王夢真
[摘要] 目的 探討α7煙堿型乙酰膽堿受體(α7-nAChR)的正向變構(gòu)調(diào)節(jié)劑(PAM)NS1738(Ⅰ型PAM)和PNU120596(Ⅱ型PAM)對原代培養(yǎng)的海馬神經(jīng)元活性的影響。
方法 原代培養(yǎng)的海馬神經(jīng)元用膽堿(choline)、choline+NS1738、choline+PNU120596處理7 d后,采用蛋白質(zhì)免疫印跡(Western blot)法檢測Bax、Bcl-2蛋白表達(dá)情況,乳酸脫氫酶(LDH)試劑盒檢測LDH的分泌情況,流式細(xì)胞儀檢測線粒體膜電位(△Ψm)的變化。
結(jié)果
與對照組(不做任何處理)相比,choline+NS1738組和choline+PNU120596組原代海馬神經(jīng)元Bax/Bcl-2蛋白表達(dá)比值顯著降低(F=12.15,q=7.742、6.982,P<0.05),LDH分泌明顯減少(F=11.72,q=6.551、7.807,P<0.05),△Ψm明顯升高(F=21.73,q=7.835、4.331,P<0.05)。與choline組相比較,choline+NS1738組和choline+PNU120596組原代海馬神經(jīng)元Bax/Bcl-2蛋白表達(dá)比值和LDH分泌差異無顯著性(P>0.05);而△Ψm明顯升高,差異具有統(tǒng)計學(xué)意義(F=21.73,q=10.550、7.045,P<0.05)。
結(jié)論 α7-nAChR PAM能夠減少原代培養(yǎng)海馬神經(jīng)元的凋亡數(shù)量,升高細(xì)胞活性。
[關(guān)鍵詞] α7煙堿型乙酰膽堿受體;神經(jīng)遞質(zhì)藥;海馬;神經(jīng)元;細(xì)胞活性;膜電位,線粒體
[中圖分類號] R338.2;R971
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2021)06-0811-04
doi:10.11712/jms.2096-5532.2021.57.201
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20211230.1017.006.html;2021-12-30 14:40:09
EFFECT OF α7-NACHR POSITIVE ALLOSTERIC MODULATOR ON PRIMARY HIPPOCAMPAL NEURON ACTIVITY
WANG Mengzhen
(Department of Physiology and Pathophysiology, School of Basic Medical, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]Objective To explore the effects of alpha-7 nicotinic acetylcholine receptor (α7-nAChR) positive allosteric modulator (PAM) NS1738 (type Ⅰ PAM) and PNU120596 (type Ⅱ PAM) on the activity of primary cultured hippocampal neurons.
Methods The primary cultured hippocampal neurons were separately treated with choline, choline + NS1738, and choline + PNU120596 for 7 days. Western blot was used to measure the expression of Bax and Bcl-2 proteins, and lactate dehydroge-
nase (LDH) kits were used to measure the LDH release; flow cytometry was used to measure the change in mitochondrial membrane potential (△Ψm).
Results Compared with the control group (without any treatment), the choline + NS1738 group and choline + PNU120596 group had significantly reduced Bax/Bcl-2 protein expression ratios (F=12.15;q=7.742,6.982;P<0.05) and LDH secretion (F=11.72;q=6.551,7.807;P<0.05), and significantly increased △Ψm (F=21.73;q=7.835,4.331;P<0.05) in primary hippocampal neurons. There were no significant differences in the Bax/Bcl-2 protein expression ratio and LDH secretion in primary hippocampal neurons between the choline group and the choline+NS1738 group or choline+PNU120596 group (all P>0.05), but compared with the choline group, the choline + NS1738 group and choline + PNU120596 group had significantly increased △Ψm (F=21.73;q=10.550,7.045;P<0.05).
Conclusion α7-nAChR PAM can reduce the apoptosis of primary cultured hippocampal neurons and increase cell viability.
[KEY WORDS]alpha 7 nicotinic acetylcholine receptor; neurotransmitter agents; hippocampus; neurons; cell viability; membrane potential, mitochondrial
阿爾茲海默?。ˋD)是一種進(jìn)行性神經(jīng)退行性疾病,其記憶障礙與神經(jīng)元變性以及突觸損傷有關(guān)[1-2]。神經(jīng)元煙堿型乙酰膽堿受體(nAChR)是公認(rèn)的認(rèn)知和神經(jīng)退行性疾病中藥物開發(fā)的靶標(biāo)[3]。在中樞神經(jīng)系統(tǒng)中,nAChR以同聚或異聚形式存在,其中含量最豐富的同聚nAChR是α7-nAChR,α7-nAChR是大腦(尤其是海馬)中主要的nAChR亞型之一[4-5]。
α7-nAChR屬于五聚體配體門控離子通道超家族,它通過打開可滲透陽離子的內(nèi)在通道對乙酰膽堿(Ach)做出應(yīng)答,從而觸發(fā)膜快速除極和鈣離子內(nèi)流[2]。有研究表明,α7-nAChR與AD的發(fā)病機(jī)制有關(guān)[6],并且β-淀粉樣蛋白(Aβ)對α7-nAChR有極高親和力,且影響α7-nAChR的功能[7-10]。在AD病人和動物模型中,α7-nAChR的表達(dá)水平明顯升高[11-13]。另有研究結(jié)果表明,nAChR的α7亞基基因缺失可改善AD模型小鼠的功能缺陷[14],這提示α7-nAChR表達(dá)上調(diào)可能參與了AD的發(fā)病[15]。眾所周知,α7-nAChR具有較高的Ca2+滲透性[16],并且α7-nAChR的激活可以增加突觸前谷氨酸的釋放[17],這兩者都可能會導(dǎo)致神經(jīng)毒性。本實驗的主要目的是探討在低濃度膽堿(choline)存在的條件下,α7-nAChR正向變構(gòu)調(diào)節(jié)劑(PAM)NS1738(Ⅰ型PAM)和PNU120596(Ⅱ型PAM)對海馬神經(jīng)元活性的影響。
1 材料與方法
1.1 主要試劑及儀器
DMEM高糖及DMEM/F12培養(yǎng)液(美國Hyclone公司),青霉素/鏈霉素雙抗溶液(中國索萊寶科技有限公司),2.5 g/L胰蛋白酶(以色列BI公司),B27無血清添加劑(美國Gibco公司),D-多聚賴氨酸(美國Sigma公司),Choline、PNU120596及NS1738(中國MCE公司),Bax抗體(中國Cell Signaling Technology公司),Bcl-2抗體(中國Absin公司),乳酸脫氫酶(LDH)檢測試劑盒(中國南京建成生物工程研究所);37 ℃恒溫培養(yǎng)箱,酶標(biāo)儀,流式細(xì)胞儀。
1.2 原代海馬神經(jīng)元培養(yǎng)
實驗前高壓處理實驗所用器械,烘干箱烘干;細(xì)胞培養(yǎng)板用D-多聚賴氨酸提前3 h鋪板,用高壓滅菌雙蒸水清洗3次備用。將新生24 h以內(nèi)SD乳鼠斷頭取腦,置DMEM高糖基礎(chǔ)培養(yǎng)液中,取出海馬組織,去除腦膜和血管膜,37 ℃下用胰蛋白酶消化5 min,加入終止液終止消化。用不同量程的槍頭輕輕梯度吹打,將組織吹打成單細(xì)胞懸液,每吹打完1次取上清于離心管中,吹打結(jié)束后以1 000 r/min離心5 min,棄上清,用含有體積分?jǐn)?shù)0.02 B27無血清添加劑、體積分?jǐn)?shù)0.01青霉素/鏈霉素雙抗的DMEM/F12基礎(chǔ)培養(yǎng)液配制的培養(yǎng)液重懸,以2×108/L的細(xì)胞密度接種于12孔板中,每3.5 d換液1次,培養(yǎng)細(xì)胞至7 d左右,觀察細(xì)胞狀態(tài)以進(jìn)行后續(xù)實驗。實驗全程在冰上操作。
1.3 實驗分組及處理
將海馬神經(jīng)元細(xì)胞分為對照組(A組,不進(jìn)行任何處理)、choline組(B組)、choline+NS1738組(C組)和choline+PNU120596組(D組)。Choline、NS1738和PNU120596的藥物處理濃度分別為1、5、1 μmol/L。將細(xì)胞置于37 ℃、含體積分?jǐn)?shù)0.05 CO 2的培養(yǎng)箱中培養(yǎng),每24 h重新更換培養(yǎng)液并加藥處理,共處理7 d。
1.4 蛋白免疫印跡(Western blot)法檢測Bax、Bcl-2蛋白表達(dá)
在12孔板中加入50 μL蛋白裂解液,冰上裂解30 min,用細(xì)胞刮板將培養(yǎng)板底的細(xì)胞刮下,用移液器將裂解液轉(zhuǎn)移至1.5 mL的EP管中,4 ℃下以12 000 r/min離心30 min。用移液器吸取40 μL上清至另一EP管中,使用BCA試劑盒檢測上清液中蛋白質(zhì)濃度,加入5×Loading Buffer,95 ℃以上加熱5 min。按照BCA試劑盒檢測的蛋白濃度計算SDS-PAGE凝膠電泳的上樣量,電泳電壓80 V,跑進(jìn)分離膠后,將電壓調(diào)至120 V。電泳之后將蛋白轉(zhuǎn)至PVDF膜上,300 mA濕轉(zhuǎn)90 min,切下所需分子量的條帶,用含50 g/L脫脂奶粉的TBST室溫封閉2 h,分別加入用TBST稀釋的Bax抗體(1∶1 000)、Bcl-2抗體(1∶1 000)和β-actin抗體(1∶10 000)孵育相應(yīng)的條帶,4 ℃搖床過夜。以TBST洗條帶3次,每次10 min,加入HRP偶聯(lián)的山羊抗兔二抗(稀釋比例1∶10 000)室溫孵育1 h,孵育完成后以TBST洗3次,每次10 min。用ECL發(fā)光液避光孵育1 min顯影。應(yīng)用Image J軟件對條帶進(jìn)行分析,以目的條帶與內(nèi)參照條帶灰度值的比值作為目的蛋白的相對含量。
1.5 海馬神經(jīng)元LDH分泌量檢測
細(xì)胞處理結(jié)束后,各組取部分培養(yǎng)液,置于冰上以備LDH檢測。LDH檢測嚴(yán)格按照試劑盒說明書進(jìn)行。將待測樣本轉(zhuǎn)移到96孔板中,加入基質(zhì)緩沖液和輔酶Ⅰ,37 ℃孵育15 min,加入2,4-二硝基苯肼,37 ℃孵育15 min,加入NaOH溶液,室溫孵育5 min,用酶標(biāo)儀測定各孔在波長450 nm處的吸光度值。按照試劑盒說明書的公式計算培養(yǎng)液中LDH含量。
1.6 線粒體膜電位(△Ψm)檢測
細(xì)胞處理結(jié)束后棄上清液,用0.01 mol/L的HBS清洗1次,每孔加入5 mg/L的羅丹明123(Rh123)溶液500 μL,37 ℃避光孵育30 min,吸除Rh123,使用HBS清洗3次,每孔加入新的HBS 500 μL,吹打成單細(xì)胞懸液,用300目細(xì)胞篩過濾到流式管中,以激發(fā)波長488 nm、發(fā)射波長523 nm進(jìn)行測定,F(xiàn)CS/SSC設(shè)門,收集門內(nèi)10 000個細(xì)胞,用CELLQuest Pro分析系統(tǒng)分析每組細(xì)胞的熒光強(qiáng)度。
1.7 統(tǒng)計學(xué)處理
使用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計學(xué)處理。實驗結(jié)果以±s形式表示,多組比較采用單因素方差分析,并繼以Tukey法進(jìn)行組間兩兩比較。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 NS1738和PNU120596對原代海馬神經(jīng)元Bax/Bcl-2蛋白表達(dá)的影響
與對照組相比,choline組、choline+NS1738組、choline+PNU120596組Bax/Bcl-2蛋白表達(dá)比值均明顯下降,差異均具有統(tǒng)計學(xué)意義(F=12.15,q=4.742~7.742,P<0.05);與choline組相比較,choline+NS1738組、choline+PNU120596組Bax/Bcl-2蛋白表達(dá)比值差異無顯著意義(q=3.000、2.240,P>0.05)。見表1。
2.2 NS1738和PNU120596對原代海馬神經(jīng)元LDH分泌的影響
與對照組相比,choline組、choline+NS1738組、choline+PNU120596組LDH分泌明顯減少,差異具有統(tǒng)計學(xué)意義(F=11.72,q=4.975~7.807,P<0.05);與choline組相比,choline+NS1738組、choline+PNU120596組LDH分泌差異無顯著性(q=1.576、2.832,P>0.05)。見表1。
2.3 NS1738和PNU120596對原代海馬神經(jīng)元△Ψm的影響
與對照組相比,choline+NS1738組、choline+PNU120596組△Ψm明顯升高,差異具有統(tǒng)計學(xué)意義(F=21.73,q=7.835、4.331,P<0.05);與choline組細(xì)胞相相比,choline+NS1738組、choline+PNU120596組△Ψm也明顯升高,差異具有統(tǒng)計學(xué)意義(q=10.550、7.045,P<0.05);choline組△Ψm與對照組相比差異無顯著性(q=2.714,P>0.05)。見表1。
3 討論
AD的一個標(biāo)志是Aβ沉積,這被認(rèn)為是淀粉樣蛋白前體蛋白(APP)加工異常和Aβ產(chǎn)生增加的結(jié)果[18]。α7-nAChR屬于五聚體配體門控離子通道超家族,它通過打開可滲透陽離子的內(nèi)在通道對Ach做出應(yīng)答,從而觸發(fā)膜快速除極和鈣離子內(nèi)流[2]。有證據(jù)表明,α7-nAChR與AD相關(guān),參與認(rèn)知、學(xué)習(xí)記憶、獎賞等過程[19],在AD病人大腦(尤其是海馬)中α7-nAChR表達(dá)明顯減少[20],并且表達(dá)α7-nAChR的神經(jīng)元更容易出現(xiàn)AD神經(jīng)病理學(xué)特征[21]。受體激動劑的應(yīng)用可能引起受體活化,但也會使其脫敏,可能無助于甚至是阻礙了受體對生理神經(jīng)元活性的反應(yīng)[22]。α7-nAChR的PAM是一類化合物,分為兩種類型:Ⅰ型(例如NS1738)主要增強(qiáng)激動劑誘發(fā)的峰值電流,但可保持其快速動力學(xué)特征,并且不會重新激活脫敏受體;Ⅱ型(例如PNU120596)可以延遲脫敏受體,并可重新激活脫敏受體[22]。PAM需要內(nèi)源性配體(即Ach或choline)來引發(fā)nAChR反應(yīng)[19]。PAM通過結(jié)合激動劑或抑制劑的正構(gòu)位點(diǎn)來調(diào)節(jié)受體的功能,進(jìn)而促進(jìn)細(xì)胞內(nèi)信息傳遞。PAM的存在可以維持生理活動時空模式,并增強(qiáng)響應(yīng),所以與激動劑相比,PAM具有內(nèi)源性激活特性,對受體更具選擇性,因此是更有前途的治療策略[23]。
但是,目前還不清楚α7-nAChR的下調(diào)或上調(diào)是否與AD的發(fā)病機(jī)制有關(guān)[5]。本實驗結(jié)果顯示,與對照組相比較,choline組Bax/Bcl-2蛋白表達(dá)比值下降,在存在1 μmol/L choline的條件下,應(yīng)用α7-nAChR PAM NS1738和PNU120596后,海馬神經(jīng)元Bax/Bcl-2蛋白表達(dá)比值也明顯下降。Bax和Bcl-2屬于細(xì)胞死亡的調(diào)節(jié)蛋白,在正常生理條件下,Bax家族可促進(jìn)凋亡發(fā)生,而Bcl-2家族抑制凋亡發(fā)生,所以當(dāng)細(xì)胞發(fā)生凋亡時,Bax/Bcl-2比值上升。該比值變小表明,使用α7-nAChR的PAM處理時,海馬神經(jīng)元凋亡數(shù)量減少。當(dāng)細(xì)胞凋亡時,細(xì)胞膜會發(fā)生破裂,細(xì)胞內(nèi)的LDH釋放到細(xì)胞外,導(dǎo)致培養(yǎng)液中的LDH含量增加。本文研究結(jié)果顯示,choline組、choline+NS1738組和choline+PNU120596組的LDH分泌減少,也印證了海馬神經(jīng)元凋亡數(shù)量減少。當(dāng)細(xì)胞出現(xiàn)凋亡時,△Ψm減小甚至消失。而本文結(jié)果顯示,choline+NS1738組和choline+PNU120596組的△Ψm升高。上述實驗結(jié)果在一定程度上表明,在choline濃度較低的條件下,應(yīng)用兩種PAM并未導(dǎo)致細(xì)胞凋亡的出現(xiàn),也從側(cè)面反映出了兩種藥物可提高海馬神經(jīng)元活性。但是與choline組相比,PAM處理組的Bax/Bcl-2蛋白表達(dá)比值和LDH釋放差異均無顯著性,而△Ψm明顯升高。這表明在choline濃度較低的情況下,兩種PAM只引起了能量代謝方面的變化,細(xì)胞外的蛋白水平還未出現(xiàn)明顯變化,后續(xù)或許應(yīng)該提高choline和PAM的濃度進(jìn)一步研究。
[參考文獻(xiàn)]
[1]SELKOE D J, HARDY J. The amyloid hypothesis of Alzheimer’s disease at 25 years[J].EMBO Molecular Medicine, 2016,8(6):595-608.
[2]LASALA M, FABIANI C, CORRADI J, et al. Molecular modulation of human α7 nicotinic receptor by amyloid-β peptides[J].Frontiers in Cellular Neuroscience, 2019,13:37.
[3]WILLIAMS D K, WANG J Y, PAPKE R L. Positive alloste-
ric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations[J].Biochemical Pharmacology, 2011,82(8):915-930.
[4]WHITING P J, LINDSTROM J M. Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies[J].The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1988,8(9):3395-3404.
[5]BORRONI V, KAMERBEEK C, PEDICONI M F, et al. Lo-
vastatin differentially regulates α7 and α4 neuronal nicotinic acetylcholine receptor levels in rat hippocampal neurons[J].Molecules (Basel, Switzerland), 2020,25(20):E4838.
[6]LIU Q, XIE X, LUKAS R J, et al. A novel nicotinic mechanism underlies beta-amyloid-induced neuronal hyperexcitation[J].Journal of Neuroscience, 2013,33(17):7253-7263.
[7]WANG H Y, LEE D H, D’ANDREA M R, et al. Beta-Amyloid(1-42) binds to alpha 7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology[J].The Journal of Biological Chemistry, 2000,275(8):5626-5632.
[8]WANG H Y, LEE D H, DAVIS C B, et al. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha 7 nicotinic acetylcholine receptors[J].Journal of Neurochemistry, 2000,75(3):1155-1161.
[9]LIU Q, KAWAI H, BERG D K. Beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hip-
pocampal neurons[J].Proceedings of the National Academy of Sciences of the United States of America, 2001,98(8):4734-4739.
[10]PETTIT D L, SHAO Z, YAKEL J L. Beta-Amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hip-
pocampal slice[J].The Journal of Neuroscience, 2001,21(1):RC120.
[11]JONES I W, WESTMACOTT A, CHAN E, et al. Alpha 7 nicotinic acetylcholine receptor expression in Alzheimer’s di-
sease: receptor densities in brain regions of the APP (SWE) mouse model and in human peripheral blood lymphocytes[J].Journal of Molecular Neuroscience: MN, 2006,30(1/2):83-84.
[12]COUNTS S E, HE B, CHE S L, et al. Alpha 7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease[J].Archives of Neurology, 2007,64(12):1771-1776.
[13]IKONOMOVIC M D, WECKER L, ABRAHAMSON E E, et al. Cortical alpha 7 nicotinic acetylcholine receptor and beta-amyloid levels in early Alzheimer disease[J].Archives of Neurology, 2009,66(5):646-651.
[14]DZIEWCZAPOLSKI G, GLOGOWSKI C M, MASLIAH E, et al. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease[J].The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2009,29(27):8805-8815.
[15]LIU Q, XIE X T, EMADI S, et al. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity[J].Neuropharmacology, 2015,97:457-463.
[16]BERTRAND D, BERTRAND S, BALLIVET M. Pharmacological properties of the homomeric alpha 7 receptor[J].Neuroscience Letters, 1992,146(1):87-90.
[17]MCKAY B E, PLACZEK A N, DANI J A. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors[J].Biochemical Pharmacology, 2007,74(8):1120-1133.
[18]GOEDERT M, SPILLANTINI M G. A century of Alzheimer’s disease[J].Science, 2006,314(5800):777-781.
[19]TERRY A V, CALLAHAN P M. Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery[J].Nicotine & Tobacco Research, 2019,21(3):383-394.
[20]DINELEY K T, PANDYA A A, YAKEL J L. Nicotinic ACh receptors as therapeutic targets in CNS disorders[J].Trends in Pharmacological Sciences, 2015,36(2):96-108.
[21]MA K G, QIAN Y H. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease[J].Neuropeptides, 2019,73:96-106.
[22]PESTI K, LUKACS P, MIKE A. Type Ⅰ-like behavior of the type Ⅱ α7 nicotinic acetylcholine receptor positive allosteric modulator A-867744[J].Peer J, 2019,7:e7542. doi:10.7717/peerj.7542.
[23]BOUZAT C, LASALA M, NIELSEN B E, et al. Molecular function of α7 nicotinic receptors as drug targets[J].The Journal of Physiology, 2018,596(10):1847-1861.
(本文編輯 馬偉平)