陳陽(yáng) 冉雯雯 王璐 宋瑤琳 李廣起 邢曉明
[摘要] 目的 探討G蛋白信號(hào)調(diào)節(jié)蛋白1(GPSM1)在結(jié)直腸癌中的表達(dá)及意義。
方法 收集2015年4月—2016年4月青島大學(xué)附屬醫(yī)院收治的150例原發(fā)性結(jié)直腸癌病人的石蠟組織樣本及臨床病理資料。采用免疫組織化學(xué)法檢測(cè)GPSM1在結(jié)直腸癌組織及癌旁組織中的表達(dá),采用實(shí)時(shí)熒光定量PCR法檢測(cè)結(jié)直腸癌病人石蠟組織樣本中KRAS和NRAS的突變情況;分析GPSM1在結(jié)直腸癌組織中表達(dá)水平與病人臨床病理特征及預(yù)后的相關(guān)性。
結(jié)果 結(jié)直腸癌組織中GPSM1的表達(dá)水平明顯高于癌旁組織(χ2=102.938,P<0.001)。GPSM1在結(jié)直腸癌組織中的高表達(dá)與淋巴結(jié)轉(zhuǎn)移(χ2=5.429,P=0.020)及KRAS突變(χ2=4.030,P=0.045)相關(guān)。生存分析結(jié)果顯示,GPSM1高表達(dá)組結(jié)直腸癌病人的無(wú)病和總體生存期較GPSM1低表達(dá)組明顯縮短(P=0.046、0.036)。
結(jié)論 GPSM1在結(jié)直腸癌組織中高表達(dá),并且與病人不良預(yù)后相關(guān),可作為預(yù)測(cè)結(jié)直腸癌轉(zhuǎn)移的潛在生物學(xué)指標(biāo)。
[關(guān)鍵詞] 結(jié)直腸腫瘤;GTP結(jié)合蛋白質(zhì)調(diào)節(jié)劑;基因,ras;腫瘤轉(zhuǎn)移;預(yù)后
[中圖分類號(hào)] R735.34
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2021)06-0841-05
doi:10.11712/jms.2096-5532.2021.57.168
[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210909.1512.002.html;2021-09-09 18:15:02
EXPRESSION AND SIGNIFICANCE OF G-PROTEIN SIGNALING MODULATOR 1 IN COLORECTAL CANCER
CHEN Yang, RAN Wenwen, WANG Lu, SONG Yaolin, LI Guangqi, XING Xiaoming
(Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective To investigate the expression and significance of G-protein signaling modulator 1 (GPSM1) in colorectal cancer (CRC).
Methods Paraffin-embedded tumor specimens and clinicopathological data were collected from 150 patients with primary CRC who were admitted to The Affiliated Hospital of Qingdao University from April 2015 to April 2016. Immunohistochemistry was usedto measure the expression of GPSM1 in CRC tissue and adjacent tissue, and quantitative real-time PCR was used to measure KRAS and NRAS mutations in paraffin-embedded tumor specimens. The association of GPSM1 expression in CRC tissue with clinicopathological features and prognosis was analyzed.
Results The expression level of GPSM1 in CRC tissue was significantly higher than that in the corresponding adjacent tissue (χ2=102.938,P<0.001). The high expression of GPSM1 in CRC tissue was significantly associated with lymph node metastasis (χ2=5.429,P=0.020) and KRAS mutation (χ2=4.030,P=0.045). The survival analysis showed that compared with the low GPSM1 expression group, the high GPSM1 expression group had significantly shorter disease-free survival time and overall survival time (P=0.046,0.036).
Conclusion GPSM is highly expressed in CRC tissue, which might be associated with the poor prognosis of CRC patients, and GPSM1 may be used as a potential biological marker for predicting the metastasis of CRC.
[KEY WORDS]colorectal neoplasms; GTP-binding protein regulators; genes, ras; neoplasm metastasis; prognosis
結(jié)直腸癌(CRC)是胃腸道常見(jiàn)的惡性腫瘤之一,是全球范圍內(nèi)的第四大惡性腫瘤[1]。CRC起病隱匿,侵襲轉(zhuǎn)移能力強(qiáng),晚期轉(zhuǎn)移是多數(shù)病人死亡的主要原因,但其轉(zhuǎn)移的分子機(jī)制目前尚不明確[2]。G蛋白信號(hào)調(diào)節(jié)蛋白1(GPSM1)為G蛋白信號(hào)激活蛋白家族Ⅱ(AGSⅡ)的成員,是1999年由英國(guó)科學(xué)家在對(duì)酵母進(jìn)行遺傳學(xué)篩查時(shí)發(fā)現(xiàn)的一種蛋白質(zhì),該蛋白由N末端的7個(gè)四肽重復(fù)序列(TPR)和C末端的4個(gè)G蛋白調(diào)節(jié)模體(GPR)組成[3-4]。GPSM1在神經(jīng)組織、睪丸組織中廣泛分布,作為鳥(niǎo)嘌呤核苷酸解離抑制劑參與G蛋白信號(hào)通路的調(diào)節(jié),以及神經(jīng)元分化和紡錘體形成等多種生物學(xué)進(jìn)程[3-8]。近年來(lái)研究顯示,GPSM1在人食管鱗狀細(xì)胞癌、前列腺癌組織中異常表達(dá)并影響腫瘤細(xì)胞的增殖、轉(zhuǎn)移及凋亡[9-10]。GPSM1也參與CRC細(xì)胞系HT29巨自噬的早期調(diào)控[11],但GPSM1在CRC中的表達(dá)及作用尚不明確。大鼠肉瘤病毒(RAS)
基因突變是癌癥最易發(fā)生的突變之一,約42%的CRC病人伴RAS基因突變[12]。RAS基因?qū)儆谠┗蚣易?,編碼KRAS、NRAS和HRAS,其中KRAS突變率最高(約占85%)[13]。RAS基因突變可使細(xì)胞信號(hào)傳導(dǎo)異常激活,持續(xù)傳遞有絲分裂信號(hào),誘導(dǎo)細(xì)胞增殖分化,促進(jìn)腫瘤發(fā)生[14]。美國(guó)腫瘤聯(lián)合會(huì)(AJCC)第8版癌癥分期系統(tǒng)明確指出,KRAS和NRAS是影響CRC預(yù)后的關(guān)鍵因素[15]。本研究旨在通過(guò)檢測(cè)GPSM1在CRC組織中的表達(dá),探討GPSM1表達(dá)與KRAS、NRAS突變及病人臨床病理特征的相關(guān)性,以期為CRC防治提供新的分子標(biāo)志物及治療靶點(diǎn)。
1 資料與方法
1.1 一般資料
收集2015年4月—2016年4月青島大學(xué)附屬醫(yī)院收治的150例CRC病人的石蠟組織樣本及臨床病理資料,臨床病理資料包括病人性別、年齡、腫瘤部位、腫瘤大小、分化程度、TNM分期、浸潤(rùn)深度、淋巴結(jié)轉(zhuǎn)移、KRAS和NRAS突變情況等。所有病人均為原發(fā)性CRC,術(shù)前未行放化療和靶向治療。對(duì)150例CRC病人定期進(jìn)行電話和門診隨訪,隨訪截止日期為2020年3月。150例病人均有完整的隨訪資料,其中52例病人死亡,9例病人發(fā)生了術(shù)后轉(zhuǎn)移復(fù)發(fā)。本研究經(jīng)青島大學(xué)附屬醫(yī)院倫理委員會(huì)批準(zhǔn)。
1.2 實(shí)驗(yàn)方法
1.2.1 組織芯片制備 由兩名病理醫(yī)師對(duì)所有蠟塊進(jìn)行復(fù)片,光學(xué)顯微鏡下選取典型區(qū)域并標(biāo)記,使用Pathology Devices TMAjrTM組織芯片點(diǎn)樣儀制作孔徑為2.0 mm的組織芯片,4 μm切片。
1.2.2 GPSM1免疫組織化學(xué)檢測(cè) 采用PV-6000法進(jìn)行免疫組織化學(xué)染色。組織芯片經(jīng)脫蠟、水化后,使用體積分?jǐn)?shù)0.03的過(guò)氧化氫滅活內(nèi)源性過(guò)氧化物酶10 min,高壓修復(fù)2 min(枸櫞酸鹽pH值6.0);滴加GPSM1一抗(1∶200,NBP1-91968,NOVUS,美國(guó)),以PBS代替一抗作為陰性對(duì)照,4 ℃孵育過(guò)夜;滴加通用型二抗(北京中杉金橋生物技術(shù)有限公司),37 ℃孵育30 min;DAB顯色3 min,使用蘇木精復(fù)染,脫水、封片。
每張切片由兩名資深病理醫(yī)師隨機(jī)選擇5個(gè)高倍視野,判讀GPSM1染色結(jié)果。GPSM1陽(yáng)性染色定位于細(xì)胞漿。根據(jù)染色強(qiáng)度及陽(yáng)性細(xì)胞率進(jìn)行半定量評(píng)分。染色強(qiáng)度評(píng)分:無(wú)著色為0分,淡黃色為1分,棕黃色為2分,棕褐色為3分;陽(yáng)性細(xì)胞率評(píng)分:≤5%為0分,6%~25%為1分,26%~50%為2分,51~75%為3分,>75%為4分。兩項(xiàng)評(píng)分相乘,≥4分為高表達(dá),<4分為低表達(dá)[16]。
1.2.3 KRAS及NRAS基因突變的檢測(cè) 使用石蠟包埋組織DNA提取試劑盒(TIANGEN公司,DP331-02,中國(guó))提取150例CRC石蠟組織切片中的DNA,然后應(yīng)用KRAS、NRAS突變檢測(cè)試劑盒(上海源奇生物制藥有限公司)檢測(cè)其突變情況。使用ABI7500實(shí)時(shí)熒光定量PCR系統(tǒng)(Thermo Fisher Scientific Inc,美國(guó))進(jìn)行擴(kuò)增。KRAS基因突變擴(kuò)增程序?yàn)椋?2 ℃、5 min;94 ℃、3 min;94 ℃、15 s,60 ℃、60 s;共40個(gè)循環(huán);于60 ℃下采集熒光信號(hào)。NRAS基因突變擴(kuò)增程序?yàn)椋?2 ℃、 5 min;94 ℃、3 min;94 ℃、 45 s,60 ℃、80 s;共40個(gè)循環(huán);于60 ℃下采集熒光信號(hào)。
1.3 統(tǒng)計(jì)學(xué)分析
使用SPSS 23.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)處理。GPSM1表達(dá)與KRAS、NRAS突變及臨床病理特征的關(guān)系分析采用Pearson χ2檢驗(yàn);GPSM1表達(dá)與病人術(shù)后生存時(shí)間的關(guān)系分析采用Kaplan-Meier生存分析和Log rank檢驗(yàn),生存曲線的繪制采用GraphPad Prism 7軟件。以P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 GPSM1在CRC組織中的表達(dá)
免疫組織化學(xué)檢測(cè)結(jié)果顯示,GPSM1在CRC組織細(xì)胞漿中呈高表達(dá),在癌旁組織細(xì)胞漿呈低表達(dá)或不表達(dá)(圖1)。在CRC組織中,108例呈高表達(dá),42例呈低表達(dá);在癌旁組織中,21例呈高表達(dá),129例呈低表達(dá)。GPSM1在CRC組織與癌旁組織中的表達(dá)差異具有統(tǒng)計(jì)學(xué)意義(χ2=102.938, P<0.001)。
2.2 KRAS及NRAS基因突變情況
實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果顯示,CRC組織KRAS及NRAS突變率分別為44.00%(66/150)和3.33%(5/150)。
2.3 GPSM1表達(dá)水平與CRC病人臨床病理特征的關(guān)系
GPSM1在CRC組織中的高表達(dá)與淋巴結(jié)轉(zhuǎn)移(χ2=5.429,P=0.020)以及KRAS突變(χ2=4.030,P=0.045)相關(guān),而與性別、年齡、腫瘤部位、腫瘤大小、分化程度、TNM分期、浸潤(rùn)深度、遠(yuǎn)處轉(zhuǎn)移、NRAS突變等均無(wú)相關(guān)性(P>0.05)。見(jiàn)表1。
2.4 GPSM1表達(dá)與CRC病人預(yù)后的關(guān)系
根據(jù)GPSM1在CRC組織中的表達(dá)水平將CRC病人分為GPSM1高表達(dá)和低表達(dá)組,Kaplan Meier生存分析顯示,GPSM1高表達(dá)組(n=108)CRC病人的無(wú)病和總體生存期較GPSM1低表達(dá)組(n=42)明顯縮短(P=0.046、0.036)。見(jiàn)圖2。
3 討論
GPSM1是調(diào)節(jié)G蛋白信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)的重要蛋白之一,生理狀態(tài)下其主要作用是介導(dǎo)G蛋白信號(hào)轉(zhuǎn)導(dǎo)通路的調(diào)控,參與神經(jīng)元分化以及紡錘體形
成[3-5]。近年的研究發(fā)現(xiàn),GPSM1在多種腫瘤組織
中異常表達(dá),包括人食管鱗狀細(xì)胞癌、胃癌、前列腺癌等,并且與腫瘤惡性程度及細(xì)胞增殖和侵襲性相關(guān)[9-10,17]。但GPSM1在CRC組織中的表達(dá)及意義尚缺乏相關(guān)研究。本研究通過(guò)免疫組織化學(xué)染色檢測(cè)顯示,GPSM1在CRC組織中的表達(dá)水平較其在癌旁組織明顯升高,且是CRC病人預(yù)后不良的指標(biāo),提示GPSM1可能參與了CRC的發(fā)生發(fā)展。
目前研究表明,GPSM1與多種腫瘤的發(fā)生密切相關(guān)。SHI等[9]研究顯示,食管鱗狀細(xì)胞癌組織中GPSM1的低表達(dá)狀態(tài)與腫瘤的分級(jí)呈正相關(guān),GPSM1高表達(dá)的病人生存時(shí)間更長(zhǎng),GPSM1是食管鱗狀細(xì)胞癌病人獨(dú)立的預(yù)后因素;并且過(guò)表達(dá)GPSM1能夠明顯抑制食管鱗狀細(xì)胞癌細(xì)胞的增殖。ZHANG等[17]研究證實(shí),GPSM1的DNA甲基化可能參與胃癌的侵襲和轉(zhuǎn)移,并且與癌癥病人的預(yù)后顯著相關(guān)。ADEKOYA等[10]的研究結(jié)果表明,GPSM1在前列腺癌中表達(dá)水平明顯增高,前列腺癌細(xì)胞中過(guò)表達(dá)GPSM1可促進(jìn)體內(nèi)、體外腫瘤細(xì)胞的增殖。本研究對(duì)CRC組織中GPSM1表達(dá)與病人臨床病理特征的相關(guān)性進(jìn)行分析,結(jié)果顯示,CRC組織高表達(dá)GPSM1的病人更容易發(fā)生淋巴結(jié)轉(zhuǎn)移,而GPSM1表達(dá)與病人年齡、性別、腫瘤部位、腫瘤分化程度等均無(wú)關(guān)。進(jìn)一步分析GPSM1表達(dá)與CRC病人預(yù)后關(guān)系顯示,GPSM1高表達(dá)病人預(yù)后較差,提示GPSM1可能參與了CRC的侵襲轉(zhuǎn)移,是CRC預(yù)后不良的預(yù)測(cè)指標(biāo)。
目前,GPSM1在CRC中作用的分子機(jī)制及相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路尚未闡明。研究表明,Notch信號(hào)通路參與了CRC的上皮間質(zhì)轉(zhuǎn)化過(guò)程并調(diào)控腫瘤干細(xì)胞的形成,可促進(jìn)CRC轉(zhuǎn)移以及腫瘤形成[18]。Wnt/β-catenin信號(hào)通路在腸隱窩底部激活、結(jié)直腸穩(wěn)態(tài)維持及腫瘤形成過(guò)程中均發(fā)揮至關(guān)重要的作用[19]。另外,核因子κB(NF-κB)、表皮生長(zhǎng)因子受體(EGFR)、RAS等信號(hào)通路在調(diào)控CRC細(xì)胞凋亡、增殖、轉(zhuǎn)移方面均發(fā)揮重要作用[20-22]。
KRAS突變是常見(jiàn)的致癌性突變,以12、13位密碼子突變最為多見(jiàn)。突變型KRAS能夠擺脫上游信號(hào)分子EGFR的調(diào)控,促進(jìn)RAS-RAF-MEF-ERK信號(hào)通路的激活,增強(qiáng)腫瘤細(xì)胞對(duì)機(jī)體的適應(yīng)性,促進(jìn)腫瘤發(fā)生發(fā)展[23-24]。多項(xiàng)研究結(jié)果顯示,KRAS突變與CRC轉(zhuǎn)移顯著相關(guān),是CRC轉(zhuǎn)移的潛在生物標(biāo)志物[25-26]。本研究結(jié)果顯示,CRC組織中GPSM1表達(dá)水平與KRAS突變顯著相關(guān)。表明GPSM1可能與KRAS協(xié)同作用,促進(jìn)CRC的發(fā)生與演進(jìn),或可作為臨床檢測(cè)CRC轉(zhuǎn)移的補(bǔ)充指標(biāo)。KRAS突變可影響下游信號(hào)通路傳導(dǎo),使腫瘤細(xì)胞對(duì)西妥昔單抗產(chǎn)生耐藥,且KRAS與GPSM1
均可調(diào)控鳥(niǎo)嘌呤核苷酸的水解與結(jié)合,二者在功能上具有相似性[27-29]。這提示GPSM1可能與KRAS一同在西妥昔單抗的耐藥機(jī)制中發(fā)揮作用,或可成為西妥昔單抗耐藥的潛在指標(biāo)。
綜上所述,GPSM1在CRC中呈高表達(dá)狀態(tài),與CRC病人淋巴結(jié)轉(zhuǎn)移及KRAS突變存在相關(guān)性,并與不良預(yù)后相關(guān),可作為CRC診斷、治療及預(yù)后判斷的潛在指標(biāo)。
[參考文獻(xiàn)]
[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J].CA: a Cancer Journal for Clinicians, 2020,70(1):7-30.
[2]李雪梅,楊林. RAS基因突變型轉(zhuǎn)移性結(jié)直腸癌的治療研究進(jìn)展[J].癌癥進(jìn)展, 2019,17(11):1262-1265.
[3]DE VRIES L, FISCHER T, TRONCHRE H, et al. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gαi subunits[J].Proceedings of the National Academy of Sciences of the United States of America, 2000,97(26):14364-14369.
[4]LANIER S M. AGS proteins, GPR motifs and the signals processed by heterotrimeric G proteins[J].Biology of the Cell, 2004,96(5):369-372.
[5]WANG W, LI Q, ZOU F H, et al. Increased expression of AGS3 in rat brain cortex after traumatic brain injury[J].Journal of Neuroscience Research, 2013,91(5):726-736.
[6]FAGERBERG L, HALLSTRM B M, OKSVOLD P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J].Molecular & Cellular Proteomics, 2014,13(2):397-406.
[7]HAYDAR T F, ANG E, RAKIC P. Mitotic spindle rotation and mode of cell division in the developing telencephalon[J].PNAS, 2003,100(5):2890-2895.
[8]SANADA K, TSAI L H. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors[J].Cell, 2005,122(1):119-131.
[9]SHI H, REN H R, YANG X J, et al. Overexpression of activator of G-protein signaling 3 decreases the proliferation of esophageal squamous cell carcinoma[J].Pathology-Research and Practice, 2015,211(6):449-455.
[10]ADEKOYA T O, SMITH N, ALADENIYI T, et al. Activator of G protein signaling 3 modulates prostate tumor development and progression[J].Carcinogenesis, 2019,40(12):1504-1513.
[11]PATTINGRE S, DE VRIES L, BAUVY C, et al. The G-protein regulator AGS3 controls an early event during macroautophagy in human intestinal HT-29 cells[J].Journal of Biological Chemistry, 2003,278(23):20995-21002.
[12]LAWRENCE M S, STOJANOV P, MERMEL C H, et al. Discovery and saturation analysis of cancer genes across 21 tumour types[J].Nature, 2014,505(7484):495-501.
[13]SONG Y L, WANG L L, RAN W W, et al. Effect of tumor location on clinicopathological and molecular markers in colo-
rectal cancer in Eastern China patients: an analysis of 2,356 cases[J].Frontiers in Genetics, 2020,11:96.
[14]SHEN H, YUAN Y, HU H G, et al. Clinical significance of K-ras and BRAF mutations in Chinese colorectal cancer patients[J].World Journal of Gastroenterology, 2011,17(6):809-816.
[15]AMIN M B, GREENE F L, EDGE S B, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging[J].CA: a Cancer Journal for Clinicians, 2017,67(2):93-99.
[16]LUO Y G, WANG L L, RAN W W, et al. Overexpression of SAPCD2 correlates with proliferation and invasion of colorectal carcinoma cells[J].Cancer Cell International, 2020,20:43.
[17]ZHANG C L, ZHAO H Y, LI J, et al. The identification of specific methylation patterns across different cancers[J].PLoS One, 2015,10(3):e0120361. doi:10.1371/journal.pone.0120361.
[18]VINSON K E, GEORGE D C, FENDER A W, et al. The Notch pathway in colorectal cancer[J].International Journal of Cancer, 2016,138(8):1835-1842.
[19]NOVELLASDEMUNT L, ANTAS P, LI V S. Targeting wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms[J].American Journal of Physiology Cell Physiology, 2015,309(8):C511-C521.
[20]PATEL M, HORGAN P G, MCMILLAN D C, et al. NF-κB pathways in the development and progression of colorectal cancer[J].Translational Research, 2018,197:43-56.
[21]KHAN K, VALERI N, DEARMAN C, et al. Targeting EGFR pathway in metastatic colorectal cancer-tumour hete-
rogeniety and convergent evolution[J].Critical Reviews in Oncology/Hematology, 2019,143:153-163.
[22]SOLEIMANI A, RAHMANI F, SAEEDI N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer[J].Journal of Cellular Biochemistry, 2019,120(12):19245-19253.
[23]LAL N, WHITE B S, GOUSSOUS G, et al. KRAS mutation and consensus molecular subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer[J].Clinical Cancer Research, 2018,24(1):224-233.
[24]LIU P Y, WANG Y J, LI X. Targeting the untargetable KRAS in cancer therapy[J].Acta Pharmaceutica Sinica B, 2019,9(5):871-879.
[25]HUANG D D, SUN W J, ZHOU Y W, et al. Mutations of key driver genes in colorectal cancer progression and metastasis[J].Cancer and Metastasis Reviews, 2018,37(1):173-187.
[26]M RMOL I, S NCHEZ-DE-DIEGO C, PRADILLA DIESTE A, et al. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer[J].International Journal of Molecular Sciences, 2017,18(1):197.
[27]ADHIKARI A, SPRANG S R. Thermodynamic characterization of the binding of activator of G protein signaling 3 (AGS3) and peptides derived from AGS3 with Gαi1[J].Journal of Biological Chemistry, 2003,278(51):51825-51832.
[28]HAIGIS K M. KRAS alleles: the devil is in the detail[J].Trends in Cancer, 2017,3(10):686-697.
[29]UPRETY D, ADJEI A A. KRAS: From undruggable to a druggable Cancer Target[J].Cancer Treatment Reviews, 2020,89:102070.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年6期