黃 磊,劉友永,陳少伍,孟 瑋,李海濤
(1. 北京跟蹤與通信技術(shù)研究所,北京 100094;2. 中國電子科技集團公司第五十四研究所,石家莊 050081)
(circle) and residual phase delay (dot))
(circle) and residual phase delay (dot))
干涉測量技術(shù)作為一種高精度測角手段,對航天器橫向的位置和速度有較好的約束,通過與測距、測速等外測數(shù)據(jù)相結(jié)合,可有效提高定軌精度[1]。按照基線的長短,干涉測量可分為甚長基線干涉測量(Very long baseline interferomety,VLBI)和連線干涉測量(Connected element interferometry,CEI)兩大類。其中VLBI的基線長達數(shù)千公里,通過群時延測量即可實現(xiàn)高精度測角,通常應(yīng)用于深空探測器導(dǎo)航[2]。CEI技術(shù)基線一般為幾十公里,它通過對載波相時延測量,進而實時獲得目標相對于基線矢量的精確角位置??蛇m用于中高軌衛(wèi)星的高精度測定軌及相對定位,其面臨的技術(shù)難題是單基線情況下載波相位整周期模糊度解算問題。
美國NASA自20世紀80年代末就開始進行CEI技術(shù)研究和試驗驗證,并針對載波相位解模糊問題提出了多基線相位參考、頻率綜合和地球自轉(zhuǎn)綜合3種方法[3-6],其中,多基線相位參考法的核心思想是利用長短不等的多條基線按照射電天文成圖的方法綜合求解相位模糊[6-8],缺點是需要大規(guī)模的天線陣列,造價昂貴;頻率綜合法的核心思想是利用很寬的擴展帶寬獲得群時延,再進一步確定載波的相位延遲整周模糊,以日本SELENE任務(wù)為代表[9-10],缺點是必須開展專門的星上頻率信標設(shè)計,不具備普適性;地球自轉(zhuǎn)綜合法的核心思想是利用地球自轉(zhuǎn)的特點,長時間連續(xù)測量獲得不同方向基線變化進行解模糊[11],不適用于高軌衛(wèi)星定軌場合。
美國曾在2002年利用圖森和鳳凰城兩座城市之間的180 km基線對國際海事通信GEO衛(wèi)星AOR-W開展了S頻段CEI試驗,定軌精度僅為3 km[12]。可以分析出,試驗中利用的是衛(wèi)星下行的群時延測控信號,未能獲得無模糊載波相時延。
國內(nèi)信息工程大學(xué)、北京宇航動力實驗室等院校及科研機構(gòu)對CEI技術(shù)進行了研究[13-17],論證了該技術(shù)的有效性和應(yīng)用前景。但從文章發(fā)表情況來看,理論仿真的工作居多[13-15],或是僅評估了相時延觀測量隨機誤差精度[16],未能得到精準的相時延觀測量。文獻[17]為2019年國內(nèi)最新研究成果,采用了75 m和35 m的超短基線,對C頻段GEO衛(wèi)星最終定軌精度為1~2 km。由于基線極短且先驗軌道的精度足夠,不存在解載波相位模糊的問題,也未能體現(xiàn)出干涉測量高精度的測角優(yōu)勢。
為解決CEI技術(shù)在高軌衛(wèi)星高精度測定軌面臨了載波相位解模糊難題,本文創(chuàng)造性地提出了一種基于衛(wèi)星遙測或數(shù)傳等下行信號的多弧段融合相位模糊度解算方法,它通過相鄰多弧段載波相位值和窄帶信號群時延值的融合處理可精確獲得無模糊載波相時延觀測量,不需要大規(guī)模天線陣列和特殊的衛(wèi)星下行信號,具有較好的應(yīng)用前景。
為驗證這一方法的有效性,利用我國航天測控網(wǎng)喀什地區(qū)的兩個測控站為基礎(chǔ),補充光纖時頻傳遞、數(shù)據(jù)采集記錄、數(shù)據(jù)相關(guān)處理等設(shè)備,構(gòu)建試驗系統(tǒng)并進行了試驗驗證。試驗采用某北斗GEO衛(wèi)星(以下簡稱BD衛(wèi)星)作為標校源,對某天鏈衛(wèi)星(以下簡稱TL衛(wèi)星)進行測量,采用交替觀測模式(兩顆衛(wèi)星角距在10°以內(nèi))。通過TL衛(wèi)星精軌對測量結(jié)果進行評估,結(jié)果表明:在20 km基線上,利用BD衛(wèi)星的偽碼測距信號和TL衛(wèi)星的測控信號均成功實現(xiàn)了S頻段解載波整周相位模糊,相時延測量精度能夠達到0.1 ns,對應(yīng)GEO衛(wèi)星定軌精度優(yōu)于54 m。研究成果已經(jīng)應(yīng)用于高分專項地面測控系統(tǒng)建設(shè)中。
CEI基本原理與在航天領(lǐng)域廣泛應(yīng)用的甚長基線干涉測量(VLBI)基本原理相一致。圖1是干涉測量基本原理圖[2],同樣適用于CEI測量。
圖1 干涉測量基本原理圖
在圖1中,干涉測量相關(guān)器處理的信號來自幾何上分離的兩個地面測站。從第一個測站到第二個測站的矢量D稱作基線矢量。如果一個外部射電源其方向矢量為s,與基線矢量的夾角為θ,那么可以得到無線電信號源發(fā)出的信號波前到達基線兩端的時間差近似為:
(1)
根據(jù)式(1),在基線D確定的條件下,由τg測量誤差導(dǎo)致的θ測角誤差可由式(2)表示:
(2)
可見,測角誤差δθ與基線D的長度成反比,與τg的測量誤差δτg成正比。因此,若要獲得高精度角度測量,可以通過使用更長的基線(即增加D的長度)或提高干涉測量時延的測量精度,這也就是VLBI和CEI高精度測量技術(shù)的基本機理。
對于VLBI測量,由于兩站相距甚遠,無法采用相同的基準頻率源,且通過雙差分依然難以完全消除電離層和對流層的介質(zhì)誤差,因而難以實現(xiàn)目標的載波相時延測量,這是由于各種誤差源的影響會最終引入到相時延觀測量中,帶來整周模糊,導(dǎo)致無法正確解算載波相位整周數(shù),因此VLBI技術(shù)均采用群延遲測量體制。
對于CEI測量,雖然基線長度較短,但通過高精度的時間頻率傳遞可以使得各測站采用相同的基準頻率源,此外,由于兩站之間距離較近,通過雙差分能夠基本完全消除電離層和對流層的介質(zhì)誤差[4],這為獲得目標的載波相時延觀測量奠定了基礎(chǔ)。相時延的精度主要取決于射頻信號的頻率(一般為GHz量級),群時延的精度主要取決于兩信標頻率之差,通常是DOR音(對于S頻段約為8 MHz,對于X頻段約為40 MHz[18]),也可以是測距或遙測諧波信號(帶寬介于幾百kHz到幾MHz之間)。因此,相時延的精度遠高于群時延的精度,這說明利用CEI可以獲得與VLBI精度相比擬的觀測量。
為了獲得高精度相時延觀測量,需要解決CEI測量中的關(guān)鍵技術(shù)——解載波相位整周模糊。如果解模糊失敗,則只能得到群時延的精度,在這種情況下,由于CEI基線僅是VLBI基線的1%量級,其技術(shù)優(yōu)勢將蕩然無存。
CEI測量的是兩個天線接收信號的相關(guān)相位,信號在由發(fā)射至接收的整個傳輸過程中任何會對電磁波傳輸產(chǎn)生影響的因素都將在相關(guān)相位中引入偏差。該相位可以認為是對干涉時延的測量,單位是觀測信號的波長。我們可以把相關(guān)相位記作[4]:
(3)
式中:ωRF是射頻觀測頻率,總延遲包括幾何延遲、兩站之間時鐘偏差τclock、對流層和電離層傳播介質(zhì)延遲τtrop和τion、任何未標校的設(shè)備延遲τinst和太陽等離子體誤差τwind(僅對于深空目標)幾部分組成。另外,在每一個測站上均有一個本地振蕩器(Local Oscillator,LO),會引入相位偏移ΦLO。2πN代表相位整周模糊度,只有確定了該相位的整周模糊,才能獲取高精度的射頻信號載波相時延。此外,頻率源及時頻系統(tǒng)的穩(wěn)定性還將對相關(guān)相位的測量產(chǎn)生影響;信號的信噪比、基線的空間方位不準確性也會影響時間延遲τg的測量精度。
為了校準這些誤差因素,通常將一個與待測信號源空間角位置相近的參考源作為基準,將兩個信號源的相關(guān)相位進行差分,即可消除測站鐘差、設(shè)備延遲等誤差因素,同時可顯著降低對流層、電離層、太陽等離子體等誤差因素的影響。兩個射頻信號源(A和B)可觀測到的差分相位可以記作:
(4)
由上述分析可知,在進行單差分條件下CEI測量時,要求保證高精度的站間時頻信號的同源及同步特性,以減少測量誤差;在進行雙差分條件下CEI測量時,鐘差的因素可以消除,但仍然需要高精度的頻率傳遞技術(shù),確保測站頻率的一致性和相干性[19])。
考慮到開展單差分CEI測量時,未標校的設(shè)備延遲、站間時間同步的精度、對流層、電離層均會帶來較大的測量誤差,導(dǎo)致無法解載波相時延(1 ns就會帶來0.3 m誤差,而S頻段波長僅為0.13 m),因此在對精度要求較高的實際應(yīng)用中一般采用雙差分CEI測量或同波束CEI測量。本文下面所描述的便是基于雙差分CEI測量的形式。
高精度CEI信號處理流程圖如圖2所示,首先利用兩顆衛(wèi)星的軌道預(yù)報得到預(yù)報時延,并進行預(yù)補償,然后求解殘余相位干涉條紋,并最終逐步求解出精確的干涉時延。
圖2 CEI信號處理流程圖
具體信號處理流程如下:
1)兩個測站分別接收同一個衛(wèi)星的下行信號,接收信號分別為s1(t)和s2(t),兩路信號進行傅里葉變換后為S1(f,t)和S2(f,t);
2)利用已知的衛(wèi)星到兩個測站的時延預(yù)報差值對兩個頻域信號進行時延差預(yù)補償,使補償后的兩路信號殘余時延差較小,即:
S′2(f,t)=S2(f,t)·exp(j·2πfRF·τ(t))
(5)
3)時延差預(yù)補償后的兩路頻域信號做復(fù)相關(guān)得到殘余相關(guān)相位:
X(f,t)=S1(f,t)·(S′2*(f,t))=A(f,t)·
exp(jφ(f,t))
(6)
式中:S′2*(f,t)為S′2(f,t)的共軛。
4)利用殘余載波相位求解殘余相時延,利用殘余數(shù)據(jù)相位求解殘余群時延:
(7)
(8)
5)利用殘余相時延和載波相位平滑群時延方法平滑殘余群時延得到平滑后的殘余群時延τgroup_0,sm(t);
6)用平滑后的群時延解算殘余相時延的整周模糊度:
N=E[τgroup_0,sm(t)-τphase_0(t)]·fRF
(9)
式(9)中,E為數(shù)學(xué)期望。
7)整周模糊度乘載波周期再加上殘余相時延得到精確的殘余時延差值:
τphase_0,real(t)=τphase_0(t)+N/fRF
(10)
8)精確的殘余時延差值加上衛(wèi)星到兩個測站的時延預(yù)報差值得到精確的相時延觀測量:
τphase,real(t)=τphase_0,real(t)+τ(t)
(11)
以上步驟中,第5步“利用殘余相時延和載波相位平滑群時延方法平滑殘余群時延得到平滑后的殘余群時延”是獲得高精度CEI觀測量的核心,下面將對其方法進行詳細介紹。
載波相位平滑群時延的基本思路為:將群時延觀測量和載波相位觀測量相結(jié)合,同時利用高精度的載波相位測量值對群時延觀測量進行平滑濾波獲取平滑群時延,有效降低隨機誤差,進而提高載波相位整周期的正確解算概率。
由CEI求解得到群時延和相時延分別表示為:
(12)
(13)
(14)
(15)
理論上,載波相位歷元差應(yīng)該與碼群時延歷元差相等,即:
τg(tn)-τg(tn-1)≈τp(tn)-τp(tn-1)
(16)
(17)
可由載波相位歷元間的差值重建碼群時延,即:
τ′g(tn)=τg(tn-1)+τp(tn)-τp(tn-1)
(18)
重建后的群時延誤差將被大大壓縮。假設(shè)從t0歷元開始的載波相位觀測量持續(xù),并且通常認為群時延測量過程中的隨機誤差服從高斯分布,則可以通過數(shù)學(xué)統(tǒng)計的方法將其影響進行削弱。假設(shè)已經(jīng)連續(xù)觀測了n次,其測量方程可用如下公式表示:
(19)
對以上各式相加求平均,即可得到t0歷元的群時延平滑值:
τp(tk)+τp(t0))
(20)
式中:τg,sm(t0)即為t0時刻的平滑群時延平滑值。
下面考慮平滑后的測量誤差δ與εg,εp之間的關(guān)系。由于載波相位測量的隨機誤差較群時延測距的隨機誤差要小得多,即εg?εp,根據(jù)誤差傳遞理論可得:
(21)
(22)
其中:P(k)表示外推群時延,τphase(k)和τphase(k-1)分別表示k時刻和k-1時刻的相時延,τsm(k-1)和τsm(k)分別表示k時刻和k-1時刻的群時延平滑值,ω(k)表示歷元k時刻的群時延權(quán)重。
(23)
利用S頻段下行遙測副載波信號的群延遲差和殘留載波信號的相位差進行解模糊算法仿真,其群時延和載波相位平滑群時延估計精度分別為9 ns(信號帶寬B=256 kHz,相關(guān)信噪比S/N=30 dB)、75 ps,依據(jù)公式計算得到平滑因子M的最優(yōu)取值為120。在M分別取值為60,80,100,120時進行蒙特卡洛仿真統(tǒng)計,仿真次數(shù)為1000統(tǒng)計得到載波相位模糊正確解算概率分別為78%,90%,95%,99%,其平滑結(jié)果如圖3所示。充分說明了平滑因子M取值和解模糊算法的有效性。
CEI試驗系統(tǒng)利用我國航天測控網(wǎng)喀什地區(qū)的兩個測控站為基礎(chǔ)(以下分別稱為測站1和測站2),補充CEI試驗所必須的光纖時頻傳遞設(shè)備、數(shù)據(jù)采集與基帶轉(zhuǎn)換設(shè)備、數(shù)據(jù)相關(guān)處理設(shè)備等。兩個測站直線距離約20 km,呈東西向排列。
試驗采用的標校源為BD衛(wèi)星(目前我國BD GEO衛(wèi)星的導(dǎo)航電文位置精度優(yōu)于10 m[20],對應(yīng)20 km基線時延誤差優(yōu)于20 ps,可作為標校源使
圖3 不同M值情況下的平滑結(jié)果
圖4 基于光纖時頻傳遞的CEI系統(tǒng)構(gòu)成圖
用)。試驗?zāi)繕藶門L衛(wèi)星,兩顆衛(wèi)星角距在10°以內(nèi),測控頻段為S頻段,采用交替觀測模式。
其中TL衛(wèi)星下行信號為標準測控(TT&C)信號,遙測副載波頻率65.536 kHz,測距主音100 kHz,實際試驗中數(shù)據(jù)采集帶寬為256 kHz;BD衛(wèi)星下行信號為偽碼測距信號,帶寬10 MHz,實際試驗中數(shù)據(jù)采集帶寬為8 MHz??紤]到TL衛(wèi)星信號帶寬較窄,求取精確相時延整周模糊值的難度較大,因此試驗中將TL衛(wèi)星的觀測時間加長,具體實施方式為:先對BD衛(wèi)星觀測7 min,隨后停止觀測3 min(停止時間內(nèi)用于測站1和測站2同時切換天線從BD衛(wèi)星指向TL衛(wèi)星),再對TL衛(wèi)星觀測17 min,隨后停止觀測3 min,再切換到BD衛(wèi)星觀測,如此循環(huán),連續(xù)觀測共計8 h。
由1.2節(jié)可知,采用交替觀測模式(即雙差分模式)可以將站間時差,設(shè)備延遲,對流層、電離層等介質(zhì)誤差基本消除干凈,但有一點不能忽略,那就是在干涉測量的實際應(yīng)用中標校源與待測目標源的頻率應(yīng)一致或足夠接近,否則會引入下行信道濾波器在不同頻點的群時延色散誤差。針對此次試驗,BD衛(wèi)星頻點約為2218 MHz,TL衛(wèi)星頻點約為2231 MHz,兩者相差達到十幾MHz,因此必須對CEI下行信道進行標定。利用矢量網(wǎng)絡(luò)分析儀的實際標定結(jié)果如表1所示。
表1 信道群時延色散特性標定Table 1 Calibration of the group delay of the channels
可以看出,在這兩個頻點上,設(shè)備群延時色散約為1.3ns,后續(xù)試驗數(shù)據(jù)中應(yīng)該補償信道的群時延特性。
試驗共進行了4天,每天的觀測均從晚上22時開始,開展6~8小時的連續(xù)觀測。兩測站獲取到的測量原始數(shù)據(jù)均先在本地進行磁盤記錄,于試驗結(jié)束后開展事后相關(guān)處理分析。
4天試驗的結(jié)果相一致,下面給出第1天試驗的數(shù)據(jù)處理結(jié)果。先利用衛(wèi)星的軌道預(yù)報值推導(dǎo)出每個SCAN(指一個觀測弧段)的時延,利用預(yù)報值對測量數(shù)據(jù)進行預(yù)補償,補償后的殘余相關(guān)相位如圖5、圖6所示。圖5為TL衛(wèi)星的相關(guān)處理結(jié)果,共15個SCAN,每個SCAN 17 min,間隔10 min;圖6為BD衛(wèi)星的相關(guān)處理結(jié)果,共15個SCAN,每個SCAN 7 min,間隔20 min。
圖5 TL衛(wèi)星相關(guān)處理結(jié)果(殘余群時延(圓圈)和殘余相時延(點))
圖6 BD衛(wèi)星的相關(guān)處理結(jié)果(殘余群時延(圓圈)和殘余相時延(點))
由觀測量減去理論值能夠得到時延殘差,這部分殘差中包括了各類誤差的總和,主要包括設(shè)備延遲、站間時間同步誤差、對流層誤差、電離層誤差、熱噪聲誤差,而站間時間同步誤差、對流層誤差、電離層誤差對于兩顆星來講可以認為是一致的,即Δτclock≈0,Δτtrop≈0,Δτion≈0。設(shè)備鏈路的不一致性不能忽略,通過前期標??芍獮?.3 ns。
最終獲得的相時延觀測量與精軌的理論值對比圖如圖7所示。從圖中可以看出,前面幾個SCAN的殘余相關(guān)相位波動較大,后面幾個SCAN較為穩(wěn)定。用BD的殘差擬合TL的殘差得到TL的測量值,與精軌對比,最大偏差0.16 ns,且隨時間變化有變穩(wěn)定的趨勢,穩(wěn)定在0.1 ns以內(nèi)。
通過CEI試驗系統(tǒng)在20 km基線上開展測量,對BD衛(wèi)星的偽碼測距信號和TL衛(wèi)星的TT&C信號均成功實現(xiàn)了S頻段解載波整周相位模糊。通過BD衛(wèi)星做標校源,得到TL衛(wèi)星的精確相時延觀測量,該觀測量與通過TL衛(wèi)星精軌反算的相時延理論值相比,精度達到了0.1 ns,對應(yīng)的GEO軌道精度優(yōu)于54 m。
此次試驗充分驗證了文中所提出的相時延解算方法的正確性、可行性,在國內(nèi)首次實現(xiàn)了在幾十km基線量級上利用百kHz窄帶測控信號獲得無模糊載波相時延。該方法同樣適用于對共位GEO衛(wèi)星的相對定位,具有較好的應(yīng)用前景,研究成果已經(jīng)應(yīng)用于高分專項地面測控系統(tǒng)建設(shè)中。