陳友明 董文強 鮑洋 房愛民
摘? ?要:對以相對濕度為濕驅(qū)動勢的兩種熱濕耦合傳遞模型(Künzel模型和Liu & Chen模型)進行了對比與全面驗證,包括理論驗證、模型間驗證和實驗驗證. 使用Fortran程序和COMSOL軟件同時進行模擬,模擬結(jié)果分別與解析解、其他模型模擬解和單/雙側(cè)受控邊界條件下的實驗數(shù)據(jù)進行對比,模擬結(jié)果與對比值之間有良好的一致性. 將兩模型模擬結(jié)果進行對比后發(fā)現(xiàn),在吸濕區(qū)內(nèi)低相對濕度段,兩模型差異不大;而在吸濕區(qū)末段(相對濕度逐漸增大至接近95%),Künzel模型不再能夠準確模擬濕分布. 此研究在吸濕范圍內(nèi)充分驗證了兩個模型,并為將來的熱濕耦合模型驗證提供參考.
關(guān)鍵詞:熱濕耦合傳遞;模型對比;全面驗證;模擬;吸濕區(qū)
中圖分類號:TU111.4 ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Comparisons and Validation of Two Dynamic Models for
Coupled Heat and Moisture Transfer in Building Envelopes
CHEN Youming?,DONG Wenqiang,BAO Yang,F(xiàn)ANG Aimin
(College of Civil Engineering,Hunan University,Changsha 410082,China)
Abstract:A comparison and comprehensive verification, including theoretical verification, inter-model verification and experimental verification, was performed on two models, the Künzel model and the Liu & Chen model for the hygrothermal simulation of porous building envelopes, which are driven by relative humidity. The simulations were also carried out by two computation tools, self-programmed Fortran code and COMSOL Multiphysics for the two models. The simulation results were compared with analytical solutions, simulation solutions of other models and experimental data under single/double-sided controlled boundary conditions. The verification showed that the simulation results of the two models agreed well with the comparison values. Through the comparison between the simulation results of the two models, it was found that the two models have? slight difference in the low relative humidity section in the hygroscopic range; while in the end of the hygroscopic range (relative humidity gradually increases to nearly 95%), the Künzel model was? no longer able to accurately simulate the distributions of moisture. The investigations in this study demonstrate that the two models are fully validated within the hygroscopic range and provide references for the verification of future hygrothermal models.
Key words:coupled heat and moisture transfer;model comparison;comprehensive validation;simulation;hygroscopic range
多孔介質(zhì)建筑圍護結(jié)構(gòu)中的熱濕耦合傳遞對于圍護結(jié)構(gòu)的熱濕性能、室內(nèi)空氣品質(zhì)和結(jié)構(gòu)耐久性具有顯著影響. 因此研究熱濕耦合傳遞對預(yù)測和評估建筑圍護結(jié)構(gòu)內(nèi)部的溫度場和濕度場的分布、提高圍護結(jié)構(gòu)的熱濕性能、抑止霉菌生長和提高結(jié)構(gòu)耐久性具有重要的意義[1].
熱濕耦合傳遞的研究已逾70年,很多理論模型已被前人提出. 然而,由于濕驅(qū)動勢和假設(shè)條件的不同,各模型分別適用于不同的情況,而未有一廣泛適用的模型來描述熱濕耦合傳遞過程. Künzel[2]提出以相對濕度為濕驅(qū)動勢建立熱濕耦合模型,該模型把濕傳遞(蒸氣傳遞、液態(tài)水傳遞)視為純粹的擴散過程,均使用Fick定律來描述,并使用3個實驗案例驗證了該模型. 該模型在WUFI軟件中得到進一步應(yīng)用[3]。Liu & Chen[4]同樣以相對濕度為濕驅(qū)動勢建立熱濕耦合模型,但該模型把液態(tài)水傳遞過程視為毛細壓力驅(qū)動的一種“流”,使用Darcy定律來描述,并使用EN 15026案例[5]和HAMSTAD基準案例[6-7]驗證了該模型. 兩模型均未經(jīng)過充分的全面驗證——未進行實驗驗證或只進行了簡單的實驗驗證。
Künzel和Karagiozis[8]把熱濕模擬模型的嚴格驗證分為三步:1) 模擬結(jié)果與解析解對比;2) 模擬結(jié)果與具有明確的材料物性參數(shù)和邊界條件的實驗室測試數(shù)據(jù)對比;3) 模擬結(jié)果與暴露于真實外部邊界條件下的實測數(shù)據(jù)對比. 而本文將對上述兩模型進行全面驗證,包括理論驗證(與解析解對比)、模型間驗證(與其他模型模擬解對比)和單/雙側(cè)受控條件下的實驗驗證. 之所以選擇這兩個模型是因為:1) 兩模型的濕驅(qū)動勢都是相對濕度,易于測量;2) 在多層墻體交界面處的濕驅(qū)動勢是連續(xù)的,這使得模擬計算易于實現(xiàn). 通過本文對這兩種模型的對比和全面驗證,以期發(fā)現(xiàn)兩模型的優(yōu)勢與不足,為多孔建筑圍護結(jié)構(gòu)熱濕耦合傳遞模型的研究提供參考.
1? ?兩種模型
為了給研究者提供可靠的熱濕耦合傳遞模型,以便準確地預(yù)測和評估多孔建筑圍護結(jié)構(gòu)的熱濕分布和熱濕性能,本文將對Künzel模型和Liu & Chen 模型進行全面驗證.
全面驗證包括理論驗證、模型間驗證和實驗驗證. 在下文中所有的驗證案例,兩模型都使用Fortran程序和COMSOL軟件進行數(shù)值模擬. 兩模型的詳細描述如下.
1.1? ?物理模型及假設(shè)條件
多層多孔墻體的熱濕耦合傳遞過程如圖1所示.兩模型的假設(shè)條件如下:不考慮空氣傳遞;忽略重力效應(yīng);溫度保持在0 ℃以上(忽略結(jié)冰和凍融影響);孔隙內(nèi)僅存在氣液兩相;濕空氣被視為理想氣體;僅考慮一維熱濕傳遞.
式中:δa = 2 × 10-7 × (T + 273.15)0.81 /Pambient,δa為靜止空氣的水蒸氣滲透率,kg/(m·s·Pa);μ為水蒸氣擴散阻力因子;Dw為濕擴散率,m2/s;Pambient為周圍環(huán)境空氣壓力,Pa;φ為相對濕度,%;T為溫度,K;t為時間, s;Psat為飽和水蒸氣分壓力,Pa;w為材料體積含濕量,kg/m3;ρm為干材料的密度,kg/m3;cp,m為干材料的比熱容,J/(kg·K);h1v為汽化潛熱,J/kg;λ為導(dǎo)熱系數(shù),W/(m·K);cp,1為液態(tài)水的比熱容,J/(kg·K).
式中:gn為通過墻體表面的濕流,kg/(m2·s);qn為通過墻體表面的熱流,W/m2;βp為墻體表面的傳質(zhì)系數(shù),kg/(m2·s·Pa);φ為空氣相對濕度;φsurf為墻體表面相對濕度;psat為空氣飽和水蒸氣分壓力,Pa;psat,surf為墻體表面飽和水蒸氣分壓力,Pa;h為墻體表面的傳熱系數(shù),W/(m·K);T為空氣溫度,K;Tsurf為墻體表面溫度,K;α為墻體外表面的太陽輻射吸收率;qsolar為太陽輻射強度,W/m2;下標e/i分別表示墻體外/內(nèi)表面.
1.5? ?兩模型的區(qū)別
Künzel模型統(tǒng)一采用Fick擴散定律來描述水蒸氣擴散量和液態(tài)水傳遞量[2,9]. 但實質(zhì)上,液態(tài)水的毛細傳遞是一種“流”,而不是“擴散”. 而且Künzel模型認為建筑材料內(nèi)蒸氣擴散、液態(tài)水傳遞這兩種流動的方向相反,忽略了兩種流動的相互作用,將二者看作兩個相互獨立的過程[10].
Liu & Chen模型采用Fick擴散定律來描述水蒸氣擴散量;采用Darcy定律來描述液態(tài)水傳遞量. 且該模型中濕擴散系數(shù)Dw包含了液態(tài)水傳遞和水蒸氣擴散兩部分,也就是說Dw和K1、δp之間存在函數(shù)關(guān)系,關(guān)系式為K1 = (Dw ξ - δp Ps)φ/(RD Tρ1)[11].
1.6? ?模型求解方法
下文所有驗證案例中,兩模型都使用Fortran程序和COMSOL軟件進行數(shù)值求解.在Fortran程序中使用Crank-Nicholson格式[12]離散熱濕控制方程,使用牛頓迭代法把非線性方程組轉(zhuǎn)化為線性方程組,使用高斯消元法求解線性方程組. 使用Fortran程序模擬時,時間步長范圍為60~3 600 s,空間步長范圍為2~10 mm,收斂標準為10-4,最大迭代次數(shù)為30.
2? ?模型驗證
對Künzel模型和Liu & Chen模型的全面驗證(理論驗證、模型間驗證和實驗驗證)在本節(jié)中實現(xiàn). 兩模型都使用Fortran程序和COMSOL軟件進行模擬. 模擬結(jié)果和解析解、其他模型模擬解以及實驗數(shù)據(jù)對比來驗證兩模型的準確性. 同時也完成了兩模型模擬結(jié)果之間的對比. 用最大相對誤差評估模擬結(jié)果與解析解、其他模型模擬解之間的一致性. 用平均誤差(ME)和均方根誤差(RMSE)評估模擬結(jié)果與實驗數(shù)據(jù)之間的一致性.
下文中,“Künzel+Fortran”、“Künzel+COMSOL”、“Liu & Chen+Fortran”和“Liu & Chen+COMSOL”分別是Künzel模型和Liu & Chen模型使用Fortran程序和COMSOL軟件的模擬結(jié)果.
2.1? ?理論驗證
采用HAMSTAD基準案例2[6]作為理論驗證的案例. 該案例描述了等溫條件下單層各向同性墻體的濕分布. 由于不考慮室內(nèi)外的溫度差異,該案例可得到一解析解. 外側(cè)環(huán)境溫度和相對濕度分別是20 ℃和45%,內(nèi)側(cè)環(huán)境溫度和相對濕度分別是20 ℃和65%. 墻體初始溫度和相對濕度分別是20 ℃和95%. 該墻體材料的熱濕特性在文獻[6]中給出. 模擬持續(xù)1 000 h,100 h、300 h和1 000 h時墻體中含濕量分布結(jié)果如圖2所示.
兩模型使用Fortran程序和COMSOL軟件的模擬結(jié)果與解析解的對比如圖2所示. Künzel+Fortran結(jié)果與解析解的最大相對誤差在100 h、300 h、1 000 h時分別為2.562%、1.06%、0.45%. 相應(yīng)地,Liu & Chen + Fortran結(jié)果與解析解的最大相對誤差在100 h、300 h、1 000 h時分別為2.623%、1.072%、0.45%. 可以看出,兩模型的模擬結(jié)果與解析解之間吻合良好,且Fortran程序與COMSOL軟件的模擬結(jié)果也是十分一致的.
上述4個驗證案例中,Künzel模型和Liu & Chen模型的模擬結(jié)果與解析解、其他模型模擬解和實驗數(shù)據(jù)之間有良好的一致性. 當相對濕度較低時,Künzel模型和Liu & Chen模型的模擬結(jié)果間的差異很小,且相對濕度模擬值的誤差都比溫度模擬值的誤差大. 當相對濕度逐漸增大直至超出吸濕區(qū)范圍時,模擬值與現(xiàn)有對比值(其他模型模擬解或?qū)嶒灁?shù)據(jù))的偏差逐漸變大. Liu & Chen模型的模擬結(jié)果比Künzel模型更接近現(xiàn)有對比值,這在圖3中尤為明顯,當相對濕度逐漸接近95%時,Künzel模型已經(jīng)不再能夠準確模擬濕分布.
3? ?結(jié)? ?論
本文對兩種以相對濕度為濕驅(qū)動勢的熱濕耦合傳遞模型(Künzel模型和Liu & Chen模型)進行了全面驗證——理論驗證、模型間驗證和實驗驗證. 用自編程的Fortran程序和COMSOL軟件對兩模型進行數(shù)值模擬. 驗證結(jié)果表明,兩模型的模擬結(jié)果與解析解、其他模型模擬解和實驗數(shù)據(jù)有良好的一致性. 兩模型的相對濕度模擬值的誤差都比溫度模擬值的誤差大,這些誤差來源于相對濕度傳感器測量的不準確、模擬用的材料特性與實際值不同、計算輸入?yún)?shù)與實際值的差異和模型本身的不足.
本文對Künzel模型和Liu & Chen模型進行了對比,結(jié)果表明:
1)當相對濕度較低時,Künzel模型和Liu & Chen模型的模擬結(jié)果間的差異很小.
2)當相對濕度逐漸增大直至超出吸濕區(qū)范圍
時,模擬值與對比值的偏差逐漸變大,Künzel模型不能準確模擬濕分布.
通過兩模型的對比,模型模擬結(jié)果與解析解、其他模型模擬解、實驗結(jié)果在吸濕范圍內(nèi)吻合良好,從而在吸濕范圍內(nèi)充分驗證了兩個模型. 而在吸濕區(qū)末段(相對濕度小于但接近95%),Liu & Chen模型比Künzel模型更準確和可用. 至于超出吸濕區(qū)范圍時(相對濕度>95%),兩模型的適用性有待下一步研究.
這項研究為多孔建筑圍護結(jié)構(gòu)熱濕耦合傳遞領(lǐng)域的研究人員在預(yù)測建筑圍護結(jié)構(gòu)內(nèi)的溫度和水分含量分布、改善建筑物濕熱性能、預(yù)測霉菌生長風(fēng)險以及提高結(jié)構(gòu)耐久性等方面的進一步分析和研究提供了依據(jù)。
參考文獻
[1]? ? 劉向偉. 夏熱冬冷地區(qū)建筑墻體熱、空氣、濕耦合遷移特性研究[D]. 長沙:湖南大學(xué)土木工程學(xué)院,2015:2—17.
LIU X W. Investigation of the coupled heat,air and moisture transport in building walls in hot summer and cold winter zone [D]. Changsha:College of Civil Engineering,Hunan University,2015:2—17. (In Chinese)
[2]? ? K?NZEL H. Simultaneous heat and moisture transport in building components [R]. Verlag Suttgart:Fraunhofer IRB,1995:38—40.
[3]? ? 黃祖堅,孫一民,MUSSO F. 北美典型氣候區(qū)建筑圍護結(jié)構(gòu)HM模擬及分析[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2019,46(3):130—140.
HUANG Z J,SUN Y M,MUSSO F. North America typical climate zones building envelope HM simulation and the analysis [J]. Journal of Hunan University (Natural Sciences),2019,46(3):130—140. (In Chinese)
[4]? ? LIU X W,CHEN Y M,GE H,et al. Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China [J]. Energy and Building,2015,93:259—268.
[5]? ? EN 15206 Hygrothermal performance of building components and building elements—assessment of moisture transfer by numerical simulation [S]. London:British Standard Institution,2007:17—21.
[6]? ? HAGENTOFT C E. Methodology of HAM- modeling:Report R-02:8 [R]. Gothenburg:Department of Building Physics,Chalmers University of Technology,2002:8—50.
[7]? ? 劉向偉,陳國杰,陳友明. 墻體熱、濕及空氣耦合傳遞非穩(wěn)態(tài)模型及驗證[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2016,43(1):152—156.
LIU X W,CHEN G J,CHEN Y M. Modeling of the transient heat,air and moisture transfer in building walls [J]. Journal of Hunan
University (Natural Sciences),2016,43(1):152—156. (In Chinese)
[8]? ? K?NZEL H,KARAGIOZIS A. 2-Hygrothermal behaviour and? simulation in buildings [M]//HALL M R. Materials for Energy Efficiency and Thermal Comfort in Buildings. Cambridge,UK:Woodhead Publishing,2010:54—76.
[9]? ? GOTO Y,WAKILI K G,F(xiàn)RANK T,et al. Heat and moisture balance simulation of a building with vapor-open envelope system of subtropical regions [J]. Building Simulation,2012,5(4):301—314.
[10]? 郭興國. 熱濕氣候地區(qū)多層墻體熱濕耦合遷移特性研究[D]. 長沙: 湖南大學(xué)土木工程學(xué)院,2010:10.
GUO X G. Research on coupled heat and moisture transfer characteristics of multilayer walls in hot and humid climate [D]. Changsha:College of Civil Engineering,Hunan University,2010:10. (In Chinese)
[11]? HAGENTOFT C E. HAMSTAD WP2 modeling,version 4:Report-02:9[R]. Gothenburg:Department of Building Physics,Chalmers
University of Technology,2002:1—3.
[12]? 陶文銓. 數(shù)值傳熱學(xué)[M]. 2版. 西安:西安交通大學(xué)出版社,2001:32—37.
TAO W Q. Numerical heat transfer [M]. 2nd ed. Xian:Xian Jiaotong University Press,2001:32—37. (In Chinese)
[13]? MELIN C B,HAGENTOFT C E,HOLL K,et al. Simulations of moisture gradients in wood subjected to changes in relative humidity and temperature due to climate change [J]. Geosciences,2018,8(10):378.
[14]? MELIN C B,BJURMAN J. Moisture gradients in wood subjected to relative humidity and temperatures simulating indoor climate variations as found in museums and historic buildings [J]. Journal of Cultural Heritage,2017,25:157—162.
[15]? MELIN C B,GEB?CK T,HEINTZ A,et al. Monitoring dynamic moisture gradients in wood using inserted relative humidity and temperature sensors [J]. E-Preservation Science,2016,13:7—14.
[16]? BRATASZ L,KOZLOWSKA A,KOZLOWSKI R. Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation [J]. European Journal of Wood and Wood Products,2012,70(4):445—451.
[17]? RODE C,ClORIUS C O. Modeling of moisture transport in wood with hysteresis and temperature dependent sorption characteristics [C]//Proceedings of Performance of Exterior Envelopes of Whole Buildings IX,2004. Oak Ridge,TN,USA:Oak Ridge National Laboratory, 2004:1—15.
[18]? KUMARAN K. IEA annex 24 final report,vol.3,task 3:material properties[R]. Leuven:IEA,Acco Leuven,1996:14—132.
[19]? RAFIDIARISON H,R?MOND R,MOUGEL E. Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials[J]. Building and Environment,2015,89:356—368.
[20]? DELPHIN. Simulation program for the calculation of coupled heat,moisture,air,pollutant,and salt transport [DB/OL]. [2019-7-13]. http://bauklimatik-dresden.de/delphin/index.php?aLa=en.
[21]? VOLOLONIRINA O,COUTAND M,PERRIN B. Characterization of hygrothermal properties of wood-based products - impact of moisture content and temperature [J]. Construction and Building Materials,2014,63:223—233.
[22]? GOESTEN A J P M. Hygrothermal simulation model:damage as a result of insulating historical buildings [D]. Januari:Building Physics and Services,Eindhoven University of Technology,2016:54—129.
[23]? TARIKU F,KUMARAN K,F(xiàn)AZIO P. Transient model for coupled heat,air and moisture transfer through multilayered porous media [J]. International Journal of Heat and Mass Transfer,2010,53(15/16):3035—3044.