黃明逸,張展羽,翟亞明,王 策,齊 偉,朱成立
咸淡交替灌溉下生物炭對(duì)濱海鹽漬土及玉米產(chǎn)量的影響
黃明逸1,2,張展羽2※,翟亞明2,王 策2,齊 偉1,朱成立2
(1. 河海大學(xué)水利水電學(xué)院,南京 210098;2. 河海大學(xué)農(nóng)業(yè)科學(xué)與工程學(xué)院,南京 210098)
濱海灘涂地區(qū)蘊(yùn)藏著豐富的微咸水資源,該研究提出咸淡交替灌溉和生物炭相結(jié)合的方法來促進(jìn)這類次等水土資源的農(nóng)業(yè)生產(chǎn)。于2017年和2018年進(jìn)行了遮雨條件下濱海鹽漬土玉米種植試驗(yàn),并設(shè)置了不同咸淡交替灌溉(全淡水灌溉,分別在六葉至抽雄、抽雄至吐絲、吐絲至成熟期灌溉3 g/L微咸水而其余時(shí)期淡水)和生物炭(0、15、30 t/hm2)處理。結(jié)果表明,咸淡交替灌溉下鹽漬土電導(dǎo)率和堿化度明顯升高,鹽漬化程度與微咸水比例和順序有關(guān)。六葉至抽雄期微咸水灌溉可嚴(yán)重抑制葉片生長(zhǎng)和干物質(zhì)累積,并導(dǎo)致籽粒數(shù)量和重量下降,造成27.2%~32.8%減產(chǎn);抽雄至吐絲期微咸水灌溉下作物受損降低,但減少了籽粒數(shù)量,造成11.4%~14.0%減產(chǎn);吐絲至成熟期微咸水灌溉無明顯影響。施用生物炭后,咸淡交替灌溉下鹽漬土電導(dǎo)率和堿化度降低了3.7%~21.7%和9.2%~45.2%,總孔隙度和水穩(wěn)性團(tuán)聚體增加了3.1%~11.9%和40.0%~168.9%,有效氮、磷、鉀含量提高了34.9%~104.0%、21.0%~58.1%和13.6%~57.8%。隨著土壤條件改良,生物炭有助于增強(qiáng)玉米生長(zhǎng)前中期的耐鹽性能進(jìn)而緩解鹽脅迫危害,在六葉至吐絲期間灌溉微咸水仍能保持良好的葉面積指數(shù)、干物質(zhì)累積和產(chǎn)量特性,因此促進(jìn)了咸淡交替灌溉的可行性和適用性,相同交替灌溉下籽粒產(chǎn)量提高了10.9%~32.3%。該結(jié)果對(duì)濱海地區(qū)鹽漬化水土資源的農(nóng)業(yè)利用具有指導(dǎo)作用。
灌溉;生物炭;玉米;濱海鹽漬土;微咸水;交替灌溉
濱海灘涂地區(qū)蘊(yùn)藏著大量可用于農(nóng)業(yè)發(fā)展的潛在土地資源,對(duì)于緩解土地需求和確保糧食安全至關(guān)重要。近年來,濱海灘涂地已不斷被復(fù)墾用于農(nóng)業(yè)生產(chǎn),但灘涂土壤含鹽量高、質(zhì)量差等障礙因素嚴(yán)重限制了作物產(chǎn)量[1]。同時(shí),濱海地區(qū)復(fù)墾將消耗大量的淡水資源用于鹽分淋洗和農(nóng)業(yè)灌溉。隨著海水頂托、地下淡水過度開采和工商業(yè)對(duì)水資源競(jìng)爭(zhēng)的加劇,淡水資源對(duì)農(nóng)業(yè)生產(chǎn)的供應(yīng)日益減少。淡水資源匱乏成為了濱海墾區(qū)農(nóng)業(yè)發(fā)展的另一個(gè)重大障礙,由于淡水短缺,農(nóng)業(yè)用戶每年遭受著約30%以上的產(chǎn)量損失[2]。濱海區(qū)豐富的微咸水已成為重要的淡水替代物,合理利用微咸水以推動(dòng)農(nóng)業(yè)發(fā)展得到了極大關(guān)注[3]。
微咸水可能導(dǎo)致次生鹽漬化并引起土壤結(jié)構(gòu)失穩(wěn)、表面結(jié)皮、透水性降低等問題,破壞了土地資源的可持續(xù)性[4]。同時(shí),過高的鹽分可降低土壤溶液滲透勢(shì),抑制根系吸水和作物生長(zhǎng),隨著鹽分離子在作物體內(nèi)積累,將造成離子毒性和營(yíng)養(yǎng)失衡,破壞正常新陳代謝活動(dòng)[5]。因此,適宜的微咸水利用方法對(duì)于濱海地區(qū)農(nóng)業(yè)發(fā)展極其重要,交替使用微咸水和淡水進(jìn)行灌溉不僅可緩解淡水短缺問題,還可降低微咸水對(duì)土壤和作物的不良影響[6]。牛君仿等[7]和Singh[8]發(fā)現(xiàn),相比于微咸水直接灌溉或咸淡水混合灌溉,咸淡交替灌溉更有利于控制土壤鹽分,降低土壤鹽漬化風(fēng)險(xiǎn),且可保證更高的作物產(chǎn)量。咸淡交替灌溉已在國(guó)內(nèi)外多地玉米、小麥、棉花等作物生產(chǎn)中推廣并獲得較好的成效[9-11]。沿海季風(fēng)氣候下,濱海地區(qū)降水一般集中在較短時(shí)間內(nèi),淡水資源在時(shí)空分布上極不均勻。整個(gè)生育期內(nèi)淡水供應(yīng)可能是不充足的,可在短缺時(shí)段采用微咸水灌溉,以滿足作物用水需求,因此咸淡交替灌溉在濱海農(nóng)區(qū)是適宜的。然而,生長(zhǎng)季節(jié)內(nèi)的淡水資源分布和作物耐鹽性能變化是影響咸淡交替灌溉的關(guān)鍵因素,通常需在耐鹽性較差時(shí)采取淡水灌溉而耐鹽性較好時(shí)實(shí)施微咸水灌溉,以收獲良好的作物產(chǎn)量,保障咸淡交替灌溉效益[8-9]。目前,研究區(qū)通常采取微咸水和淡水混合灌溉,關(guān)于交替灌溉的信息較少,因此本研究旨在完善咸淡交替灌溉在濱海鹽漬土壤玉米生產(chǎn)中的應(yīng)用研究。
生物炭是在低氧下生物質(zhì)熱解生成的有機(jī)材料,具有多孔結(jié)構(gòu)、大比表面積和高離子交換量等特點(diǎn)[12]。生物炭作為土壤改良劑可以改善土壤物理性質(zhì),如容重、孔隙結(jié)構(gòu)、團(tuán)聚特性、持水導(dǎo)水能力等[13]。生物炭施用還有利于提高土壤有機(jī)質(zhì)含量、養(yǎng)分供應(yīng)和陽離子交換量,從而促進(jìn)養(yǎng)分有效性和肥力水平[14]。此外,添加生物炭有利于改善根際微生物環(huán)境,增強(qiáng)土壤酶活性和微生物生長(zhǎng)[15]。勾芒芒等[16]發(fā)現(xiàn),生物炭可以減緩鹽分脅迫對(duì)作物的危害,并提高作物耐鹽性能,如改善作物水分狀況、降低鹽分離子吸收、促進(jìn)養(yǎng)分?jǐn)z取和調(diào)節(jié)植物激素等。近年來,生物炭作為土壤改良劑在邊際水土資源的農(nóng)業(yè)生產(chǎn)中發(fā)揮著越來越大的作用,在鹽漬化土壤或咸水灌溉條件下促進(jìn)了玉米、小麥、水稻、馬鈴薯、番茄和大豆等作物的生長(zhǎng)生產(chǎn)[17]。鑒于生物炭在鹽堿農(nóng)業(yè)環(huán)境中的應(yīng)用潛力,可能有助于緩解作物耐鹽性能薄弱時(shí)微咸水灌溉的不良影響,進(jìn)而提高咸淡水交替灌溉的農(nóng)業(yè)收益。
綜上所述,考慮到濱海農(nóng)區(qū)鹽漬土較差的土壤質(zhì)量和咸淡交替灌溉的局限性,本研究提出了咸淡交替灌溉與生物炭相結(jié)合的方法,以期促進(jìn)濱海地區(qū)微咸水和鹽漬土這類次等水土資源的農(nóng)業(yè)利用效率。本試驗(yàn)?zāi)康氖茄芯坎煌痰惶婀喔群蜕锾渴┯脤?duì)濱海鹽漬土理化性質(zhì)和玉米生長(zhǎng)生產(chǎn)的影響。研究結(jié)果對(duì)濱海地區(qū)土地資源高效開發(fā)、緩解淡水匱缺壓力和促進(jìn)微咸水安全利用具有重要意義。
試驗(yàn)于2017年和2018年在河海大學(xué)節(jié)水園(31°57'N,118°50'E)進(jìn)行。試驗(yàn)區(qū)氣候?yàn)閬啛釒Ъ撅L(fēng)氣候,多年平均氣溫為15.7 ℃,平均降水量為1 021.3 mm,平均蒸發(fā)量約為900 mm,日照數(shù)約為2 200 h。試驗(yàn)采取田間小區(qū)種植方式,小區(qū)位于透明遮雨棚內(nèi),單個(gè)小區(qū)長(zhǎng)150 cm、寬100 cm、深100 cm,底部設(shè)有礫石層,便于排水,四周由防水板分隔(圖1)。試驗(yàn)共計(jì)36個(gè)田間小區(qū),呈條形布置,設(shè)有3條種植帶,分別控制12個(gè)小區(qū),種植帶之間相隔100 cm。
圖1 田間小區(qū)示意圖
鹽漬土取自東南沿海的鹽城市濱海圍墾區(qū)東川農(nóng)場(chǎng)(32°96'N,120°87'E)的表層土壤,質(zhì)地屬于粉砂壤土。生物炭是在密封窯中通過550~600 ℃熱解小麥秸稈4~6 h后獲得,主要屬性按國(guó)際生物炭協(xié)會(huì)所撰技術(shù)規(guī)范[18]進(jìn)行了測(cè)定。供試濱海鹽漬土和生物炭的主要特性如表1所示。灌溉用水為淡水和3 g/L微咸水,淡水取自試驗(yàn)區(qū)自來水系統(tǒng),微咸水根據(jù)取土農(nóng)區(qū)地下淺層微咸水的鹽分組成,以Na2SO4、CaCl2、NaCl和MgCl2按2︰2︰1︰1質(zhì)量比與淡水充分溶解至礦化度3 g/L濃度配置而成,淡水和微咸水電導(dǎo)率分別為0.30和4.75 dS/m,鈉吸附比分別為1.0和11.9。
供試作物為蘇玉29號(hào)夏玉米,種植密度為每平方米6株,行距約75 cm,株距約25 cm,2017年于6月21日播種,播種前施以300、150、150 kg/hm2磷酸氫二銨、尿素、氯化鉀作為底肥,并灌溉充足淡水,使小區(qū)土壤初始含水率基本達(dá)到田間持水率,以保證出苗和幼苗生長(zhǎng),10月17日收獲,移除地上干物質(zhì)后,小區(qū)翻耕至20 cm,2018年于6月23日播種,10月20日收獲,農(nóng)藝措施均按照當(dāng)?shù)卮筇锓N植經(jīng)驗(yàn)進(jìn)行。試驗(yàn)設(shè)咸淡交替灌溉和生物炭2個(gè)因素,包括了12個(gè)處理(3種生物炭水平×4種咸淡交替灌溉),每個(gè)處理進(jìn)行3次重復(fù),試驗(yàn)設(shè)計(jì)如表2所示。生物炭水平分別為0、15、30 t/hm2,于2017年播種前一次性施入小區(qū),均勻鋪撒在土壤表層并通過人工翻耕與0~20 cm土壤充分混合。玉米在三葉期進(jìn)行定苗,按生育期劃分六葉至抽雄、抽雄至吐絲和吐絲至成熟3個(gè)時(shí)期,各占30 d左右。咸淡交替灌溉是分別在六葉至抽雄期(B)、抽雄至吐絲期(C)、吐絲至成熟期(D)進(jìn)行3 g/L微咸水灌溉而其他時(shí)期進(jìn)行淡水灌溉,并以全淡水灌溉(A)作為對(duì)照。作物得到充分灌溉,灌水定額設(shè)為60 mm,使用取土烘干法確定0~60 cm土壤含水率以指導(dǎo)灌溉,當(dāng)接近田間持水率70%時(shí)進(jìn)行灌水,所有處理灌水量一致。2017年和2018年生育期內(nèi)共灌水420 mm,六葉至抽雄期、抽雄至吐絲期、吐絲至成熟期灌水量分別為120、180、120 mm。
表2 生物炭施用下玉米咸淡交替灌溉試驗(yàn)設(shè)計(jì)
玉米收獲后,用環(huán)刀及土鉆對(duì)表層20 cm土壤進(jìn)行取樣,每個(gè)小區(qū)隨機(jī)各取3次計(jì)算平均值。土壤總孔隙度通過環(huán)刀法測(cè)定;水穩(wěn)性團(tuán)聚體采用濕篩法測(cè)定,取50 g風(fēng)干土樣置于孔徑為0.1、0.25、0.5、1、2和5 mm的篩組,浸泡于水中,以每分鐘20次速度篩分5 min,提取團(tuán)聚體烘干后測(cè)得水穩(wěn)性團(tuán)聚體質(zhì)量分?jǐn)?shù);土壤電導(dǎo)率采用飽和萃取液法,使用DDBJ-350電導(dǎo)率儀測(cè)定;堿化度測(cè)定為交換性Na+與陽離子交換量的百分比交換性,Na+含量采用醋酸銨-氫氧化銨法測(cè)得,陽離子交換量采用醋酸鈉法測(cè)得[19];有效氮含量采用堿解擴(kuò)散法[20]測(cè)得;速效磷采用Olsen法[21]測(cè)得;速效鉀采用乙酸銨萃取法[22]測(cè)得。
灌溉開始后每2周測(cè)量葉面積,選擇長(zhǎng)勢(shì)一致、有代表性的3株玉米采用LI-3000A葉面積儀測(cè)定有效葉片面積,根據(jù)種植密度計(jì)算葉面積指數(shù)(Leaf Area Index, LAI),收獲時(shí)各小區(qū)收集每平方米6株玉米進(jìn)行測(cè)產(chǎn),根部干物質(zhì)以植株周圍50 cm×50 cm分層收集后水洗過篩得到。玉米根莖葉及果穗裝入密封袋在105 ℃烘箱內(nèi)殺青2 h,并于75 ℃下烘至恒質(zhì)量后,確定根部干物質(zhì)質(zhì)量、地上干物質(zhì)質(zhì)量、每株穗粒數(shù)、百粒質(zhì)量和籽粒產(chǎn)量。
數(shù)據(jù)分析在SPSS 20中進(jìn)行,以咸淡交替灌溉(A、B、C、D)、生物炭(0、15、30 t/hm2)作為主效應(yīng)因素對(duì)2017年和2018年土壤和產(chǎn)量指標(biāo)進(jìn)行方差分析,并采用Duncan法進(jìn)行多重比較(=0.05),以不同小寫字母表示差異性顯著(<0.05)。
咸淡交替灌溉和生物炭對(duì)土壤電導(dǎo)率和堿化度的影響如表3所示。同一生物炭水平下,咸淡交替灌溉明顯增加了電導(dǎo)率(<0.05),C處理最大,其次是D和B,2017年C處理電導(dǎo)率值較A增加了88.3%~104.9%,2018年升高了119.8%~153.66%。同一咸淡交替灌溉下,生物炭顯著降低了電導(dǎo)率(<0.05),2017年15和30 t/hm2處理電導(dǎo)率較0 t/hm2降低了9.6%~17.0%和3.7%~12.3%,2018年降低了9.6%~21.7%和7.5%~13.4%。土壤堿化度變化趨勢(shì)與電導(dǎo)率相似,2017年相同生物炭添加下C處理堿化度比A增長(zhǎng)了93.6%~165.1%,2018年增長(zhǎng)了104.5%~127.0%。堿化度隨生物炭添加而降低,咸淡交替灌溉間堿化度差異也逐漸減小。2017年15和30 t/hm2相同灌溉處理的堿化度較0 t/hm2減少了16.9%~31.1%和24.9%~45.2%,2018年降低了9.0%~26.2%和22.8%~36.4%。土壤鹽堿化程度最劇烈的是C0處理,而A15處理電導(dǎo)率最小,A30處理堿化度最小。此外,連續(xù)咸淡交替灌溉下,2018年平均電導(dǎo)率比2017升高了3.0%,平均堿化度提升了10.7%。
表3 2017和2018年咸淡交替灌溉和生物炭對(duì)土壤電導(dǎo)率和堿化度的影響及方差分析結(jié)果
注:±為標(biāo)準(zhǔn)差;同列不同字母表示差異性顯著(<0.05);X、S表示咸淡交替灌溉、生物炭,X×S 表示交互作用;*和**表示顯著性水平為0.05和0.01。下同。
Note: ± means standard deviation; different letters within the same column mean significant difference at 0.05 level; X and S are alternate irrigation and biochar, X×S is interaction effect; * and ** mean significant at 0.05 and 0.01 levels. The same below.
咸淡交替灌溉和生物炭對(duì)總孔隙度和水穩(wěn)性團(tuán)聚體的影響如表4所示。同一生物炭水平下,C處理總孔隙度最小,2017年較A降低了3.0%~3.3%,2018年降幅為0.7%~5.5%,而B和D處理差異不顯著。總孔隙度隨生物炭施用而增加,2017年15和30 t/hm2相同灌溉處理的總孔隙度比0 t/hm2增加了3.7%~5.7%和7.3%~10.6%,2018年升高了3.1%~6.9%和6.4%~11.9%。2017年和2018年B0、C0、D0處理水穩(wěn)性團(tuán)聚體較A0顯著降低(<0.05)。生物炭明顯增加了水穩(wěn)性團(tuán)聚體(<0.05),2017年15和30 t/hm2相同灌溉處理水穩(wěn)性團(tuán)聚體比0 t/hm2增加了40.0%~84.4%和95.2%~160.5%,2018年增加了50.0%~93.8%和105.0%~168.9%。從交互作用看,生物炭緩解了微咸水對(duì)土壤孔隙結(jié)構(gòu)的不良影響,15和30 t/hm2下咸淡交替灌溉間的總孔隙度和水穩(wěn)性團(tuán)聚體的差異逐漸減小。2017年和2018年總孔隙度和水穩(wěn)性團(tuán)聚體間無明顯變化規(guī)律。
表4 2017和2018年咸淡交替灌溉和生物炭對(duì)土壤總孔隙度和水穩(wěn)性團(tuán)聚體率的影響及方差分析結(jié)果
表5 2017和2018年咸淡交替灌溉和生物炭對(duì)土壤有效氮、磷、鉀含量的影響及方差分析結(jié)果
表5顯示生物炭對(duì)土壤有效氮、磷、鉀含量有顯著影響(<0.05)。相同咸淡交替灌溉下,2017年15和30 t/hm2處理有效氮含量較0 t/hm2增加了91.4%~104.0%和39.3%~55.3%,2018年升高了73.9%~95.2%和34.9%~36.9%。2017年15和30 t/hm2相同交替灌溉處理速效磷含量較0 t/hm2提升了46.9%~58.1%和37.6%~44.4%,2018年增加了34.5%~43.8%和21.0%~30.9%。土壤速效鉀含量隨生物炭添加而增加,2017年15和30 t/hm2相同交替灌溉處理速效鉀含量較0 t/hm2增加了19.8%~36.7%和42.2%~57.8%,2018年增加了13.6%~28.4%和25.4%~50.0%。生物炭形成的土壤養(yǎng)分增幅存在時(shí)效性,2018年有效養(yǎng)分含量較2017年有所降低,15和30 t/hm2的平均有效氮含量在2018年較2017年降低了14.0%和12.8%,平均速效磷含量降低了13.7%和11.6%,平均速效鉀含量減少了9.0%和10.1%。
咸淡交替灌溉和生物炭對(duì)葉面積指數(shù)的影響如圖2所示。從咸淡交替灌溉看,微咸水可抑制葉片生長(zhǎng),減小葉面積指數(shù),越早使用微咸水,葉面積指數(shù)下降越大,影響時(shí)間越長(zhǎng)。B處理的LAI在整個(gè)生育期均最小,2017年相同生物炭B處理LAI較A降低了17.2%~42.1%,2018年減少了19.3%~62.8%。C處理的LAI在抽雄期灌溉微咸水后有所下降,2017年相同生物炭C處理LAI較A減小了7.6%~11.6%,2018年降低了10.6%~16.3%。D處理LAI受影響較小,與A差異不大。生物炭促進(jìn)了咸淡交替灌溉下葉片生長(zhǎng),2017年15和30 t/hm2相同灌溉處理LAI比0 t/hm2增加了9.9%~25.3%和5.0%~19.9%,2018年增加了12.2%~45.8%和9.2%~34.4%。2017和2018年生育期內(nèi)B0處理的LAI最小而A15處理最大。此外,2018年整個(gè)生育期的平均LAI較2017年降低了6.9%。
表6顯示咸淡交替灌溉和生物炭對(duì)玉米生物量及產(chǎn)量特性的影響。相同生物炭水平下,B處理嚴(yán)重抑制了生物量累積,干物質(zhì)質(zhì)量最小,2017年根部和地上干物質(zhì)重量較A減少了31.5%~40.3%和20.0%~25.5%,2018年降低了33.0%~42.7%和12.2%~29.9%;C處理下僅地上干物質(zhì)質(zhì)量較A顯著降低(<0.05),2017年和2018年分別減少了8.2%~11.2%和5.1%~14.9%;D處理下生物量累積未受影響。相同咸淡交替灌溉下,2017年15和30 t/hm2的根部干物質(zhì)質(zhì)量較0 t/hm2增加了19.7%~39.1%和15.6%~32.6%,地上干物質(zhì)質(zhì)量增加了13.0%~23.9%和7.3%~17.1%,2018年根部干物質(zhì)質(zhì)量提高了22.7%~41.9%和12.0%~37.2%,地上干物質(zhì)質(zhì)量提高了15.5%~38.9%和9.6%~37.2%。2017年和2018年B0的干物質(zhì)質(zhì)量最小而A15最大。
從咸淡交替灌溉看,B處理顯著降低了穗粒數(shù)和百粒重(<0.05),2017年穗粒數(shù)和百粒質(zhì)量比A低了17.4%~31.4%和9.9%~19.1%,2018年減少了18.0%~34.3%和10.4%~18.2%;C處理下僅C0穗粒數(shù)較A0顯著降低(<0.05),2017年和2018年分別減少了21.6%和22.2%;D處理下穗粒數(shù)和百粒質(zhì)量與A無顯著差異。生物炭添加下穗粒數(shù)明顯增加(<0.05),2017年15和30 t/hm2相同灌溉處理穗粒數(shù)較0 t/hm2增加了13.7%~34.3%和12.3%~38.8%,2018年增加了13.1%~41.6%和12.1%~42.9%。生物炭還顯著提高了B處理下百粒質(zhì)量(<0.05),2017年B15和B30百粒質(zhì)量較B0增加了12.2%和11.0%,2018年提高了10.5%和9.3%。2017年和2018年B0的穗粒數(shù)和百粒質(zhì)量最小,A15處理最大。
圖2 2017和2018年咸淡交替灌溉和生物炭對(duì)玉米葉面積指數(shù)的影響
表6 2017和2018年咸淡交替灌溉和生物炭對(duì)玉米生物量及產(chǎn)量特性的影響及方差分析結(jié)果
隨著穗粒數(shù)和百粒質(zhì)量的降低,B和C處理造成了顯著減產(chǎn)(<0.05),而D處理下籽粒產(chǎn)量與A無明顯差異。相同生物炭施用下,2017年B和C處理籽粒產(chǎn)量較A減少了20.0%~27.2%和10.5%~14.0%,2018年降低了23.5%~32.8%和8.7%~11.42%。相同咸淡交替灌溉下,2017年15和30 t/hm2籽粒產(chǎn)量較0 t/hm2增加了15.4%~26.9%和10.9%~19.9%,2018年增加了16.7%~32.3%和11.1%~28.6%。其中,B15、B30、C15和C30籽粒產(chǎn)量較B0和C0增加了0.9~1.4 t/hm2,生物炭有效促進(jìn)了微咸水在生長(zhǎng)中前階段的應(yīng)用效果。此外,連續(xù)咸淡交替灌溉導(dǎo)致2018年平均地上干物質(zhì)質(zhì)量、穗粒數(shù)和籽粒產(chǎn)量較2017年有所下降,分別減少了3.4%、3.5%、3.8%。
咸淡交替灌溉導(dǎo)致表層土壤含鹽量明顯升高,鹽漬土電導(dǎo)率與微咸水使用比例和交替順序有關(guān)。隨著耗水量增加,C處理使用了更多的微咸水,從而造成額外的鹽分累積;先咸后淡交替處理通過后續(xù)淡水淋洗,有效降低了上層土壤鹽分,相同微咸水用量下,B處理土壤電導(dǎo)率較D更低。此外,咸淡交替灌溉下土壤堿化度顯著增加,尤其是C處理,加重了鹽漬化程度。同時(shí),由于過高的Na+濃度,土壤黏粒和膠體產(chǎn)生了崩解、膨脹和分散效應(yīng),進(jìn)而對(duì)土壤結(jié)構(gòu)穩(wěn)定和顆粒聚集形成破壞作用[23],導(dǎo)致C處理的土壤總孔隙度和水穩(wěn)性團(tuán)聚體有所下降??梢姡痰惶婀喔却嬖谥觿⊥寥利}漬化風(fēng)險(xiǎn),隨著微咸水進(jìn)入土壤中的鹽分若未得到后續(xù)淡水的充分淋洗,可能逐漸積聚于土壤表層,引發(fā)土壤退化問題,遏制土地資源的可持續(xù)發(fā)展能力。因此,適宜的鹽分淋洗和土壤改良措施是必要的,以保障長(zhǎng)期咸淡交替灌溉的可持續(xù)性。已有研究報(bào)道,通過種植淡季自然降雨淋洗有利于咸淡交替灌溉下土壤含鹽量恢復(fù)到可接受水平[24],并應(yīng)完善鹽分監(jiān)測(cè)系統(tǒng),在需要時(shí)采取淡水灌溉壓鹽,以促進(jìn)濱海墾區(qū)土地資源可持續(xù)利用。
生物炭有效緩解了咸淡交替灌溉下濱海鹽漬土鹽堿化程度,降低了土壤電導(dǎo)率和堿化度。生物炭能夠提高濱海鹽漬土水分入滲性能,促進(jìn)鹽分淋洗效果,同時(shí),生物炭-土壤結(jié)構(gòu)可有效抑制蒸發(fā)蒸騰過程中鹽分沿土壤毛細(xì)管上升,因此進(jìn)一步緩解了表層土壤鹽漬化危害[18,24]。生物炭包含部分Ca2+和Mg2+并具有較高的離子交換性,施入后提高了土壤Ca2+、Mg2+含量和陽離子交換量,這促進(jìn)了濱海鹽漬土中Na+的置換和淋洗,降低了土壤堿化風(fēng)險(xiǎn)[25-26]。生物炭施用有利于濱海鹽漬土結(jié)構(gòu)性質(zhì),增加了總孔隙度和水穩(wěn)性團(tuán)聚體[27]。生物炭具有良好的多孔結(jié)構(gòu)和較小的容重,混合后可增加土壤孔隙性,并通過“稀釋作用”降低土壤容重,因此提高了總孔隙度[16]。同時(shí),生物炭改善了土壤團(tuán)聚性,通過增加有機(jī)炭分子與土壤顆粒間相互作用,促進(jìn)土壤顆粒團(tuán)聚過程,形成新的多級(jí)孔隙結(jié)構(gòu)[13]。此外,生物炭提高了濱海鹽漬土養(yǎng)分水平,增加了有效氮磷鉀含量。生物炭具有多孔結(jié)構(gòu)、大比表面積等特點(diǎn),產(chǎn)生了養(yǎng)分吸附緩釋作用,降低了營(yíng)養(yǎng)元素淋失和揮發(fā)[28]。同時(shí),生物炭有利于微生物生存環(huán)境,增加了生物酶活性,提高了養(yǎng)分有效性[29]。生物炭也存在時(shí)效性,可能由于老化、分解和流失等,養(yǎng)分增益在第二年顯著降低。盡管如此,部分相關(guān)研究亦報(bào)道了生物炭在鹽漬土治理中的不良結(jié)果,生物炭中包含了一定量可溶性鹽分離子,施用過量可導(dǎo)致土壤含鹽量升高,且由于自身堿性特征,可能引起堿性土壤鹽漬化加劇,此外,過多生物炭還可能堵塞土壤孔隙,改變土壤持水導(dǎo)水性能,影響土壤水分運(yùn)移[16,25,30]。本研究同樣發(fā)現(xiàn)生物炭施加量不宜過高,由15增至30 t/hm2后,土壤電導(dǎo)率有所增加,且隨土壤碳氮比升高,可造成氮素固化,降低了有效氮含量[31]。因此,仍需針對(duì)濱海鹽漬土治理進(jìn)行適宜的生物炭類型及施用量的研究,并開發(fā)有效的復(fù)合改良劑,以促進(jìn)治理效果。
咸淡交替灌溉導(dǎo)致了土壤鹽漬化加重,將對(duì)作物產(chǎn)生鹽分脅迫,危害作物生長(zhǎng)生產(chǎn)。鹽分脅迫包括滲透脅迫和離子脅迫:滲透脅迫將減少細(xì)胞分裂和伸長(zhǎng),抑制幼葉、莖和根系的生長(zhǎng)擴(kuò)張;離子脅迫將造成離子毒害和營(yíng)養(yǎng)失衡,加速葉片老化和脫落[32]。六葉至抽雄期使用微咸水(B)引發(fā)了劇烈的鹽分脅迫,嚴(yán)重限制了根莖葉生長(zhǎng);而抽雄期后使用微咸水(C和D),鹽分脅迫造成的生長(zhǎng)抑制有限,這是因?yàn)槌樾燮诤笥衩赘o葉生長(zhǎng)基本完成并具備更好的耐鹽性。相關(guān)研究也報(bào)道,作物耐鹽性在生長(zhǎng)前期普遍較弱,應(yīng)盡量采用淡水灌溉,可在具備一定耐鹽性后轉(zhuǎn)為微咸水灌溉,以改善咸淡交替灌溉效果[1,6]。籽粒數(shù)量和重量是決定玉米產(chǎn)量的關(guān)鍵因素。B和C籽粒數(shù)量明顯減少,說明果穗儲(chǔ)存和利用同化物的庫(kù)容能力下降,玉米在籽粒形成時(shí)期對(duì)外界影響高度敏感,若在期間受到脅迫,將抑制酸轉(zhuǎn)化酶活性,導(dǎo)致籽粒流產(chǎn),降低成粒率[33]。B產(chǎn)量的銳減也與降低的百粒重有關(guān),B鹽分脅迫強(qiáng)烈,限制了籽粒灌漿時(shí)光合同化物的生產(chǎn)和運(yùn)輸,導(dǎo)致籽粒接受同化物不足。因此,六葉至抽雄期需灌溉淡水,以避免嚴(yán)重的鹽分脅迫和產(chǎn)量損失。C百粒重?zé)o明顯變化,籽粒數(shù)量受限是減產(chǎn)的主要原因。抽雄至吐絲期是初始籽粒形成的關(guān)鍵期,此階段仍需規(guī)避微咸水,以保證充足籽粒數(shù)量來實(shí)現(xiàn)高產(chǎn)。D未對(duì)籽粒數(shù)量和重量造成限制,吐絲期后可使用微咸水滿足灌水需求,產(chǎn)量并無明顯損失。
生物炭促進(jìn)了咸淡交替灌溉下鹽漬土玉米生長(zhǎng)生產(chǎn),尤其在六葉至抽雄和抽雄至吐絲期灌溉微咸水后(B和C)玉米依舊能夠保持較高的生長(zhǎng)生產(chǎn)水平,這可能是因?yàn)樯锾刻岣吡擞衩自谏L(zhǎng)前中期時(shí)較弱的耐鹽性能,進(jìn)而緩解了微咸水灌溉引起的鹽分脅迫。研究表明,生物炭能夠促進(jìn)鹽堿環(huán)境中玉米的出苗和幼苗生長(zhǎng),改善鹽脅迫下玉米幼苗抗氧化性、根系活力等生理特性[30,34]。生物炭施用后苗期玉米耐鹽性能得到加強(qiáng),因此在六葉至吐絲期這段抗逆性薄弱時(shí)期里可以更好地適應(yīng)微咸水灌溉,進(jìn)而提高了咸淡交替灌溉的可行性和適用性。本研究中,B15和B30處理葉面積指數(shù)在整個(gè)生育期內(nèi)均比B0大,這有助于光能吸收利用,從而增加光合同化物積累并促進(jìn)籽粒生長(zhǎng)發(fā)育,最終提高了干物質(zhì)重量、穗粒數(shù)、百粒重和籽粒產(chǎn)量。同樣,C15和C30處理在灌溉微咸水后較C0具有更好的葉片生長(zhǎng)狀況,并也增加了地上干物質(zhì)重量、穗粒數(shù)及籽粒產(chǎn)量。玉米抗鹽性能的提升可歸因于生物炭施用下濱海鹽漬土理化性質(zhì)的改善和養(yǎng)分水平的提高[35-36]。生物炭降低了咸淡交替灌溉下土壤鹽堿化程度,并提高了總孔隙度和水穩(wěn)性團(tuán)聚體,改善了土壤導(dǎo)水通氣性能,同時(shí)增加了有效氮、磷、鉀含量。土壤環(huán)境的改善和養(yǎng)分水平的提高有利于根系的生長(zhǎng),從而促進(jìn)水分和養(yǎng)分吸收。良好的水分狀況和營(yíng)養(yǎng)條件能夠增加玉米抗逆能力,通過促進(jìn)光合作用、蛋白質(zhì)合成、水分調(diào)節(jié)和離子平衡等來抵抗鹽分脅迫[36-37]。15和30 t/hm2處理下增產(chǎn)效果無明顯差異,考慮成本問題,以15 t/hm2作為添加量更適宜。咸淡交替灌溉結(jié)合生物炭的方法可為濱海農(nóng)區(qū)緩解淡水短缺和穩(wěn)定玉米生產(chǎn)提供參考,但仍需開展長(zhǎng)期田間試驗(yàn),以更好的了解咸淡交替灌溉-生物炭下濱海低質(zhì)量水土資源的可持續(xù)利用。
1)咸淡交替灌溉升高了土壤電導(dǎo)率和堿化度,這與微咸水使用比例和順序相關(guān)。抽雄至吐絲期微咸水灌溉下鹽漬化最為強(qiáng)烈,總孔隙度和水穩(wěn)性團(tuán)聚體亦有所下降。長(zhǎng)期咸淡交替灌溉應(yīng)考慮利用淡季降雨淋洗表層土壤鹽分并建立鹽分監(jiān)測(cè)以降低鹽漬化風(fēng)險(xiǎn)。生物炭能夠緩解咸淡交替灌溉下土壤鹽漬化,電導(dǎo)率和堿化度減小了3.7%~21.7%和9.0%~45.2%。生物炭還增加了總孔隙度和水穩(wěn)性團(tuán)聚體,改善了土壤養(yǎng)分條件,提高了有效氮磷鉀含量,但養(yǎng)分增益在第二年有所下降。生物炭施用不宜過多,30 t/hm2可導(dǎo)致土壤電導(dǎo)率升高而有效氮含量減少。
2)六葉至抽雄期使用微咸水可嚴(yán)重抑制葉片生長(zhǎng)和干物質(zhì)累積,并減少籽粒數(shù)量和質(zhì)量,造成大幅減產(chǎn);抽雄至吐絲期使用微咸水下玉米生長(zhǎng)生產(chǎn)受損減小,但籽粒產(chǎn)量仍因籽粒數(shù)量減少而降低;微咸水可有效施用于吐絲至成熟期,并無不良影響。生物炭改善了土壤理化性質(zhì)和養(yǎng)分條件,有利于提升作物耐鹽性能進(jìn)而緩解微咸水灌溉在生長(zhǎng)前中期的鹽分脅迫,因此促進(jìn)了咸淡交替灌溉下玉米生長(zhǎng)生產(chǎn),葉面積指數(shù)和干物質(zhì)質(zhì)量等指標(biāo)值均明顯增加,籽粒產(chǎn)量提升了10.9%~32.3%。15 t/hm2可作為適宜的添加量。
綜上,生物炭提高了咸淡交替灌溉在濱海鹽漬土中的農(nóng)業(yè)生產(chǎn)效益,咸淡交替灌溉結(jié)合生物炭土壤改良劑可成為促進(jìn)濱海地區(qū)低質(zhì)量水土資源農(nóng)業(yè)發(fā)展的有效手段。
[1] 朱成立,強(qiáng)超,黃明逸,等. 咸淡水交替灌溉對(duì)濱海墾區(qū)夏玉米生理生長(zhǎng)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):253-261.
Zhu Chengli, Qiang Chao, Huang Mingyi, et al. Effect of alternate irrigation with fresh and slight saline water on physiological growth of summer maize in coastal reclamation area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 253-261. (in Chinese with English abstract)
[2] Yao Rongjiang, Yang Jingsong, Zhang Tongjuan, et al. Short-term effect of cultivation and crop rotation systems on soil quality indicators in a coastal newly reclaimed farming area[J]. Journal of Soils and Sediments, 2013, 13(8): 1335-1350.
[3] 朱成立,呂雯,黃明逸,等. 生物炭對(duì)咸淡輪灌下鹽漬土鹽分分布和玉米生長(zhǎng)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):226-234.
Zhu Chengli, Lyu Wen, Huang Mingyi, et al. Effects of biochar on coastal reclaimed soil salinity distribution and maize growth with cycle fresh and saline water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 226-234. (in Chinese with English abstract)
[4] 張余良,陸文龍,張偉,等. 長(zhǎng)期微咸水灌溉對(duì)耕地土壤理化性狀的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2006,25(4):969-973.
Zhang Yuliang, Lu Wenlong, Zhang Wei, et al. Effects of long-term brackish water irrigation on characteristics of agrarian soil[J]. Journal of Agro-Environment Science, 2006, 25(4): 969-973. (in Chinese with English abstract)
[5] Munns R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
[6] 朱成立,舒慕晨,張展羽,等. 咸淡水交替灌溉對(duì)土壤鹽分分布及夏玉米生長(zhǎng)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):220-228.
Zhu Chengli, Shu Muchen, Zhang Zhanyu, et al. Effect of alternate irrigation with fresh and brackish water on saline distribution characteristics of soil and growth of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 220-228. (in Chinese with English abstract)
[7] 牛君仿,馮俊霞,路楊,等. 咸水安全利用農(nóng)田調(diào)控技術(shù)措施研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2016,24(8):1005-1015.
Niu Junfeng, Feng Junxia, Lu Yang, et al. Advances in agricultural practices for attenuating salt stress under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1005-1015. (in Chinese with English abstract)
[8] Singh A. Conjunctive use of water resources for sustainable irrigated agriculture[J]. Journal of Hydrology, 2014, 519: 1688-1697.
[9] Singh R. Simulations on direct and cyclic use of saline waters for sustaining cotton–wheat in a semi-arid area of north-west India[J]. Agricultural Water Management, 2004, 66(2): 153-162.
[10] 米迎賓,屈明,楊勁松,等. 咸淡水輪灌對(duì)土壤鹽分和作物產(chǎn)量的影響研究[J]. 灌溉排水學(xué)報(bào),2010,29(6):83-86.
Mi Yingbin, Qu Ming, Yang Jingsong, et al. Effects of rotational irrigation with saline water on soil salinity and crop yield[J]. Journal of Irrigation and Drainage, 2010, 29(6): 83-86. (in Chinese with English abstract)
[11] 黃金甌,靳孟貴,栗現(xiàn)文. 咸淡水輪灌對(duì)棉花產(chǎn)量和土壤溶質(zhì)遷移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):99-107.
Huang Jinou, Jin Menggui, Li Xianwen. Effects of alternative irrigation with brackish and freshwater on cotton yields and solute transport in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 99-107. (in Chinese with English abstract)
[12] 李帥霖,王霞,王朔,等. 生物炭施用方式及用量對(duì)土壤水分入滲與蒸發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):135-144.
Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)
[13] Blanco-Canqui H. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 2017, 81(4): 687-711.
[14] 高德才,張蕾,劉強(qiáng),等. 旱地土壤施用生物炭減少土壤氮損失及提高氮素利用率[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(6):54-61.
Gao Decai, Zhang Lei, Liu Qiang, et al. Application of biochar in dryland soil decreasing loss of nitrogen and improving nitrogen using rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 54-61. (in Chinese with English abstract)
[15] 王欣,尹帶霞,張鳳,等. 生物炭對(duì)土壤肥力與環(huán)境質(zhì)量的影響機(jī)制與風(fēng)險(xiǎn)解析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):248-257.
Wang Xin, Yin Daixia, Zhang Feng, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 248-257. (in Chinese with English abstract)
[16] 勾芒芒,屈忠義,王凡,等. 生物炭施用對(duì)農(nóng)業(yè)生產(chǎn)與環(huán)境效應(yīng)影響研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):1-12.
Gou Mangmang, Qu Zhongyi, Wang Fan, et al. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 1-12. (in Chinese with English abstract)
[17] Huang Mingyi, Zhang Zhanyu, Zhai Yaming, et al. Effect of straw biochar on soil properties and wheat production under saline water irrigation[J]. Agronomy, 2019, 9(8): 457.
[18] International Biochar Initiative (IBI). Standardized product definition and product testing guidelines for biochar that is used in soil V.2.0[Z]. International Biochar Initiative, 2014.
[19] Lashari M S, Liu Yuming, Li Lianqing, et al. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain[J]. Field Crops Research, 2013, 144: 113-118.
[20] 張世熔,孫波,趙其國(guó),等. 南方丘陵區(qū)不同尺度下土壤氮素含量的分布特征[J]. 土壤學(xué)報(bào),2007,44(5):885-892.
Zhang Shirong, Sun Bo, Zhao Qiguo, et al. Distribution characteristics of soil nitrogen at multi-scales in hilly region in South China[J]. Acta Pedologica Sinica, 2007, 44(5): 885-892. (in Chinese with English abstract)
[21] Blake L, Johnston A E, Poulton P R, et al. Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods[J]. Plant and Soil, 2003, 254(2): 245-261.
[22] 袁晶晶,同延安,盧紹輝,等. 生物炭與氮肥配施對(duì)棗園土壤培肥效應(yīng)的綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(1):134-140.
Yuan Jingjing, Tong Yan’an, Lu Shaohui, et al. Comprehensive evaluation on soil fertility quality of jujube orchard under combined application of biochar and nitrogen fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 134-140. (in Chinese with English abstract)
[23] Basile A, Buttafuoco G, Mele G, et al. Complementary techniques to assess physical properties of a fine soil irrigated with saline water[J]. Environmental Earth Sciences, 2012, 66(7): 1797-1807.
[24] Sharma D P, Rao K V G K, Singh K N, et al. Conjunctive use of saline and non-saline irrigation waters in semi-arid regions[J]. Irrigation Science, 1994, 15(1): 25-33.
[25] 周文志,孫向陽,李素艷,等. 生物炭和園林廢棄物堆肥對(duì)濱海鹽堿土淋溶的影響[J]. 中國(guó)水土保持科學(xué),2019,17(3):23-30.
Zhou Wenzhi, Sun Xiangyang, Li Suyan, et al. Effects of adding biochar and compost on the leaching of coastal saline-alkali soil[J]. Science of Soil and Water Conservation, 2019, 17(3): 23-30. (in Chinese with English abstract)
[26] Chaganti V N, Crohn D M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water[J]. Geoderma, 2015, 259-260: 45-55.
[27] 孫梟沁,房凱,費(fèi)遠(yuǎn)航,等. 施加生物質(zhì)炭對(duì)鹽漬土土壤結(jié)構(gòu)和水力特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(2):242-249.
Sun Xiaoqin, Fang Kai, Fei Yuanhang, et al. Structure and hydraulic characteristics of saline soil improved by applying biochar based on Micro-CT scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 242-249. (in Chinese with English abstract)
[28] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–A review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230.
[29] 唐行燦,陳金林. 生物炭對(duì)土壤理化和微生物性質(zhì)影響研究進(jìn)展[J]. 生態(tài)科學(xué),2018,37(1):192-199.
Tang Xingcan, Chen Jinlin. Review of effect of biochar on soil physi-chemical and microbial properties[J]. Ecological Science, 2018, 37(1): 192-199. (in Chinese with English abstract)
[30] 王凡,屈忠義. 生物炭對(duì)鹽漬化農(nóng)田土壤的改良效果研究進(jìn)展[J]. 北方農(nóng)業(yè)學(xué)報(bào),2018,46(5):68-75.
Wang Fan, Qu Zhongyi. Progress research on the improvement effect of biochar on salinized farmland soil[J]. Journal of Northern Agriculture, 2018, 46(5): 68-75. (in Chinese with English abstract)
[31] Nguyen T T N, Xu Chengyuan, Tahmasbian I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288: 79-96.
[32] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[33] Huang Mingyi, Zhang Zhangyu, Sheng Zhuping, et al. Soil salinity and maize growth under cycle irrigation in coastal soils[J]. Agronomy Journal, 2019, 111(5): 2276-2286.
[34] 趙鐵民,李淵博,陳為峰,等. 生物炭對(duì)濱海鹽漬土理化性質(zhì)及玉米幼苗抗氧化系統(tǒng)的影響[J]. 水土保持學(xué)報(bào),2019,33(2):196-200.
Zhao Tiemin, Li Yuanbo, Chen Weifeng, et al. Effect of biochar on the physicochemical properties of coastal saline soil and the antioxidation system activity in maize seedlings[J]. Journal of Soil and Water Conservation, 2019, 33(2): 196-200. (in Chinese with English abstract)
[35] 夏陽. 生物炭對(duì)濱海鹽堿植物生長(zhǎng)及根際土壤環(huán)境的影響[D]. 青島:中國(guó)海洋大學(xué),2015.
Xia Yang. Impact of Biochar-Rhizosphere System on Plant Growth by Affecting Soil Nutrient Availability and Microbial Community in Coastal Saline Soil[D]. Qingdao: Ocean University of China, 2015.
[36] Ali S, Rizwan M, Qayyum M, et al. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review[J]. Environmental Science and Pollution Research, 2017, 24(14): 12700-12712.
[37] 李思平,曾路生,李旭霖,等. 不同配方生物炭改良鹽漬土對(duì)小白菜和棉花生長(zhǎng)及光合作用的影響[J]. 水土保持學(xué)報(bào),2019,33(2):363-368.
Li Siping, Zeng Lusheng, Li Xulin, et al. Amelioration of saline soil with different biochar fertilization formulas and its effects on growth and photosynthesis ofand cotton[J]. Journal of Soil and Water Conservation, 2019, 33(2): 363-368. (in Chinese with English abstract)
Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater
Huang Mingyi1,2, Zhang Zhanyu2※, Zhai Yaming2, Wang Ce2, Qi Wei1, Zhu Chengli2
(1.,,210098,; 2.,,210098,)
The coastal areas possess substantial brackish water resources. The agricultural utilization of saline soil and brackish water resources in coastal regions is crucial to guarantee food security and can be conducive to alleviate increasing land demands and water shortages. Nonetheless, suitable irrigation and field management is essential to improve agricultural production of coastal saline soil and brackish water. In this study, alternate irrigation with brackish and freshwater combined with biochar was proposed to promote the agricultural utilization of these low-quality soil and water resources. A maize planting experiment in coastal saline soil was carried out using field plots under the condition of rain shelter in 2017 and 2018, respectively. We investigated the effects of alternate irrigation with brackish and freshwater and biochar application on coastal soil properties and maize yield parameters. The maize growth season was separated into three periods, that is, the six leaves stage to the tasseling stage, the tasseling stage to the silking stage, and the silking stage to the maturity stage. The alternate irrigation with brackish and freshwater was carried out by using brackish water irrigation during one of the three periods and freshwater irrigation during the remaining stages. The check treatment was conducted by using freshwater irrigation throughout the whole growing season. Biochar with three application rates (0, 15, 30 t/hm2) was incorporated into the surface layer of coastal saline soil in the first experiment year, respectively. Maize leaf area index was observed during the growing season. Maize dry matter accumulation and yield parameters were measured at harvest. Soil properties related to soil salinization, porosity, aggregate, and nutrient content were determined after harvest. The electrical conductivity and exchangeable sodium percentage of coastal saline soil remarkably increased under alternate irrigation with brackish and freshwater. The soil salinization was related to the proportion and order of brackish water use. The brackish water irrigation during the six leaves stage to the tasseling stage severely inhibited maize leaf growth and dry matter accumulation, and lead to a decline in grain number and grain weight, resulting in a 27.2%-32.8% yield reduction. The reduction in maize growth and production by the brackish water irrigation during the tasseling stage to the silking stage was less, but the reduced grain number still resulted in a 11.4%-14.0% yield reduction. The brackish water irrigation during the silking stage to the maturity stage did not have a significant adverse effect on maize growth and yield. Under alternate irrigation with brackish and freshwater, biochar application reduced the electrical conductivity and exchangeable sodium percentage of coastal saline soil by 3.7%-21.7% and 9.2%-45.2%, respectively. The total porosity and water-stable aggregate with biochar applications were increased by 3.1%-11.9% and 40.0%-168.9%, respectively. Biochar application also promoted the soil nutrient status and increased available nitrogen, available phosphorus, and available potassium content by 34.9%-104.0%, 21.0%-58.1%, and 13.6%-57.8%, respectively. With the improvement in soil conditions, biochar application was helpful to enhance salt tolerance in the early and middle stages of maize growth, thus alleviating the damage of salt stress under brackish water irrigation. The maize maintained a good condition of leaf area index, dry matter accumulation, and yield characteristics when brackish water irrigation was applied during the six leaves stage to the silking stage. Therefore, biochar application promoted the feasibility and applicability of alternate irrigation with brackish and freshwater. Compared to the treatments without biochar application, the grain yield of the treatments with biochar application increased by 10.9%-32.3% under the same alternate irrigation with brackish water and freshwater. The results could be helpful to improve the agricultural utilization of saline soil and brackish water resources in coastal regions.
irrigation; biochars; maize; coastal saline soil; brackish water; alternate irrigation
黃明逸,張展羽,翟亞明,等. 咸淡交替灌溉下生物炭對(duì)濱海鹽漬土及玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):88-96.doi:10.11975/j.issn.1002-6819.2020.21.011 http://www.tcsae.org
Huang Mingyi, Zhang Zhanyu, Zhai Yaming, et al. Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 88-96. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.011 http://www.tcsae.org
2020-07-05
2020-08-27
國(guó)家自然科學(xué)基金項(xiàng)目(51879071);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400200)
黃明逸,博士,博士后,主要從事鹽堿地改良、高效灌排理論與技術(shù)研究。Email:hhuhuangmingyi@163.com
張展羽,博士,教授,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與技術(shù)等方面研究。Email:zhanyu@hhu.edu.cn
10.11975/j.issn.1002-6819.2020.21.011
S275
A
1002-6819(2020)-21-0088-09