雷露 張國志 王萍
摘 要:有些產(chǎn)品的壽命用常見的分布去刻畫與實(shí)際偏差較大,而ZZ分布能夠較好地描述這一類產(chǎn)品的壽命分布,為了在無失效數(shù)據(jù)條件下對(duì)ZZ分布進(jìn)行可靠性分析,通過對(duì)該分布可靠度函數(shù)進(jìn)行變換,并利用其凹凸性得到產(chǎn)品在各檢測時(shí)刻可靠度之間更為精確地關(guān)系,進(jìn)一步在先驗(yàn)分布為均勻分布和更一般的分布下,給出了各個(gè)時(shí)刻可靠度的貝葉斯估計(jì)。同時(shí)依據(jù)無失效數(shù)據(jù)場合下,已知函數(shù)的置信水平為1-α的最優(yōu)置信下限公式,給出了ZZ分布可靠度函數(shù)的最優(yōu)置信下限表達(dá)式,并且在幾種特殊場合得到了便于使用的簡化形式。
關(guān)鍵詞:ZZ分布;可靠度函數(shù);無失效數(shù)據(jù);估計(jì);最優(yōu)置信下限
DOI:10.15938/j.jhust.2020.05.023
中圖分類號(hào): O231
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2020)05-0164-07
Abstract:It is a deviation reality that lifespan of some products is described by common distributions. However,the ZZ distribution can better describe the lifespan distribution of this type of product. In order tostudy the reliability of the ZZ distribution under the condition of no failure data, and the reliability function is transformed, and the concavity and convexity is used to obtain a more precise relationship between the reliability of the products at each detection time. Further, under the prior distribution is the uniform distribution or more general distribution, Bayesian Estimation of the reliability at each moment is given. Meanwhile, according to the optimal confidence lower limit formula of known function with confidence level of 1-α in the case of no failure data, the optimal confidence lower limit expression of the reliability function is given, and the simplified form that is convenient to use is obtained in several special cases.
Keywords:ZZ distribution; reliability function; zero-failure data; Bayesian estimation; optimal lower confidence limit
0 引 言
在可靠性壽命試驗(yàn)中,大多數(shù)元件壽命服從4種常見的壽命分布,這4種分布分別是:指數(shù)分布、Weibull分布、對(duì)數(shù)正態(tài)分布和極值分布[1]。就這四種分布的各項(xiàng)可靠性統(tǒng)計(jì)推斷已有相當(dāng)多的研究成果。但存在某些存儲(chǔ)產(chǎn)品,在廠家給出設(shè)計(jì)壽命之前幾乎很少失效,過了設(shè)計(jì)壽命之后失效的比例大幅增加。文[2]已表明在某些特定的問題中,有些產(chǎn)品的壽命分布不屬于這四種分布,同時(shí)給出一個(gè)較好刻畫這類元件壽命的ZZ分布,并對(duì)這類元件的可靠性指標(biāo)在截尾數(shù)據(jù)情況下進(jìn)行了相關(guān)的統(tǒng)計(jì)分析。
在可靠性壽命實(shí)驗(yàn)中,研究人員為了節(jié)省人力、財(cái)力和物力,必須有效的控制試驗(yàn)的時(shí)間長度,因此,經(jīng)常選用定時(shí)截尾壽命試驗(yàn),對(duì)產(chǎn)品進(jìn)行可靠性分析的研究[31]。當(dāng)實(shí)驗(yàn)過程中產(chǎn)品的失效數(shù)大于零時(shí),即此過程包含失效信息時(shí),已有很多方法對(duì)所得數(shù)據(jù)進(jìn)行相應(yīng)的統(tǒng)計(jì)分析工作和研究[3]。隨著社會(huì)的進(jìn)步,科學(xué)技術(shù)的飛速發(fā)展,越來越多的產(chǎn)品具有相對(duì)較高的可靠性能,這樣一來,試驗(yàn)成本日益高昂,小樣本進(jìn)行試驗(yàn)的精度已成為研究過程中主突破的問題。當(dāng)進(jìn)行的可靠性實(shí)驗(yàn)為定時(shí)結(jié)尾情況時(shí),會(huì)遇到無失效數(shù)據(jù)(zero-failure data),即沒有產(chǎn)品會(huì)在規(guī)定的時(shí)間內(nèi)發(fā)生失效情況。近幾年來,愈來愈多的學(xué)者將研究精力投放在無失效數(shù)據(jù)條件下產(chǎn)品可靠性指標(biāo)的合理估計(jì)的方法和研究過程中。前輩們研究所得的大量理論成果為無失效數(shù)據(jù)問題下產(chǎn)品的可靠性研究奠定堅(jiān)實(shí)的理論基礎(chǔ),并在實(shí)際生產(chǎn)生活中有重要的實(shí)用價(jià)值[4]。
目前,在國外最早研究無失效數(shù)據(jù)問題的文獻(xiàn)可以追溯到Bartholomev[5],在文中他首次提出了關(guān)于產(chǎn)品平均壽命的估計(jì)值的方法——用總的實(shí)驗(yàn)時(shí)間來是對(duì)產(chǎn)品的平均壽命進(jìn)行估計(jì),即一類產(chǎn)品在規(guī)定時(shí)間內(nèi)發(fā)生失效的平均壽命估計(jì),所得估計(jì)明顯比實(shí)際值小一些,因此一直以來很少被后續(xù)研究者使用。Martz 和 Waller[6]兩位作者針對(duì)單參數(shù)指數(shù)壽命型分布在無失效數(shù)據(jù)條件下相關(guān)參數(shù)以及可靠性指標(biāo)的評(píng)估和驗(yàn)證問題中,提出使用Bayes方法[7]。此后的一大段時(shí)間里,學(xué)者們基于前者的研究成果,大多數(shù)分析、研究工作限于單參數(shù)指數(shù)分布在定數(shù)截尾條件下和有失效數(shù)據(jù)的定時(shí)截尾條件下進(jìn)行,研究內(nèi)容及結(jié)果見文[8-12]。近十幾年來,很多學(xué)者也針對(duì)無失效數(shù)據(jù)下威布爾分布的可靠性評(píng)估問題進(jìn)行研究,見文[13-20]。
相較國外對(duì)無失效數(shù)據(jù)問題的研究,國內(nèi)相對(duì)晚一些,開始于20世紀(jì)80年代中期。目前常用的方法主要分為經(jīng)典方法和Bayes方法[30]。經(jīng)典方法主要包括以下幾種:樣本空間的排序方法[21],極小χ2法[22],修正似然函數(shù)法[23]和改進(jìn)的CLASS-K方法[24]等。因?yàn)樵跓o失效數(shù)據(jù)情況中并不含有失效信息,若使用常見的經(jīng)典方法,所得結(jié)果往往會(huì)偏于保守。因此,對(duì)無失效數(shù)據(jù)條件下進(jìn)行可靠性分析的過程中,經(jīng)常使用Bayes方法,旨在有效利用產(chǎn)品或元件的各類先驗(yàn)信息,提高所要估計(jì)的參數(shù)的精度。文[25-26]中總結(jié)出無失效數(shù)據(jù)情況下利用Bayes方法進(jìn)行分析問題的框架,此文獻(xiàn)中所總結(jié)列出的框架對(duì)于確定產(chǎn)品在各個(gè)不同時(shí)刻的失效概率的先驗(yàn)分布情況是相對(duì)合理且客觀地,并給出這些失效概率的Bayes估計(jì)是其關(guān)鍵步驟。
對(duì)無失效數(shù)據(jù)的研究,產(chǎn)品的先驗(yàn)信息大多情況下是以前人經(jīng)驗(yàn)和主觀信息為主,故研究中對(duì)于經(jīng)驗(yàn)和主觀信息的加工過程中,怎樣減少主觀因素的干擾成為近年來研究此類問題的重點(diǎn)[25-30]。文[27-28]提出可以利用多層先驗(yàn)的方法來降低人為因素對(duì)超參數(shù)的確定過程的影響,但這樣的計(jì)算過程十分繁雜且不直觀,使用起來也并不方便。因此,為更好地解決這類問題,文[29-30]提出可以充分利用產(chǎn)品壽命分布的母體的分布特征,即對(duì)先驗(yàn)信息的凹凸性進(jìn)行加工。可進(jìn)一步減少參數(shù)估計(jì)等研究對(duì)先驗(yàn)信息的依賴,但文獻(xiàn)中僅較好地解決了指數(shù)分布和正態(tài)分布這兩種壽命分布。文[29]得出在無失效數(shù)據(jù)情況下,不同時(shí)刻失效概率的先驗(yàn)分布應(yīng)該是減函數(shù),雖然文中分析過程客觀,但對(duì)于具體的先驗(yàn)形式的選取和壽命分布參數(shù)的確定過程中需要提供確切的理論依據(jù)。關(guān)于無失效數(shù)據(jù)的可靠性推斷,陳家鼎,孫萬龍等對(duì)其置信限也進(jìn)行了相關(guān)研究[23]。
此外,劉海濤、張志華兩位作者基于前人研究的理論成果進(jìn)一步在Weibull分布的場合下,對(duì)無失效數(shù)據(jù)情況進(jìn)行統(tǒng)計(jì)分析,同時(shí)利用母體壽命分布凹凸性的性質(zhì)處理先驗(yàn)信息,得出了產(chǎn)品可靠性指標(biāo)的Bayes估計(jì)[31],所獲得的先驗(yàn)分布的形式與文[29]的要求是一致的。并進(jìn)一步利用加權(quán)最小二乘法得到可靠性指標(biāo)的相關(guān)估計(jì),采用實(shí)例進(jìn)行分析驗(yàn)證,表明這種方法得到的結(jié)果的穩(wěn)健性較好[31]。
本文研究的主要是當(dāng)出現(xiàn)無失效數(shù)據(jù)情況時(shí),對(duì)ZZ-分布進(jìn)行可靠性分析,充分利用該分布的分布函數(shù)的凹凸性得到產(chǎn)品各檢測時(shí)刻可靠度之間的關(guān)系作為選取先驗(yàn)分布的指標(biāo),并給出可靠度函數(shù)的Bayes估計(jì)。進(jìn)一步根據(jù)陳家鼎等人在文[21]中提出的無失效數(shù)據(jù)情況下最優(yōu)置信限的求解方法,給出當(dāng)壽命分布為ZZ-分布時(shí),產(chǎn)品的可靠度的最優(yōu)置信下限的研究結(jié)果。
1 無失效數(shù)據(jù)情況下ZZ-分布的可靠性分析
1.1 ZZ-分布定義
參 考 文 獻(xiàn):
[1] 郭永基.可靠性工程原理[M].北京:清華大學(xué)出版社,2002.
[2] 張寧.截尾數(shù)據(jù)下ZZ分布參數(shù)估計(jì)及性質(zhì)[D].哈爾濱:哈爾濱理工大學(xué),2019.
[3] ZHOU Y Q,WENG C X. Reliability Evaluation[M]. Beijing: The Science Press, 1991.
[4] HAN M. Reliability Analysis of Zero-failure Data[M]. Beijing: China Statistics Publishing House, 1999.
[5] BARTHDOMEW D J. A Problem in Life Testing[J]. JASA,1957, 52: 350.
[6] MARTZ H F, WALLER R A. A Bayesian Zerofailu-re(BAZE) Reliability Demonstration Testing Procedur-e[J]. Journal of Technology, 1976, 11(3): 128.
[7] 胡二琴.雙參數(shù)指數(shù)分布無失效場合的統(tǒng)計(jì)推斷[D].武漢:華中科技大學(xué),2005.
[8] UMESH Singh, UPADHYAY S K, RAJESH Singh. Bayes Estimators of Exponential Parameters Utilizingguessed Guarantee with Special Confidence[J]. Microele-ctron. Reliab, 1994, 34(1): 141.
[9] NAND Kishore Singh, SAMIR K, BHATTACHARYA. Bayesian Analysis of the Mixture of Exponential Failure Distribution[J].Microelectron.Reliab,1993, 33(8):1113.
[10]PADGET W J, POBINSON J A. An Empirical Ba-yes Estimator of Reliability for Ognormal Failure Model[J]. IEEE Trans. Reliab, 1978, 27: 332.
[11]SOMAN R P, MISRA K B. A Least Square Estimation of Three Parameters of a Weibull Distribution[J]. Microelectron. Reliab, 1992, 32(2): 303.
[12]CALABRIA R, PULCINI G. An Engineering Approach to Bayes Estimation for the Weibull Distribution[J]. Microelectron. Reliab, 1994, 34(5): 789.
[13]TOSKOS C P. A Bayes Approach to Reliability: Theory and Simulation[J]. Annual Reliability And Maintainability Symp, 1972, 1:78.
[14]PAPADOPOULOS A S, TOSKOS C P. Bayesian Confidence Bounds for the Weibull Failure Model[J]. IEEE Trans. Reliab, 1975, 24(1): 21.
[15]RAV TUMMADA V M, SATHE P T. Minimum Expected Loss Estimators of Reliability and Parameters of Certain Lifetime Distribution[J]. IEEE Trans. Reliab, 1978, 27(4) : 283.
[16]ERTO P, GUIDA M. Estimation of Weibull Reliability from Few Life Tests[J]. Quality and Reliab. Engin. Inter, 1985, 1(3): 161.
[17]ERTO P. New Practical Bayes Estimation for the 2-parameter Weibull Distribution[J]. IEEE Trans. Reliab, 1986, 31(2): 194.
[18]ERTO P, RAPONE M. Non-information and Practical Bayesian Confidence Bounds for Reliable Life in the Weibull Model[J]. Reliab. Eng, 1947:181.
[19]BURY K V. Bayesian Decision Analysis of the Hazard Rate for a Two-parameters Weibull Process[J]. IEEE Trans. Reliab, 1972, 21(3):159.
[20]翟艷敏. 威布爾分布場合的貝葉斯統(tǒng)計(jì)推斷[D]. 成都:西南交通大學(xué)圖書館, 2002.
[21]CHEN J D, SUN W L, LI B X. The Confidence Limits in the Case of no Failure Data[J]. Acta Mathematicae Applicatae Sinica, 1995 , 18(1): 90.
[22]ZHANG Z Z, YANG Z H. The Treatment of Zero-failure Data[J].Mathematical Statistics and Applied Probability, 1989, 4(4): 507.
[23]王玲玲, 王炳興. 無失效數(shù)據(jù)的統(tǒng)計(jì)分析: 修正似然函數(shù)方法[J]. 數(shù)理統(tǒng)計(jì)與應(yīng)用概率, 1996,11(1):64.
WANG L L, WANG B X.Statistical Analysis of Non-failure Data: Modified Likelihood Function Method[J]. Mathematical Theory and Applied Probability, 1996,11(1):64.
[24]YIN H, YANG Y, DING B J, et al. Analysis on Zero-failure Data[J]. Mathematical Statistics and Applied Probability, 1996, 11(3): 257.
[25]MAO S S, LUO C B. Reliability Analysis for Zero-failure Data[J]. Mathematical Statistics and Applied Probability, 1989, 4(4):409.
[26]MAO S S, XJF. The Hierarchical Bayesian Analysis of Zero-failure Data[J]. Applied Mathematics-A Journal of Chinese Universities, 1992, 7(3): 411.
[27]張志華. 無失效數(shù)據(jù)的統(tǒng)計(jì)分析[J]. 數(shù)理統(tǒng)計(jì)與應(yīng)用概率, 1995, 10(1): 94.
ZHANG Z H. Statistical Analysis of Non-failure Data[J]. Mathematical Theory and Applied Probability,1995, 10(1): 94.
[28]張志華, 姜禮平.正態(tài)分布場合下的無失效數(shù)據(jù)分析[J]. 工程數(shù)學(xué)學(xué)報(bào), 2005, 22(4): 741.
ZHANG Z H, JIANG L P. Analysis of Failure-free Data under Normal Distribution[J]. Chinese Journal of Engineering Mthematics, 2005,2.
[29]HAN M. The Structure of Hierarchical Prior Distribution and Its Applications[J]. Operations Research and M anagement Science, 1997, 6(3):31.
[30]MAO S S, WANG L L, PU X L .Reliability Analysis for Weibull Zero Failure Data[J]. Chinese Journal of Applied Probability and Statistics, 1996, 12(1):95.
[31]劉海濤, 張志華. 威布爾分布無失效數(shù)據(jù)的Bayes可靠性分析[J]. 系統(tǒng)工程理論與實(shí)踐, 2008(11):102.
LIU H T, ZHANG Z H. Reliability of Bayesian Analysis of Non-failure Data of Weibull Distribution[J]. Systems Engineering-Theory & Practice, 2008(11):102.
[32]韓明. 產(chǎn)品無失效數(shù)據(jù)的綜合處理[J]. 機(jī)械工程學(xué)報(bào), 2003(2):129.
HAN M. Comprehensive Processing of Non-failure Data[J]. Journal of Mechanical Engineering, 2003(2):129.
(編輯:王 萍)