn),對(duì)于不同積溫模型的穩(wěn)定性不同學(xué)者的觀點(diǎn)不同,且各積溫模型的穩(wěn)定性是否隨作物品種、生育期等的不同而有所差異,目前研究還相對(duì)較少。
本研究選取山西省冬小麥、春玉米和夏玉米共8個(gè)農(nóng)業(yè)氣象觀測(cè)站長(zhǎng)時(shí)間序列的作物生育期觀測(cè)資料及地面氣象觀測(cè)資料,基于4種作物生長(zhǎng)發(fā)育速率對(duì)溫度響應(yīng)的線性假設(shè),以變異系數(shù)、生育期模擬偏差等為檢驗(yàn)指標(biāo)[18-19,24-25],統(tǒng)計(jì)計(jì)算分析5種不同積溫模型的穩(wěn)定性,旨在探索各積溫模型針對(duì)不同作物、不同生長(zhǎng)發(fā)育階段是否具有一致的穩(wěn)定性,為其在農(nóng)業(yè)氣象業(yè)務(wù)及科研中更好地應(yīng)用提供依據(jù)。
以冬小麥為喜涼作物的代表,春玉米和夏玉米為喜溫作物的代表,選取山西省太谷區(qū)、鹽湖區(qū)為冬小麥代表站,靈丘縣、忻府區(qū)和昔陽(yáng)縣為春玉米代表站,堯都區(qū)、鹽湖區(qū)和芮城縣為夏玉米代表站,各站地理位置、作物物候觀測(cè)年份等信息見(jiàn)表1。歷年作物物候期觀測(cè)資料包括冬小麥拔節(jié)期、抽穗期和成熟期,春玉米和夏玉米出苗期、抽雄期和成熟期的觀測(cè)日期,均來(lái)源于各農(nóng)業(yè)氣象觀測(cè)站。同期氣象資料為各站歷年逐日平均氣溫、最高氣溫和最低氣溫,來(lái)源于山西省氣象信息中心。
1.2.1 日平均氣溫
目前應(yīng)用較多的日平均氣溫計(jì)算方法主要有兩種,一是采用一日內(nèi)4個(gè)固定時(shí)次(2:00、8:00、14:00和20:00)氣溫觀測(cè)值的平均,該方法也是當(dāng)前氣象部門(mén)發(fā)布的日平均氣溫的計(jì)算方法;二是采用一日內(nèi)最高氣溫和最低氣溫的平均值。肖靜等[19]研究結(jié)果顯示,基于方法二計(jì)算得到的積溫較穩(wěn)定,對(duì)山西冬小麥生育期的模擬效果較好。因此,本文日平均氣溫的計(jì)算方法選擇方法二。
表1 三種主要作物代表站地理信息及物候期觀測(cè)資料年份
1.2.2 線性生長(zhǎng)假設(shè)下的作物積溫
目前常用的4種作物生長(zhǎng)發(fā)育速率對(duì)溫度反應(yīng)的線性假設(shè)如圖1所示[8]。
圖1a僅考慮作物生物學(xué)下限溫度(Tb),表示當(dāng)日平均氣溫(Ti)高于Tb時(shí),作物生長(zhǎng)發(fā)育速率隨溫度的升高呈線性增長(zhǎng)趨勢(shì)。為活動(dòng)積溫(Aa)的表現(xiàn)形式,也是有效積溫的第一種表現(xiàn)形式,用Ae1表示。此時(shí)日活動(dòng)溫度(ai)和日有效溫度(ei)的計(jì)算式分別為
注:Tb為下限溫度,T0為最適溫度,Tu為上限溫度。下同。
Note: Tbis lower limit temperature, T0is optimum temperature, Tuis upper limit temperature. The same as below.
式(3)?式(7)中,ai為日活動(dòng)溫度(℃),ei為日有效溫度(℃),Tb、T0、Tu分別為下限溫度、最適溫度和上限溫度(℃),Ti為日平均溫度(℃)。
1.2.3 主要作物的三基點(diǎn)溫度
綜合文獻(xiàn)資料記載及相關(guān)學(xué)者科研成果[26-30],確定冬小麥、春玉米和夏玉米的三基點(diǎn)溫度如表2。
表2 代表作物各主要生育期的三基點(diǎn)溫度(日平均溫度)
注:JH為冬小麥拔節(jié)至抽穗期,HM為冬小麥抽穗至成熟期;ET為春玉米或夏玉米出苗至抽雄期,TM為春玉米或夏玉米抽雄至成熟期。下同。
Note: JH is the jointing to heading stage of winter wheat. HM is the heading to maturity stage of winter wheat. ET is the emergence to tasseling stage of spring maize or summer maize. TM is the tasseling to maturity stage of spring maize or summer maize. The same as below.
1.2.4 穩(wěn)定性檢驗(yàn)指標(biāo)
(1)變異系數(shù)(Coefficient of variation,CV)。CV是數(shù)據(jù)序列的標(biāo)準(zhǔn)差與其平均值的比,表示數(shù)據(jù)序列的相對(duì)離散程度,無(wú)量綱,可以客觀地比較數(shù)據(jù)序列的穩(wěn)定程度。根據(jù)各地代表作物生育期觀測(cè)資料以及逐日平均氣溫,計(jì)算各積溫模型的數(shù)據(jù)序列,利用CV檢測(cè)各地代表作物主要生育期各積溫模型數(shù)據(jù)序列的穩(wěn)定程度。即
(2)生育期模擬偏差(Simulation deviation of growth period,SD)。SD定義為多年作物生育期的模擬值與實(shí)測(cè)值的平均偏差。其值越大表明模型穩(wěn)定性越差,反之模型越穩(wěn)定。假定隨品種、氣候等因素變化,作物生長(zhǎng)所需積溫為線性增加趨勢(shì),首先建立各地代表作物主要生育期各積溫模型的數(shù)據(jù)序列隨年份變化的線性方程,計(jì)算歷年作物達(dá)到某一生育期所需積溫,根據(jù)逐日平均氣溫,累加推算作物達(dá)到某生育期的時(shí)間(xi)。與實(shí)際作物達(dá)到該生育期的時(shí)間(yi)進(jìn)行對(duì)比,計(jì)算SD值。即
(3)生育期模擬準(zhǔn)確率(Simulation accuracy of growth period,SA)。SA為歷年作物生育期模擬結(jié)果中與實(shí)際基本相符(生育期模擬值與實(shí)測(cè)值的偏差天數(shù)在±3d之內(nèi))的年數(shù)占相應(yīng)生育期模擬年數(shù)的百分率(%),即
式中,n0為作物生育期模擬結(jié)果與實(shí)際基本相符(生育期模擬值與實(shí)測(cè)值的偏差在±3d之內(nèi))的年數(shù),n為相應(yīng)的作物生育期模擬年數(shù)。
2.1.1 冬小麥
表3為太谷區(qū)和鹽湖區(qū)冬小麥拔節(jié)?抽雄和抽雄?成熟期5種積溫模型的變異系數(shù)。由表可見(jiàn),兩個(gè)地區(qū)冬小麥不同生育階段各積溫模型的變異系數(shù)均表現(xiàn)為活動(dòng)積溫模型(Aa,假設(shè)一)的最小,同時(shí)考慮作物的三基點(diǎn)溫度的有效積溫模型(Ae4,假設(shè)四)次之,僅考慮作物下限溫度或者上、下限溫度的有效積溫模型(Ae1,假設(shè)一;Ae2,假設(shè)二;Ae3,假設(shè)三)變異系數(shù)較大,說(shuō)明活動(dòng)積溫模型較有效積溫模型相對(duì)更穩(wěn)定。Ae1、Ae2和Ae3有效積溫模型中,Ae3模型的變異系數(shù)小于Ae1和Ae2模型。Ae1和Ae2模型的變異系數(shù)在太谷和鹽湖兩地冬小麥拔節(jié)?抽穗期均相等,抽穗?成熟期有所差別,說(shuō)明兩地冬小麥拔節(jié)?抽穗期多年日平均氣溫均低于其階段上限溫度,而抽穗?成熟期有部分日期日平均氣溫超過(guò)其上限溫度。冬小麥兩個(gè)生長(zhǎng)發(fā)育階段各積溫模型的變異系數(shù)均表現(xiàn)為拔節(jié)?抽穗期大于抽穗?成熟期,說(shuō)明以變異系數(shù)為指標(biāo)檢驗(yàn)的冬小麥抽穗?成熟期各積溫模型的穩(wěn)定性高于拔節(jié)?抽穗期。
表3 基于4種線性假設(shè)的冬小麥生育期5種積溫模型的變異系數(shù)
注:Aa為作物生長(zhǎng)發(fā)育速率隨溫度變化線性假設(shè)下的活動(dòng)積溫模型,Ae1、Ae2、Ae3和Ae4分別作物生長(zhǎng)發(fā)育速率隨溫度變化線性假設(shè)下的4種有效積溫模型。Aa和Ae1模型的線性假設(shè)為當(dāng)日平均氣溫(T)高于作物下限溫度(Tb)時(shí),作物生長(zhǎng)發(fā)育速率隨溫度的升高呈線性增長(zhǎng)趨勢(shì)。Ae2模型的線性假設(shè)為當(dāng)T介于Tb與上限溫度(Tu)之間時(shí),作物生長(zhǎng)發(fā)育速率隨溫度的升高呈線性增長(zhǎng)趨勢(shì),并達(dá)到最大值(1.0);當(dāng)T超過(guò)Tu時(shí),作物生長(zhǎng)發(fā)育速率隨溫度升高保持恒定不變。Ae3模型的線性假設(shè)為當(dāng)T介于Tb與Tu之間時(shí),作物生長(zhǎng)發(fā)育速率隨溫度的升高呈線性增長(zhǎng)趨勢(shì),并達(dá)到最大值(1.0);當(dāng)T超過(guò)Tu時(shí),作物生長(zhǎng)發(fā)育停滯。Ae4模型的線性假設(shè)為當(dāng)T介于Tb與最適溫度(T0)之間時(shí),作物生長(zhǎng)發(fā)育速率隨溫度的升高呈線性增長(zhǎng)趨勢(shì),并達(dá)到最大值(1.0);當(dāng)T介于T0與Tu之間時(shí),作物生長(zhǎng)發(fā)育速率隨溫度升高呈線性下降趨勢(shì),并降至最小值(0.0);當(dāng)T超過(guò)Tu時(shí),作物生長(zhǎng)發(fā)育停滯。下同。
Note: Aa is the active integrated temperature model based on the linear hypothesis about response of growth and development rate to temperature. Ae1, Ae2, Ae3 and Ae4 are the four effective integrated temperature models based on the four linear hypotheses about response of growth and development rate to temperature.The linear hypothesis of Aa and Ae1 models is that the growth and development rate of crops (GDR) increases linearly with the increase of temperature when the average daily temperature (T) is higher than the lower limit temperature (Tb) of crops. The hypothesis of Ae2 model is that when the T is between the Tband the upper limit temperature (Tu) of crops, the GDR increases linearly with the increase of temperature and reaches the maximum (1.0); when the T exceeds Tu, the GDR remains constant with the increase of temperature. The hypothesis of Ae3 model is that when the T is between Tband Tu, the GDR increases linearly with the increase of temperature and reaches the maximum (1.0); when the T exceeds Tu, the GDR stagnate. The hypothesis of Ae4 model is that when the T is between Tband the optimum temperature (T0), the GDR increases linearly with the increase of temperature and reaches the maximum (1.0); when the T is between T0and Tu, the GDR decreases linearly with the increase of temperature and decreases to 0.0; when the T exceeds Tu, the GDR stagnate. The same as below.
2.1.2 春玉米
靈丘縣、忻府區(qū)和昔陽(yáng)縣春玉米出苗?抽雄及抽雄?成熟兩個(gè)生長(zhǎng)發(fā)育階段各積溫模型的變異系數(shù)見(jiàn)表4。由表可見(jiàn),各地春玉米不同生育階段的變異系數(shù)同樣表現(xiàn)為活動(dòng)積溫模型(Aa)的最小,同時(shí)考慮作物三基點(diǎn)溫度的有效積溫模型(Ae4)次之,僅考慮作物生物學(xué)下限溫度或上、下限溫度的有效積溫模型(Ae1、Ae2和Ae3)的最大,即活動(dòng)積溫模型的變異系數(shù)小于有效積溫模型,說(shuō)明活動(dòng)積溫模型更穩(wěn)定。Ae1、Ae2和Ae3模型的變異系數(shù)各站基本相等,對(duì)比原始數(shù)據(jù)分析發(fā)現(xiàn),僅昔陽(yáng)縣2010年7月29日、30日和31日日平均氣溫超過(guò)春玉米該階段生物學(xué)上限溫度,其余時(shí)間日平均氣溫均低于其階段生物學(xué)上限溫度,由此可見(jiàn),3個(gè)地區(qū)春玉米出苗?成熟期常年日均氣溫大部分時(shí)間均適宜其生長(zhǎng)發(fā)育,不受高溫影響。對(duì)比各積溫模型在春玉米兩個(gè)生長(zhǎng)發(fā)育階段的變異系數(shù)可見(jiàn),靈丘縣和昔陽(yáng)縣5種積溫模型出苗?抽雄期的變異系數(shù)均小于抽雄?成熟期,忻府區(qū)出苗?抽雄期的變異系數(shù)稍大于抽雄?成熟期,故可基本認(rèn)為,各積溫模型在春玉米出苗?抽雄期的穩(wěn)定性高于抽雄?成熟期。
表4 基于4種線性假設(shè)的春玉米生育期5種積溫模型的變異系數(shù)
2.1.3 夏玉米
由表5可見(jiàn),夏玉米不同生育階段各積溫模型的變異系數(shù)與冬小麥和春玉米表現(xiàn)一致,即活動(dòng)積溫模型(Aa)的最小,有效積溫模Ae4的次之,Ae1、Ae2和Ae3模型的基本相等且最大,同樣表明活動(dòng)積溫模型較有效積溫模型更穩(wěn)定。Ae1、Ae2和Ae3模型的變異系數(shù)在各站代表作物不同生育期均相等,說(shuō)明歷年各站夏玉米出苗?成熟期基本未出現(xiàn)日平均氣溫高于其階段上限溫度的情況,僅鹽湖區(qū)2017年夏玉米出苗?抽雄期有2d日平均氣溫超過(guò)上限溫度,兩地多年來(lái)夏玉米出苗后的生長(zhǎng)發(fā)育基本不受高溫抑制。夏玉米兩個(gè)不同生育階段各積溫模型的變異系數(shù)均表現(xiàn)為抽雄?成熟期大于出苗?抽雄期,與春玉米一致,夏玉米出苗?抽雄期各積溫模型的穩(wěn)定性亦高于抽雄?成熟期。
表5 基于4種線性假設(shè)的夏玉米生育期5種積溫模型的變異系數(shù)
2.2.1 生育期模擬
受外界諸多環(huán)境條件的影響,作物完成某一生長(zhǎng)發(fā)育階段所需積溫并不是一個(gè)常數(shù),即積溫的不穩(wěn)定性。有研究表明[31],作物生育期積溫與平均溫度呈線性或二次曲線等相關(guān)關(guān)系,本研究也發(fā)現(xiàn),研究區(qū)各代表作物主要生育期5種積溫模型的數(shù)據(jù)序列均呈現(xiàn)隨時(shí)間的線性增加趨勢(shì)。因此,以春玉米抽雄期模擬為例,構(gòu)建代表站春玉米出苗?抽雄期5種積溫模型數(shù)據(jù)序列隨年份的線性方程,計(jì)算歷年春玉米完成出苗?抽雄期所需積溫;并以春玉米出苗期實(shí)際觀測(cè)日為起點(diǎn),根據(jù)式(3)?式(7)計(jì)算日活動(dòng)溫度和4種日有效溫度,逐日累加,以首次達(dá)到通過(guò)線性方程計(jì)算得到的春玉米出苗?抽雄期所需積溫的日期為抽雄期的模擬值。其余的作物生育期模擬方法相同。
2.2.2 模擬偏差
基于各站代表作物歷年主要生育期的模擬值和實(shí)測(cè)值,根據(jù)式(9)計(jì)算生育期模擬偏差(SD),結(jié)果見(jiàn)表6。由表可見(jiàn),活動(dòng)積溫模型(Aa)對(duì)不同作物、不同生育期的模擬偏差大部分小于4種有效積溫模型(Ae1、Ae2、Ae3和Ae4),表明活動(dòng)積溫模型較有效積溫模型對(duì)作物生育期的模擬更加準(zhǔn)確,穩(wěn)定性更高。4種有效積溫模型對(duì)各站代表作物主要生育期的模擬偏差表現(xiàn)為Ae4模型最大,Ae3模型次之,Ae1和Ae2模型基本相等,也相對(duì)最小,原因在于Ae4模型考慮了作物三基點(diǎn)溫度,當(dāng)日平均溫度超過(guò)作物階段最適溫度時(shí),日有效溫度降低,計(jì)算得到的Ae4模型數(shù)值必然小于Ae1、Ae2和Ae3模型,使作物生育期的模擬值較實(shí)際日期有所推遲,因此,Ae4模型的模擬偏差相對(duì)Ae1、Ae2和Ae3模型稍偏大。冬小麥兩個(gè)生育期各積溫模型的模擬偏差介于1.7~2.9d,春玉米介于2.9~6.7d,夏玉米介于1.3~6.1d,冬小麥生育期的模擬偏差相對(duì)較小,春玉米生育期的模擬偏差較大。各積溫模型對(duì)春玉米和夏玉米抽雄期的模擬偏差小于成熟期,與通過(guò)變異系數(shù)(CV)分析的生育期積溫穩(wěn)定性相同,即針對(duì)春玉米和夏玉米來(lái)說(shuō),出苗?抽雄期各積溫模型的穩(wěn)定性高于抽雄?成熟期。冬小麥兩個(gè)代表站不同生育期各積溫模型的模擬偏差表現(xiàn)不同,太谷區(qū)抽雄期的模擬偏差大于成熟期,與CV分析的生育階段積溫穩(wěn)定性相同;而鹽湖區(qū)抽穗期的模擬偏差小于成熟期,與CV分析結(jié)果有所不同。此外,從生育期模擬偏差數(shù)值來(lái)看,部分生育期的模擬偏差值甚至超過(guò)5d,說(shuō)明各積溫模型均存在一定的不穩(wěn)定性,尤其是有效積溫穩(wěn)定性相對(duì)更不穩(wěn)定。
表6 各地基于5種積溫模型的代表作物主要生育期的平均模擬偏差(SD, d)
2.2.3 模擬準(zhǔn)確率
假設(shè)作物生育期模擬值與實(shí)測(cè)值相差在±3d以?xún)?nèi)的模擬為基本準(zhǔn)確,統(tǒng)計(jì)各站歷年代表作物生育期的模擬值與實(shí)測(cè)值相差在±3d以?xún)?nèi)的年數(shù),計(jì)算與相應(yīng)生育期模擬總年數(shù)的比值,得到各站代表作物主要生育期各積溫模型的模擬準(zhǔn)確率(表7)。由表可見(jiàn),活動(dòng)積溫模型(Aa)對(duì)生育期模擬的準(zhǔn)確率大部分高于4種有效積溫模型,說(shuō)明活動(dòng)積溫模型比有效積溫模型對(duì)作物生育期的模擬效果更好,穩(wěn)定性更高。從4種有效積溫模型對(duì)作物生育期模擬的準(zhǔn)確率來(lái)看,大部分也表現(xiàn)為Ae4模型最低,Ae1、Ae2和Ae3模型相等。分作物來(lái)看,各積溫模型對(duì)冬小麥抽穗期模擬的準(zhǔn)確率介于61.5%~89.7%,成熟期模擬準(zhǔn)確率介于59.0%~92.3%,基本都在60%以上,表明利用5種積溫模型均可較為準(zhǔn)確地模擬冬小麥的抽穗期和成熟期;春玉米抽雄期各積溫模型的模擬準(zhǔn)確率介于53.8%~71.8%,成熟期模擬準(zhǔn)確率介于26.5%~48.7%,整體均較低;夏玉米抽雄期各積溫模型的模擬準(zhǔn)確率介于50%~90%,大部分在60%以上,而成熟期模擬準(zhǔn)確率僅28.6%~60%。可見(jiàn),各積溫模型對(duì)春玉米和夏玉米生育期的模擬準(zhǔn)確率均表現(xiàn)為成熟期低于抽雄期,與通過(guò)變異系數(shù)和作物生育期模擬偏差為指標(biāo)檢驗(yàn)的階段積溫穩(wěn)定性相同,即出苗?抽雄期各積溫模型的穩(wěn)定性高于抽雄?成熟期。太谷區(qū)各積溫模型對(duì)冬小麥生育期的模擬準(zhǔn)確率表現(xiàn)為抽穗期低于成熟期,而鹽湖區(qū)表現(xiàn)為抽穗期略高于成熟期。
表7 各地基于5種積溫模型的代表作物主要生育期模擬準(zhǔn)確率(%)
注:準(zhǔn)確率為模擬偏差≤3d的年數(shù)占相應(yīng)生育期模擬總年數(shù)的百分比。
Note: Simulation accuracy is the percentage of years with a simulation deviation of the growth period less than three days in the total simulation years.
(1)以變異系數(shù)為積溫模型穩(wěn)定性檢驗(yàn)指標(biāo)時(shí),活動(dòng)積溫模型較本研究基于4種作物生長(zhǎng)發(fā)育速率線性假設(shè)下的有效積溫相對(duì)穩(wěn)定,同時(shí)考慮作物三基點(diǎn)溫度的有效積溫模型穩(wěn)定性次之,僅考慮1~2個(gè)作物基點(diǎn)溫度的有效積溫模型較不穩(wěn)定。以作物生育期模擬偏差和模擬準(zhǔn)確率為積溫模型穩(wěn)定性檢驗(yàn)指標(biāo)時(shí),同樣證實(shí)活動(dòng)積溫模型較有效積溫模型對(duì)作物生育期的模擬準(zhǔn)確率更準(zhǔn)確,穩(wěn)定性更高;但同時(shí)考慮作物三基點(diǎn)溫度的有效積溫模型對(duì)作物生育期的模擬準(zhǔn)確率(即穩(wěn)定性)相比僅考慮1~2個(gè)作物基點(diǎn)溫度的有效積溫模型并未得到改善。
(2)各積溫模型對(duì)冬小麥抽穗期和成熟期的模擬準(zhǔn)確率均較高,太谷區(qū)冬小麥抽穗期模擬準(zhǔn)確率低于成熟期,而鹽湖區(qū)冬小麥抽穗期模擬準(zhǔn)確率高于成熟期,即冬小麥拔節(jié)?抽穗期和抽穗?成熟期各積溫模型的穩(wěn)定性因地區(qū)不同而有所差異。春玉米和夏玉米抽雄期和成熟期模擬的平均準(zhǔn)確率不及冬小麥,生育期模擬準(zhǔn)確率均表現(xiàn)為抽雄期高于成熟期,說(shuō)明針對(duì)春玉米和夏玉米出苗?抽雄期各積溫模型的穩(wěn)定性高于抽雄?成熟期。
本研究選擇3種代表作物、8個(gè)站點(diǎn)長(zhǎng)時(shí)間序列的觀測(cè)資料,考慮了4種作物生長(zhǎng)發(fā)育速率線性假設(shè),基于多指標(biāo)分析驗(yàn)證結(jié)果均表明活動(dòng)積溫較有效積溫穩(wěn)定性相對(duì)更高,這一結(jié)論與吳玉潔等[18-20]研究結(jié)果一致,而與有效積溫比活動(dòng)積溫更穩(wěn)定的說(shuō)法[17,22-23]相矛盾。有效積溫比活動(dòng)積溫穩(wěn)定的研究結(jié)論大都基于20世紀(jì)70年代的水稻種植觀測(cè)試驗(yàn)數(shù)據(jù)分析得出,但其中的不足,一是試驗(yàn)?zāi)晗迌H1a,其數(shù)據(jù)代表性不足,二是分期播種試驗(yàn)的某些播期水稻的生長(zhǎng)發(fā)育并不處于最適氣候條件下,因此,有效積溫比活動(dòng)積溫穩(wěn)定的結(jié)論事實(shí)依據(jù)并不強(qiáng)。還有些主觀說(shuō)法認(rèn)為[23],考慮到有效積溫扣除了生物學(xué)下限溫度的無(wú)效積溫,能夠更準(zhǔn)確反映作物對(duì)熱量的需求,然而事實(shí)上溫度有其日變化特征,當(dāng)日平均氣溫低于下限溫度時(shí),白天可能仍有時(shí)段氣溫高于下限溫度,該時(shí)段作物生長(zhǎng)發(fā)育仍然進(jìn)行,而日有效溫度的計(jì)算值為零,不能反映其生長(zhǎng)發(fā)育。
春玉米和夏玉米不同生育階段各積溫模型的穩(wěn)定性均表現(xiàn)為出苗?抽雄期高于抽雄?成熟期。有研究表明[32],玉米營(yíng)養(yǎng)生長(zhǎng)階段,溫度效率最高,而抽雄后的生殖生長(zhǎng)階段其溫度效率下降,這可以解釋本研究?jī)H以積溫為單一因子的玉米生育期模擬中抽雄期模擬效果好于成熟期的結(jié)果。冬小麥生育期模擬效果總體優(yōu)于春玉米和夏玉米,說(shuō)明溫度對(duì)冬小麥生長(zhǎng)發(fā)育起主要作用;變異系數(shù)檢驗(yàn)結(jié)果顯示兩個(gè)冬小麥代表站各積溫模型在拔節(jié)?抽穗期的穩(wěn)定性低于抽穗?成熟期,但生育期模擬準(zhǔn)確率有所不同。由此可見(jiàn),變異系數(shù)與生育期模擬準(zhǔn)確率反應(yīng)的積溫模型穩(wěn)定性可能存在不一致的情況。
由于本研究所選時(shí)間序列較長(zhǎng),20世紀(jì)80?90年代溫度無(wú)逐時(shí)記錄,所以日平均氣溫采用日最高氣溫和最低氣溫平均的計(jì)算方法[33-35],但目前日平均氣溫的計(jì)算方法已發(fā)展到逐時(shí)氣溫的平均,不同計(jì)算方法下的積溫模型的穩(wěn)定性還需進(jìn)一步驗(yàn)證。本研究未考慮作物品種的變化,且生育期劃分相對(duì)較粗,基點(diǎn)溫度參照廣大學(xué)者研究成果而定,因此,其分析結(jié)論在其它地區(qū)以及作物較細(xì)的生長(zhǎng)發(fā)育期階段是否具有一致性也還需進(jìn)一步分析和驗(yàn)證。積溫的計(jì)算均以作物生長(zhǎng)發(fā)育速率對(duì)溫度反映的生長(zhǎng)假設(shè)[9]為前提,生長(zhǎng)假設(shè)分線性生長(zhǎng)假設(shè)和非線性生長(zhǎng)假設(shè),本研究基于目前應(yīng)用最廣的4種線性生長(zhǎng)假設(shè)分別統(tǒng)計(jì)分析了5種積溫模型的穩(wěn)定性,但普遍認(rèn)為作物的生長(zhǎng)發(fā)育速率隨溫度呈非線性變化趨勢(shì)[7,9,12,15]。沈國(guó)權(quán)[36]研究結(jié)果顯示,當(dāng)量積溫穩(wěn)定性更高,而本文Ae4模型對(duì)作物生育期的模擬準(zhǔn)確率不高、穩(wěn)定性較差的原因可能來(lái)源于基點(diǎn)溫度的選取以及線性假設(shè)的不確定性。因此,確切的作物三基點(diǎn)溫度應(yīng)通過(guò)試驗(yàn)方法獲得,業(yè)務(wù)應(yīng)用中,需綜合考慮多種線性和非線性積溫模型,對(duì)比不同積溫模型在本地特定作物下的穩(wěn)定性,選取穩(wěn)定性較高的積溫模型。
自積溫理論被提出以來(lái),積溫已在農(nóng)業(yè)氣象等工作中得到廣泛應(yīng)用。積溫理論的假設(shè)是在光照、水分等環(huán)境條件適宜的情況下,作物生長(zhǎng)主要受溫度影響,所以作物完成某一生長(zhǎng)發(fā)育階段所需要的積溫是一定的,然而在自然條件下作物生長(zhǎng)發(fā)育還受品種類(lèi)型、生理控制、田間管理等因素的影響,積溫往往不是一個(gè)常數(shù)。本研究雖通過(guò)相關(guān)的數(shù)據(jù)分析驗(yàn)證得出活動(dòng)積溫較有效積溫相對(duì)穩(wěn)定的結(jié)論,但積溫受多種因素的綜合影響,具有一定的不穩(wěn)定性[20]。因此,進(jìn)一步研究積溫穩(wěn)定性、改進(jìn)積溫模型仍是目前及今后努力的方向[4,7,37]。
[1] 馮秀藻,陶炳炎.農(nóng)業(yè)氣象學(xué)原理[M].北京:氣象出版社,1991:94.
Feng X Z,Tao B Y.Principles of agricultural meteorology[M]. Beijing:China Meteorological Press,1991:94.(in Chinese)
[2] 李有,董中強(qiáng),宋賢明.積溫學(xué)說(shuō)的不穩(wěn)定性和修正式的評(píng)價(jià)[J].華北農(nóng)學(xué)報(bào),1993,8(S1):93-96.
Li Y,Dong Z Q,Song X M.The destability of the accumulated temperature theory and the evaluation for its modified models[J].Acta Agriculturae Boreali-sinica,1993, 8(S1):93-96.( in Chinese)
[3] 鄭大瑋,孫忠富.關(guān)于積溫一詞及其度量單位科學(xué)性問(wèn)題的討論[J].中國(guó)農(nóng)業(yè)氣象,2010,31(2):165-169.
Zheng D W,Sun Z F.Discussion on scientificalness problem of accumulated temperature and its unit[J].Chinese Journal of Agrometeorology,2010,31(2):165-169.(in Chinese)
[4] 王婧瑄,郭建平,李蕊.春玉米積溫穩(wěn)定性及在發(fā)育期預(yù)報(bào)中的應(yīng)用[J].應(yīng)用氣象學(xué)報(bào),2019,30(5):577-585.
Wang J X,Guo J P,Li R.Accumulated temperature stability of spring maize and its application to growth period forecast[J].Journal of Applied Meteorological Science,2019, 30(5):577-585.(in Chinese)
[5] Peng J,Kim M,Kim K,et al.Application of climatic algorithm for prediction of regional whole-crop barley productivity[J].Journal of Animal Science,2018,96(S3): 510-511.
[6] Yamaguchi R,Matsunaga K,Watanabe A.Influence of temperature on pine wilt disease progression inseedlings[J].European Journal of Plant Pathology, 2020,156(2):581-590.
[7] 趙倩.不同積溫模型的穩(wěn)定性評(píng)估[D].北京:中國(guó)氣象科學(xué)研究院,2016.
Zhao Q.Stability evaluation of different accumulated temperature model:as an example of spring maize in northeast China[D].Beijing:Chinese Academy of Meteorological Sciences,2016.(in Chinese)
[8] 姜會(huì)飛,溫德永.基于線性生長(zhǎng)假設(shè)利用極端溫度計(jì)算日積溫的方法[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,18(1):82-87.
Jiang H F,Wen D Y.Methods of calculating growing degree-day based on LR assumption and daily extreme temperatures[J].Journal of China Agricultural University, 2013,18(1):82-87.(in Chinese)
[9] 姜會(huì)飛,溫德永.基于優(yōu)化生長(zhǎng)假設(shè)利用極端溫度計(jì)算日積溫的方法[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,18(2):116-123.
Jiang H F,Wen D Y.Methods of calculating growing degree-day based on OR assumption and daily extreme temperatures[J].Journal of China Agricultural University, 2013,18(2):116-123.(in Chinese)
[10] 段若溪,姜會(huì)飛.農(nóng)業(yè)氣象學(xué)(第3版)[M].北京:氣象出版社,2018:80-81.
Duan R X,Jiang H F.Agricultural meteorology(3nd)[M]. Beijing:China Meteorological Press,2018:80-81.(in Chinese)
[11] 王芳,鄔定榮,王春乙.兩種參數(shù)化方案下冬小麥品種對(duì)發(fā)育期的影響[J].應(yīng)用氣象學(xué)報(bào),2017,28(4):493-503.
Wang F,Wu D R,Wang C Y.Effects of cultivar shifts on winter wheat phenology under two parameterization methods[J].Journal of Applied Meteorological Science, 2017,28(4):493-503.(in Chinese)
[12] 沈國(guó)權(quán).影響作物發(fā)育速度的非線性溫度模式[J].氣象,1980,31(6):9-11.
Shen G Q.Model of nonlinearity temperature on developing rate of crops[J].Meteorological Monthly,1980,31(6):9-11. (in Chinese)
[13] 高亮之,金之慶,李林.中國(guó)不同類(lèi)型水稻生育期的氣象生態(tài)模式及其應(yīng)用[J].農(nóng)業(yè)氣象,1982,(2):1-8.
Gao L Z,Jin Z Q,Li L.Meteorological ecological model of different types of rice in China and its application[J]. Agricultural Meteorology,1982,(2):1-8.(in Chinese)
[14]高亮之,金之慶,黃耀,等.水稻計(jì)算機(jī)模擬模型及其應(yīng)用之一:水稻鐘模型,水稻發(fā)育動(dòng)態(tài)的計(jì)算機(jī)模型[J].中國(guó)農(nóng)業(yè)氣象,1989,10(3):3-10.
Gao L Z,Jin Z Q,Huang Y,et al.Rice clock model:a computer simulation model of rice development[J].Chinese Journal of Agrometeorology,1989,10(3):3-10.(in Chinese)
[15] 殷新佑.水稻發(fā)育溫度效應(yīng)的非線性模型及其應(yīng)用[J].作物學(xué)報(bào),1994,20(6):692-700.
Yin X Y.A nonlinear model to quantify temperature effect on rice phenology and it’s application[J].Acta Agronomica Scinica,1994,20(6):692-700.(in Chinese)
[16] 殷新佑.對(duì)預(yù)測(cè)作物發(fā)育的積溫法的評(píng)價(jià)[J].作物學(xué)報(bào),1999,25(4):474-482.
Yin X Y.A critical appraisal of thermal time approach for predicting crop development[J].Acta Agronomica Scinica, 1999,25(4):474-482.(in Chinese)
[17] 徐善玲,黃興國(guó),黃瓊,等.淺談作物積溫的穩(wěn)定性及其預(yù)報(bào)的準(zhǔn)確性[J].江西氣象科技,2005,28(3):34-35.
Xu S L,Huang X G,Huang Q,et al.Discuss superficially the stability of the accumulated temperature of crops and accuracy predicted simply[J].Jiangxi Meteorological Science and Technology,2005,28(3):34-35.(in Chinese)
[18] 吳玉潔,葉彩華,姜會(huì)飛,等.不同積溫計(jì)算方法作物發(fā)育期模擬效果比較[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,21(10): 117-126.
Wu Y J,Ye C H,Jiang H F,et al.Comparison of the simulation effect of different growing degree-days calculating methods on crop development processes[J]. Journal of China Agricultural University,2016,21(10): 117-126.(in Chinese)
[19] 肖靜,李楠,姜會(huì)飛.作物發(fā)育期積溫計(jì)算方法及其穩(wěn)定性[J].氣象研究與應(yīng)用,2010,31(2):64-67.
Xiao J,Li N,Jiang H F.Calculation and stability of accumulated temperatures in the growing season of winter wheat[J].Journal of Meteorological Research and Application, 2010,31(2):64-67.(in Chinese)
[20] 姜會(huì)飛,郭勇,張玉瑩,等.不同下限基點(diǎn)溫度對(duì)積溫模型模擬效果的影響[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,23(5):131-141.
Jiang H F,Guo Y,Zhang Y Y,et al.Impact of base temperature on the growing degree-day and simulation effect of GDD model[J].Journal of China Agricultural University,2018,23(5):131-141.(in Chinese)
[21] 葉彩華,周孝煌,姜會(huì)飛,等.下限溫度對(duì)北京櫻花盛花始期模擬效果的影響[J].中國(guó)農(nóng)業(yè)氣象,2018,39(1):1-8.
Ye C H,Zhou X H,Jiang H F,et al.Impacts of different base temperature on simulation effect of beginning flowering date ofin Beijing[J].Chinese Journal of Agrometeorology,2018,39(1):1-8.(in Chinese)
[22] 藍(lán)鴻第等.水稻光溫問(wèn)題的研究[M].北京:氣象出版社,1982:73.
Lan H D,et al.Research on the light and temperature of rice[M].Beijing:China Meteorological Press,1982:73.(in Chinese)
[23] 武曉梅.活動(dòng)積溫與有效積溫的概念及計(jì)算方法[J].山西農(nóng)業(yè)科學(xué),1985(4):42.
Wu X M.Concept and calculation method of active accumulated temperature and effective accumulated temperature[J].Journal of Shanxi Agricultural Sciences, 1985(4):42.(in Chinese)
[24] 甘蕾,周腳根,石錦,等.點(diǎn)源時(shí)間序列數(shù)據(jù)缺失值的估值方法比較:以小流域氣象和水文數(shù)據(jù)為例[J].中國(guó)農(nóng)業(yè)氣象,2018,39(3):195-204.
Gan L,Zhou J G,Shi J,et al.Performance comparison of different interpolation methods on missing values for time series data:a case study of meteorological and hydrological data in subtropical small watershed[J].Chinese Journal of Agrometeorology,2018,39(3):195-204.(in Chinese)
[25] 邱美娟,劉布春,劉園,等.中國(guó)北方蘋(píng)果主產(chǎn)省降水分布特征分析[J].中國(guó)農(nóng)業(yè)氣象,2020,41(5):263-274.
Qiu M J,Liu B C,Liu Y,et al.Analysis on distribution characteristics of precipitation in major production provinces of apple in Northern China[J].Chinese Journal of Agrometeorology,2020,41(5):263-274.(in Chinese)
[26] 馬雪晴,胡琦,潘學(xué)標(biāo),等.1961-2015年華北平原夏玉米生長(zhǎng)季氣候年型及其影響分析[J].中國(guó)農(nóng)業(yè)氣象,2019, 40(2):65-75.
Ma X Q,Hu Q,Pan X B,et al.Analysis of annual climate types and its impact on summer maize in the North China plain over the period 1961-2015[J].Chinese Journal of Agrometeorology,2019,40(2):65-75.(in Chinese)
[27] 馬鵬里,蒲金涌,趙春雨,等.光溫因子對(duì)大田冬小麥累積生物量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(5):1270-1276.
Ma P L,Pu J Y,Zhao C Y,et al.Influence of light and temperature factors on biomass accumulation of winter wheat in field[J].Chinese Journal of Applied Ecology,2010, 21(5):1270-1276.(in Chinese)
[28] 郭建平.氣候變化對(duì)農(nóng)業(yè)氣候資源有效性的影響評(píng)估[M].北京:氣象出版社,2016:198.
Guo J P.Evaluation of effect of climate change on the efficiency of agricultural climate resources[M].Beijing: China Meteorological Press,2016:198.(in Chinese)
[29] Sánchez B,Rasmussen A,Porter J R.Temperatures and the growth and development of maize and rice:a review[J]. Global Change Biology,2014,20(2):408-417.
[30] Porter J R,Gawith M.Temperatures and the growth and development of wheat:a review[J].European Journal of Agronomy,1999,10(1):23-26.
[31] 李蕊.東北春玉米積溫穩(wěn)定性影響因素與積溫模型的改進(jìn)[D].北京:中國(guó)氣象科學(xué)研究院,2018.
Li R.Impact factors of accumulated temperature stability and improvement of accumulated temperature model of northeast spring maize[D].Beijing:Chinese Academy of Meteorological Sciences,2018.(in Chinese)
[32] 劉長(zhǎng)民.夏玉米發(fā)育進(jìn)程分析和生育期預(yù)報(bào)[J].陜西氣象,1994,(3):5-7.
Liu C M.Summer maize development process analyze and growth period prediction[J].Shaanxi Weather,1994,(3):5-7. (in Chinese)
[33] Andales A,Wang J,Sammis T W,et al.A model of pecan tree growth for the management of pruning and irrigation[J]. Agricultural Water Management,2006,84(1):77-88.
[34] Confalonieri R,Bechini L.A preliminary evaluation of the simulation model CropSyst for alfalfa[J].European Journal of Agronomy,2003,21(2):223-237.
[35]Lu H Y,Lu C T,Chan L F,et al.Seasonal variation in linear increase of taro harvest index explained by growing degree days[J].Agronomy Journal,2001,93(5):1136-1141.
[36] 沈國(guó)權(quán).當(dāng)量積溫及其應(yīng)用[J].氣象,1981,32(7):23-25.
Shen G Q.Accumulated equivalent temperature and application[J].Meteorological Monthly,1981,32(7):23-25. (in Chinese)
[37] 李蕊,郭建平.東北春玉米非線性積溫模型參數(shù)改進(jìn)[J].應(yīng)用氣象學(xué)報(bào),2018,29(2):154-164.
Li R,Guo J P.Improving parameters of nonlinear accumulated temperature model for spring maize in Northeast China[J].Journal of Applied Meteorological Science,2018,29(2):154-164.(in Chinese)
Comparison of Model’s Stability about Integrated Temperature Based on Linear Hypotheses
LUAN Qing1,2, GUO Jian-ping2,3, MA Ya-li1, ZHANG Li-min2,4, WANG Jing-xuan5, LI Wei-wei6
(1. Shanxi Climate Center, Taiyuan 030006, China; 2.Chinese Academy of Meteorological Sciences, Beijing 100081; 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044; 4.Huludao Meteorological Bureau, Huludao 125000; 5.Inner Mongolia Meteorological Service Center, Hohhot01005l; 6.Houma Meteorological Bureau of Shanxi Province, Houma 043000)
Integrated temperature, as a measure of heat, has been widely used in the prediction of crop development period, yield, diseases and insect pests. However, more and more studies showed that the integrated temperature is unstable, and the stability of different integrated temperature models is different. Therefore, it is great significant to analyze and understand the stability of different integrated temperature models for the application of integrated temperature in agricultural meteorological work. In this paper, four linear hypotheses about response of growth and development rate to temperature and five integrated temperature models were made. The first linear hypothesis is that the growth and development rate of crops increases linearly with the increase of temperature when the average daily temperature (T) is higher than the lower limit temperature (Tb). It is the hypothesis of the active integrated temperature model (Aa) and the first effective integrated temperature model (Ae1). The second hypothesis is that when the T is between the lower limit temperature (Tb) and the upper limit temperature (Tu) of crops, the growth and development rate of crops increases linearly with the increase of temperature and reaches the maximum (1.0); when the T exceeds Tu, the growth and development rate of crops remains constant with the increase of temperature. It is the hypothesis of the second effective integrated temperature model (Ae2). The third hypothesis is that when the T is between Tband Tu, the growth and development rate of crops increases linearly with the increase of temperature and reaches the maximum (1.0); when the T exceeds Tu, the growth and development of crops stagnate. It is the hypothesis of the third effective integrated temperature model (Ae3). The fourth hypothesis is that when the T is between Tband the optimum temperature (T0), the growth and development rate of crops increases linearly with the increase of temperature and reaches the maximum (1.0); when the T is between T0and Tu, the growth and development rate of crops decreases linearly with the increase of temperature and decreases to 0.0; when the T exceeds Tu, the growth and development of crops stagnate. It is the hypothesis of the fourth effective integrated temperature model (Ae4). Based on these hypotheses, long time series of crop development period observation data and surface meteorological observation data of two winter wheat stations, three spring maize stations and three summer maize stations in Shanxi Province were selected to calculate the active integrated temperature and four effective integrated temperature. Using the coefficient of variation, the average simulation deviation of the crop growth period and the simulation accuracy of the crop growth period as indicators, the stability of the five integrated temperature models were evaluated. The result showed that the coefficient of variation (CV) of Aa model during different growth stages for three representative crops in each station were between 0.062 and 0.143; the CV of Ae1, Ae2 and Ae3 models were between 0.073 and 0.201; the CV of Ae4 model were between 0.072 and 0.179. That is, when using the CV as an indicator to test the stability of each model, the stability of Aa model was highest, that of the Ae4 model was the second and that of the Ae1, Ae2 and Ae3 models were the weakest. The average simulation deviation (SD) of Aa model for different growth periods of three representative crops in each station were between 1.3 and 5.8 days; the SD of Ae1, Ae2 and Ae3 models were between 1.5 and 6.6 days; the SD of Ae4 model were between 2.2 and 6.7 days. The simulation accuracy (SA) of Aa model for different growth periods of three representative crops in each station were between 39.5% and 92.3%; the SA of Ae1, Ae2 and Ae3 models were between 28.6% and 87.2%; the SA of Ae4 model were between 26.5% and 84.6%. That is, when using the SD and SA as the indicators, the Aa model had the best simulation effect for different growth periods of the crops and had the highest stability. The simulation accuracy and stability of Ae1, Ae2 and Ae3 models had no significant difference and were higher than those of Ae4 model. For spring maize and summer maize, the stability of each integrated temperature model was consistent from emergence to tasseling and from tasseling to maturity, and the stability of each integrated temperature model from emergence to tasseling was higher than that from tasseling to maturity. While the stability of each integrated temperature model for winter wheat from jointing to heading and from heading to maturity varied from region to region. Therefore, in practical applications, it is also necessary to select the appropriate base point temperature according to the crop planting region, variety relationship and growth period, and to select a more stable integrated temperature model based on the comprehensive analysis of the stability of multiple integrated temperature models.
Integrated temperature; Linear hypotheses; Stability; Coefficient of variation; Simulation accuracy of growth period
10.3969/j.issn.1000-6362.2020.11.002
欒青,郭建平,馬雅麗,等.基于線性生長(zhǎng)假設(shè)的作物積溫模型穩(wěn)定性比較[J].中國(guó)農(nóng)業(yè)氣象,2020,41(11):695-706
2020?07?06
郭建平,E-mail:gjp@cma.gov.cn
國(guó)家自然科學(xué)基金(31571559);中國(guó)氣象科學(xué)研究院科技發(fā)展基金(2019KJ006);公益性行業(yè)(氣象)科研專(zhuān)項(xiàng)(GYHY201306038)
欒青,E-mail:luanqing2003@163.com