尹航 李祥銅 徐龍琴 李景彬 劉雙印 曹亮 馮大春 郭建軍 李利橋
摘要:溶解氧(DO)濃度是對(duì)蝦養(yǎng)殖水質(zhì)檢測(cè)的核心指標(biāo)。為提高對(duì)蝦養(yǎng)殖溶解氧濃度的預(yù)測(cè)精度,本研究提出了一種基于經(jīng)驗(yàn)?zāi)B(tài)分解、隨機(jī)森林和長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)(EMD-RF-LSTM)的對(duì)蝦養(yǎng)殖溶解氧濃度組合預(yù)測(cè)模型。首先采用經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)對(duì)養(yǎng)殖水質(zhì)溶解氧濃度時(shí)序數(shù)據(jù)進(jìn)行多尺度特征提取,得到不同尺度下的固有模態(tài)分量(IMF);然后分別采用長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)(LSTM)和隨機(jī)森林(RF)對(duì)高、低頻不同尺度IMF進(jìn)行建模;最后結(jié)合各分量預(yù)測(cè)結(jié)果構(gòu)建疊加模型,實(shí)現(xiàn)對(duì)溶解氧濃度時(shí)序數(shù)據(jù)的綜合預(yù)測(cè)。本研究模型在廣東省湛江市南三島對(duì)蝦養(yǎng)殖基地展開了試驗(yàn)及應(yīng)用,在基于真實(shí)數(shù)據(jù)集的性能測(cè)試中,經(jīng)驗(yàn)?zāi)B(tài)分解后EMD-ELM模型與極限學(xué)習(xí)機(jī)(ELM)模型對(duì)比,平均絕對(duì)誤差(MAPE)、均方根誤差(RMSE)和平均絕對(duì)誤差(MAE)分別降低了30.11%、29.60%和32.95%。在經(jīng)驗(yàn)?zāi)B(tài)分解基礎(chǔ)上用RF和LSTM對(duì)不同特征尺度的本征模態(tài)分量分別預(yù)測(cè)后疊加求和,EMD-RF-LSTM模型預(yù)測(cè)的精度指標(biāo)MAPE、RMSE和MAE分別為0.0129、0.1156和0.0844,其中關(guān)鍵指標(biāo)MAPE較EMD-ELM、EMD-RF和EMD-LSTM分別降低了84.07%、57.57%和49.81%,預(yù)測(cè)精度顯著提高。結(jié)果表明,本研究針對(duì)經(jīng)驗(yàn)?zāi)B(tài)分解后高、低頻分量分別預(yù)測(cè)的策略可有效提升綜合性能,表明本研究模型具有較高的預(yù)測(cè)精度,能夠較準(zhǔn)確地實(shí)現(xiàn)對(duì)蝦養(yǎng)殖水體中溶解氧濃度預(yù)測(cè)。
關(guān)鍵詞:對(duì)蝦養(yǎng)殖;溶解氧濃度預(yù)測(cè);經(jīng)驗(yàn)?zāi)B(tài)分解;隨機(jī)森林;長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)
中圖分類號(hào):TP391文獻(xiàn)標(biāo)志碼:A文章編號(hào):202106-SA008
引用格式:尹航,李祥銅,徐龍琴,李景彬,劉雙印,曹亮,馮大春,郭建軍,李利橋.對(duì)蝦養(yǎng)殖溶解氧濃度組合預(yù)測(cè)模型EMD-RF-LSTM[J].智慧農(nóng)業(yè)(中英文),2021, 3(2): 115-125.
YIN Hang, LI Xiangtong, XU Longqin, LI Jingbin, LIU Shuangyin, CAO Liang, FENG Dachun, GUO Jianjun, LI Liqiao. EMD-RF-LSTM: Combination prediction model of dissolved oxygen concentration in prawn culture [J]. Smart Agriculture, 2021, 3(2): 115-125. (in Chinese with English abstract)
1引言
溶解氧(Dissolved Oxygen,DO)濃度是養(yǎng)殖水質(zhì)檢測(cè)的核心指標(biāo),影響著水產(chǎn)生物的生長(zhǎng)速度和成活率,是決定對(duì)蝦品質(zhì)及產(chǎn)量的重要因素[1,2]。目前,中國(guó)典型南美白蝦的平均養(yǎng)殖密度達(dá)到220—300尾/m,養(yǎng)殖周期為2—3期。由于蝦塘養(yǎng)殖密度遠(yuǎn)高于魚塘養(yǎng)殖密度,接近工廠魚養(yǎng)殖密度,對(duì)于溶解氧濃度的監(jiān)控要求更高。構(gòu)建對(duì)蝦養(yǎng)殖環(huán)境水體溶解氧變化模型,精準(zhǔn)預(yù)測(cè)水體溶解氧濃度變化[3,4],對(duì)于實(shí)現(xiàn)對(duì)蝦精細(xì)化養(yǎng)殖管理和調(diào)控,科學(xué)決策養(yǎng)殖密度和飼料配比,確保對(duì)蝦在無(wú)應(yīng)激環(huán)境下健康生長(zhǎng)、提高養(yǎng)殖效益具有重要意義[5]。
目前在水產(chǎn)養(yǎng)殖領(lǐng)域已有部分團(tuán)隊(duì)廣泛開展溶解氧濃度預(yù)測(cè)方法研究。Liu等[6]采用小波分析(Wavelet Analysis,WA)、柯西粒子群優(yōu)化最小二乘支持向量回歸機(jī)的溶解氧濃度預(yù)測(cè)模型,并應(yīng)用于河蟹養(yǎng)殖DO預(yù)測(cè);徐龍琴等[7]采用小波分析進(jìn)行多尺度特征提取,通過(guò)加權(quán)最小二乘支持向量回歸機(jī)對(duì)不同尺度序列分別建模,實(shí)現(xiàn)DO預(yù)測(cè);Huan等[8]采用梯度增強(qiáng)決策樹和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(Long Short-Term Memory,LSTM)對(duì)水產(chǎn)養(yǎng)殖溶解氧濃度進(jìn)行了預(yù)測(cè);朱南陽(yáng)等[9]優(yōu)化LSTM反向傳播時(shí)的損失函數(shù),提出了提高低溶解氧含量估算精度的溶解氧預(yù)測(cè)模型(LDO-LSTM),不但可以保證整體溶氧預(yù)測(cè)精度,且能提高較低溶解氧濃度值的估算精度。
在前期研究中,有研究者認(rèn)為對(duì)蝦養(yǎng)殖水體溶解氧具有長(zhǎng)時(shí)序、不穩(wěn)定、多尺度非線性等特點(diǎn)[10,11];且受多因素復(fù)雜耦合關(guān)系影響[12];難以建立高性能泛化模型[13]。由于感知設(shè)備失能、噪聲干擾和長(zhǎng)時(shí)序數(shù)據(jù)[14],以及監(jiān)測(cè)點(diǎn)時(shí)空分布差異[15]等問(wèn)題,需要對(duì)對(duì)蝦養(yǎng)殖水體溶解氧時(shí)序數(shù)據(jù)進(jìn)行降噪、多尺度分析、時(shí)空分類及特征提取等預(yù)處理[16]。小波分析曾被用于數(shù)據(jù)降噪和特征提取,但需預(yù)定基函數(shù),并存在人為因素干擾[17]。經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical. Mode Decomposition,EMD)可將非平穩(wěn)時(shí)序數(shù)據(jù)多尺度分解成低耦合模態(tài)分量(Intrinsic mode function,IMF),能有效進(jìn)行數(shù)據(jù)降噪和抗干擾預(yù)處理[18-20]。
目前,EMD在水產(chǎn)養(yǎng)殖等領(lǐng)域得到了應(yīng)用。徐龍琴等[21]將EMD和極限學(xué)習(xí)機(jī)(Extreme Learning Machine,ELM)結(jié)合,構(gòu)建了基于EMD-ELM的水溫組合預(yù)測(cè)模型。施珮等[22]在徐龍琴等[21]研究結(jié)果基礎(chǔ)上,結(jié)合改進(jìn)遺傳算法(Improved Genetic Algorithm,IGA)和改進(jìn)極限學(xué)習(xí)機(jī)(Improved Extreme Learning Machine,SELM)構(gòu)建了基于EMD-IGA-SELM的預(yù)測(cè)模型,以提高水體溫度預(yù)測(cè)的精度和穩(wěn)定性。楊亮等[23]提出了基于EMD-LSTM的預(yù)測(cè)模型,將氨氣濃度時(shí)間序列數(shù)據(jù)進(jìn)行EMD處理,生成不同時(shí)間尺度下的模態(tài)分量,然后使用LSTM對(duì)各分量分別預(yù)測(cè),再相加以實(shí)現(xiàn)氨氣濃度的組合模型。戴邵武等[24]提出LSTM在傳統(tǒng)神經(jīng)網(wǎng)絡(luò)基礎(chǔ)上增加隱藏層,有效避免了梯度消失和爆炸,具有較好的預(yù)測(cè)精度和魯棒性;趙曉東等[25]在對(duì)基于頻域分解和深度學(xué)習(xí)算法的預(yù)測(cè)模型研究中發(fā)現(xiàn),LSTM在高頻分量預(yù)測(cè)的效果上表現(xiàn)優(yōu)異,而在訓(xùn)練樣本較少的低頻分量預(yù)測(cè)上效果不佳。秦喜文等[26]利用經(jīng)驗(yàn)?zāi)B(tài)分解與隨機(jī)森林構(gòu)建的EMD-RF模型,在不同頻度分量上獲得了較高的精度和泛化性能。
由以上研究可知,EMD分解和LSTM組合模型已用于溶解氧濃度預(yù)測(cè),但在訓(xùn)練樣本較少的低頻分量預(yù)測(cè)上效果不佳的問(wèn)題有待解決,針對(duì)不同頻域選擇合適預(yù)測(cè)模型的組合預(yù)測(cè)方法還有待進(jìn)一步研究。為了解決訓(xùn)練樣本較少時(shí)非線性時(shí)序列數(shù)據(jù)經(jīng)驗(yàn)?zāi)B(tài)分解后不同頻域模態(tài)分量預(yù)測(cè)精度不佳的問(wèn)題,本研究結(jié)合經(jīng)驗(yàn)?zāi)B(tài)分解、隨機(jī)森林和長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)提出了一種基于EMD-RF-LSTM的對(duì)蝦養(yǎng)殖溶解氧非線性組合預(yù)測(cè)模型,通過(guò)EMD將養(yǎng)殖溶解氧時(shí)序數(shù)據(jù)進(jìn)行多尺度分解,獲得不同特征尺度的本征模態(tài)分量和殘余分量,結(jié)合各分量預(yù)測(cè)結(jié)果,選擇RF和LSTM分別對(duì)低頻分量、高頻分量和殘差進(jìn)行建模預(yù)測(cè),最后將各預(yù)測(cè)結(jié)果疊加求和,實(shí)現(xiàn)對(duì)蝦養(yǎng)殖水體溶解氧濃度預(yù)測(cè)。
2數(shù)據(jù)與方法
2.1研究數(shù)據(jù)
為評(píng)估本研究模型在真實(shí)環(huán)境下的表現(xiàn),本研究在廣東省湛江市南三島對(duì)蝦養(yǎng)殖基地開展,采集對(duì)蝦養(yǎng)殖池塘真實(shí)數(shù)據(jù)。試驗(yàn)用對(duì)蝦養(yǎng)殖池塘為長(zhǎng)38.0m、寬32.0m、水深1.1m,在池塘內(nèi)多點(diǎn)部署了多參數(shù)水質(zhì)傳感器、增氧機(jī)、循環(huán)泵等水質(zhì)監(jiān)控設(shè)備。對(duì)蝦養(yǎng)殖池塘監(jiān)測(cè)平面示意圖及試驗(yàn)平臺(tái)拓?fù)浣Y(jié)構(gòu)圖如圖1所示。
對(duì)蝦養(yǎng)殖環(huán)境監(jiān)控及試驗(yàn)平臺(tái)包括數(shù)據(jù)采集、無(wú)線傳輸、數(shù)據(jù)處理、智能監(jiān)控等功能。其中基于物聯(lián)網(wǎng)的數(shù)據(jù)采集模塊采集的對(duì)蝦養(yǎng)殖水質(zhì)參數(shù)數(shù)據(jù)包括溶解氧、pH值、水溫、電導(dǎo)率和濁度等,采集頻率為30 min。
2.2研究方法
2.2.1經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)
EMD是一種自適應(yīng)信號(hào)時(shí)頻處理方法[18],規(guī)避預(yù)先設(shè)置基函數(shù)等人為因素影響,能夠?qū)⒎瞧椒€(wěn)非線性原始信號(hào)進(jìn)行自適應(yīng)多尺度分解,獲得一組平穩(wěn)性和周期性特征的本征IMF和殘余分量RES[20-24]。將對(duì)蝦養(yǎng)殖水體溶解氧原始時(shí)序數(shù)據(jù)記為X(t),則EMD步驟如下。
(1)通過(guò)三次樣條插值法,擬合得到溶解氧原始時(shí)序數(shù)據(jù)信號(hào)的上下包絡(luò)線,計(jì)算局部極大值X(t)、極小值X(t)及均值M(t),如公式(1)。
(1)
(2)計(jì)算X(t)與M(t)之差H(t),如公式(2):
H(t)=X(t)-M(t)(2)
若H(t)符合本征模態(tài)分量的要求,則增加為初始的IMF分量,記作Ct);如不符合,則作為X(t)重復(fù)以上步驟,直至成為一個(gè)新增IMF分量,最終構(gòu)成信號(hào)序列的高頻分量;
(3)在H(t)中減去C(t)可得到殘差項(xiàng)r(t),并將其作為新的信號(hào)序列,用(2)中方法得到其余IMF分量C(t),C(t)…,C(t)和殘差項(xiàng)r(t)。原始時(shí)序X(t)最終可分解表示為各組分量和殘余項(xiàng)r(t)之和,如公式(3)。
[3]
2.2.2隨機(jī)森林
隨機(jī)森林(Random Forest,RF)是一種繼承自舉集成(Bootstrap Aggregation,Bagging)算法思想的機(jī)器學(xué)習(xí)方法[27,28],使用分類與回歸決策樹作為弱學(xué)習(xí)器,通過(guò)多個(gè)互相獨(dú)立且權(quán)重相同的決策樹組成決策森林,相比傳統(tǒng)決策樹方法,能快速收斂、有效克服過(guò)擬合,對(duì)于非線性非平穩(wěn)長(zhǎng)時(shí)序數(shù)據(jù)的預(yù)測(cè)具有較高精度,在訓(xùn)練速度、泛化能力和預(yù)測(cè)能力上具有優(yōu)勢(shì)[29]。
2.2.3長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)(LSTM)
LSTM是由Hochreiter等在循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural. Networks,RNN)基礎(chǔ)上提出的神經(jīng)網(wǎng)絡(luò)模型[20,23-25]。
LSTM模型采用細(xì)胞狀態(tài)和3個(gè)門結(jié)構(gòu)替換RNN隱含層神經(jīng)元,實(shí)現(xiàn)了去除或增加控制信息在細(xì)胞狀態(tài)的能力,克服了RNN梯度消失、學(xué)習(xí)能力下降、信息長(zhǎng)期依賴等問(wèn)題[30,31]。
LSTM中使用輸入門和遺忘門來(lái)控制單元狀態(tài)向后傳遞的信息;輸出門控制單元狀態(tài)用于輸出LSTM的當(dāng)前值,如下:
(4)
其中,i、f、o、C分別代表輸入門、遺忘門、輸出門以及候選向量;W為權(quán)重;b為偏置;σ(.)為sigmoid激活函數(shù);tanh(.)為雙曲正切激活函數(shù);i、f、o、C分別代表輸入門、遺忘門、輸出門以及t時(shí)刻的候選向量更新值;W和b代表候選向量。的權(quán)重和偏置;x為t時(shí)刻序列輸入,h為t時(shí)刻的輸出。
3基于EMD-RF-LSTM的組合預(yù)測(cè)模型設(shè)計(jì)
3.1模型設(shè)計(jì)
為解決非線性時(shí)序列數(shù)據(jù)經(jīng)驗(yàn)?zāi)B(tài)分解后不同頻域模態(tài)分量預(yù)測(cè)精度不佳的問(wèn)題,驗(yàn)證按高、低頻分量分別預(yù)測(cè)的效果,本研究設(shè)計(jì)了基于EMD-RF-LSTM的對(duì)蝦養(yǎng)殖水體溶解氧組合預(yù)測(cè)模型,并選用溶解氧濃度數(shù)據(jù)作為輸入。首先采用EMD對(duì)呈現(xiàn)周期波動(dòng)的、非線性的對(duì)蝦養(yǎng)殖溶解氧時(shí)間序列數(shù)據(jù)進(jìn)行多尺度分解,劃分成高頻IMF、低頻IMF及殘差值RES;然后對(duì)分解后數(shù)據(jù)進(jìn)行歸一化處理,劃分訓(xùn)練集和測(cè)試集;使用低頻分量訓(xùn)練RF模型,高頻分量訓(xùn)練LSTM模型,并用Adam反復(fù)優(yōu)化調(diào)整LSTM模型參數(shù);最后,將測(cè)試集用于該模型評(píng)估,并展開與ELM、RF、LSTM等標(biāo)準(zhǔn)模型及采用EMD分解模型的對(duì)比試驗(yàn),以驗(yàn)證本研究模型對(duì)對(duì)蝦養(yǎng)殖水體溶解氧的預(yù)測(cè)性能。詳細(xì)步驟如下。
(1)通過(guò)水質(zhì)檢測(cè)傳感器采集溶解氧時(shí)間序列數(shù)據(jù),完成預(yù)處理;
(2)對(duì)預(yù)處理后溶解氧時(shí)序數(shù)據(jù)進(jìn)行EMD分解,得到不同頻率IMF分量,并歸一化處理;
(3)將歸一化處理后的對(duì)蝦養(yǎng)殖溶解氧IMF分量分為高頻和低頻,并劃分訓(xùn)練集和測(cè)試集;
(4)對(duì)IMF高頻分量、低頻分量及余量,分別建立LSTM及RF模型,對(duì)預(yù)測(cè)模型參數(shù)和權(quán)重進(jìn)行初始化;
(5)將訓(xùn)練集作為輸入對(duì)模型進(jìn)行訓(xùn)練,對(duì)LSTM模型參數(shù)及權(quán)重進(jìn)行迭代優(yōu)化處理,完成基于EMD-RF-LSTM的對(duì)蝦養(yǎng)殖溶解氧預(yù)測(cè)模型構(gòu)建;
(6)測(cè)試預(yù)測(cè)模型,并與其它模型對(duì)比。
所構(gòu)建的預(yù)測(cè)模型如圖2所示。
3.2評(píng)價(jià)指標(biāo)
為驗(yàn)證EMD-RF-LSTM模型對(duì)對(duì)蝦養(yǎng)殖水體溶解氧濃度的預(yù)測(cè)性能,展開了本模型與其它模型的對(duì)比試驗(yàn)。選擇了平均絕對(duì)百分比誤差(MAPE)、均方根誤差(RMSE)和平均絕對(duì)誤差(MAE)三項(xiàng)評(píng)價(jià)指標(biāo)對(duì)組合模型的預(yù)測(cè)性能進(jìn)行性能評(píng)價(jià),并開展對(duì)比。
4試驗(yàn)及結(jié)果分析
4.1數(shù)據(jù)預(yù)處理
試驗(yàn)以湛江市南三島對(duì)蝦養(yǎng)殖基地試驗(yàn)池塘溶解氧濃度為研究對(duì)象,以基于物聯(lián)網(wǎng)數(shù)據(jù)采集模塊采集的對(duì)蝦養(yǎng)殖水質(zhì)數(shù)據(jù)作為試驗(yàn)樣本。選取2020年7月20日至8月20日采集的共計(jì)1488個(gè)樣本加入試驗(yàn)用數(shù)據(jù)集,并取前1344條數(shù)據(jù)作為訓(xùn)練集,最后144條數(shù)據(jù)作為測(cè)試集。圖3顯示了完整數(shù)據(jù)采集周期的原始數(shù)據(jù),其中橫坐標(biāo)為每30min間隔采集的數(shù)據(jù)序列,縱坐標(biāo)為溶解氧濃度數(shù)值。由圖3可見(jiàn),真實(shí)對(duì)蝦養(yǎng)殖現(xiàn)場(chǎng)水體溶解氧濃度時(shí)序數(shù)據(jù)呈現(xiàn)顯著周期性、非線性特征。
針對(duì)水質(zhì)傳感器故障等因素導(dǎo)致的采集數(shù)據(jù)異常,利用均值平滑法進(jìn)行處理。如果存在參數(shù)與其平均值之差的絕對(duì)值大于其標(biāo)準(zhǔn)差的3倍,即斷定為異常值并用其兩側(cè)數(shù)據(jù)的平均值替換,如公式(5)所示。
(5)
其中,Pt為t時(shí)刻溶解氧參數(shù)采集值;P′為異常數(shù)據(jù)處理后值;P為水體溶解氧數(shù)據(jù)序列均值。
為提高預(yù)測(cè)準(zhǔn)確率減少誤差,便于研究對(duì)蝦養(yǎng)殖溶解氧濃度數(shù)據(jù)間的相關(guān)性,更好地提取時(shí)序數(shù)據(jù)信息,本研究利用公式(6)對(duì)數(shù)據(jù)進(jìn)行歸一化處理。
(6)
其中,N為溶解氧濃度最大值,Nmin為最小值,單位mg/L;N″為歸一化值。
4.2開發(fā)環(huán)境及工具選擇
試驗(yàn)計(jì)算機(jī)環(huán)境為Intel I7-7700K CPU,8GB內(nèi)存,Window7+python3.7+MATLAB,集成開發(fā)環(huán)境為Anaconda3。
其中,EMD和ELM模型基于MATLAB工具箱實(shí)現(xiàn),RF模型基于Anaconda的Sklearn程序包實(shí)現(xiàn),LSTM模型基于Keras框架構(gòu)建,試驗(yàn)參數(shù)采用留一法交叉驗(yàn)證網(wǎng)格搜索法(Leave-One- Out-Cross-Validation,LOOCV)優(yōu)化。
4.3基于EMD的溶解氧多尺度分解
為得到更加準(zhǔn)確的預(yù)測(cè)效果,獲得高精度的對(duì)蝦養(yǎng)殖溶解氧時(shí)序分量,本研究首先使用EMD對(duì)原始溶解氧時(shí)序數(shù)據(jù)進(jìn)行多尺度分解,分解后得到的分量如圖4所示。
由圖4可以看出,對(duì)蝦養(yǎng)殖水體溶解氧濃度時(shí)序數(shù)據(jù)不同尺度的特征明顯,分解后得到的本征模態(tài)分量IMF1—IMF7各表現(xiàn)出不同的信息特征,最后的剩余分量序列平穩(wěn),體現(xiàn)出對(duì)蝦養(yǎng)殖水體溶解氧總體含量的長(zhǎng)期變化狀態(tài)。
4.4IMF分量預(yù)測(cè)及參數(shù)設(shè)置
基于文獻(xiàn)[25]、[30]和[31],本研究在經(jīng)驗(yàn)?zāi)B(tài)分解的基礎(chǔ)上,采用全面試驗(yàn)方法利用LSTM模型和RF模型分別對(duì)IMF1—IMF7及RES分量進(jìn)行建模訓(xùn)練,并使用擴(kuò)展隨機(jī)梯度下降法對(duì)LSTM模型參數(shù)進(jìn)行優(yōu)化,利用網(wǎng)格搜索法對(duì)RF模型參數(shù)進(jìn)行優(yōu)化,以尋找LSTM和RF模型在不同頻度分量上的預(yù)測(cè)表現(xiàn)。
標(biāo)準(zhǔn)LSTM隱含層節(jié)點(diǎn)數(shù)、批尺度和時(shí)間步分別為20、32和5,RF模型的參數(shù)學(xué)習(xí)率為0.1,節(jié)點(diǎn)數(shù)深度為3,節(jié)點(diǎn)數(shù)顆數(shù)為500,最小葉子權(quán)重為6。得到各個(gè)IMF分量和RES分量的LSTM模型和RF模型預(yù)測(cè)結(jié)果分別如表1和表2所示。
由表1和表2可見(jiàn),RF模型對(duì)高頻分量IMF1的MAPE值僅為1.1542,對(duì)IMF4的MAPE值為0.0154,均低于LSTM對(duì)應(yīng)分量的預(yù)測(cè)精度。但隨著各分量頻率降低,RF模型的預(yù)測(cè)精度也隨之提高;此時(shí)隨著分量頻率降低,LSTM模型預(yù)測(cè)精度呈現(xiàn)下降趨勢(shì)。兩者相對(duì)比發(fā)現(xiàn),在高頻分量IMF1—IMF4的預(yù)測(cè)精度上,LSTM模型在關(guān)鍵指標(biāo)上優(yōu)于RF模型,而RF模型則在低頻分量上表現(xiàn)更好,試驗(yàn)結(jié)果符合預(yù)期。由此結(jié)果可知,低頻分量適合訓(xùn)練RF模型,高頻分量適合訓(xùn)練LSTM模型。
4.5基于EMD-RF-LSTM的組合預(yù)測(cè)
依據(jù)4.4節(jié)試驗(yàn)展現(xiàn)特點(diǎn),采用LSTM和RF模型分別對(duì)高頻分量(IMF1—IMF4)、低頻分量和殘差(IMF5—IMF7,Rn)進(jìn)行建模,然后將各分量預(yù)測(cè)結(jié)果求和,以實(shí)現(xiàn)基于EMD-RF- LSTM的對(duì)蝦養(yǎng)殖溶解氧濃度預(yù)測(cè)。
為驗(yàn)證模型性能,分別采用標(biāo)準(zhǔn)模型、模態(tài)分解后模型以及本研究模型,使用相同數(shù)據(jù)集開展溶解氧濃度預(yù)測(cè)。其中標(biāo)準(zhǔn)ELM模型采用sigmoid激活函數(shù),隱含層節(jié)點(diǎn)數(shù)為8。不同模型的溶解氧濃度預(yù)測(cè)結(jié)果如圖5所示,各指標(biāo)如表3 所示。
4.6結(jié)果分析
4.6.1經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)分析
對(duì)試驗(yàn)結(jié)果進(jìn)行分析統(tǒng)計(jì),在相同對(duì)蝦養(yǎng)殖溶解氧濃度數(shù)據(jù)集下:EMD-ELM模型與標(biāo)準(zhǔn)ELM模型對(duì)比,MAPE、RMSE和MAE指標(biāo)分別降低了30.11%、29.60%和32.95%;EMD-RF與標(biāo)準(zhǔn)RF模型對(duì)比,MAPE、RMSE和MAE指標(biāo)分別降低了70.40%、49.86%和57.63%;EMD-LSTM與標(biāo)準(zhǔn)LSTM對(duì)比,MAPE、RMSE和MAE指標(biāo)分別降低了74.83%、53.30%和58.32%。
以關(guān)鍵精度指標(biāo)MAPE為例,采用EMD分解ELM、RF和LSTM模型相比對(duì)應(yīng)標(biāo)準(zhǔn)模型分別降低了30.11%、70.40%和74.83%,預(yù)測(cè)精度顯著高于標(biāo)準(zhǔn)模型,證明基于EMD的時(shí)序數(shù)據(jù)多尺度分解可有效提升預(yù)測(cè)性能。
4.6.2多頻度模態(tài)分量組合預(yù)測(cè)分析
由試驗(yàn)結(jié)果可知,在相同數(shù)據(jù)集下,在經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)基礎(chǔ)上通過(guò)RF和LSTM對(duì)不同特征尺度的本征模態(tài)分量分別預(yù)測(cè)的EMDRF-LSTM模型與461中EMD分解后的各模型對(duì)比。以關(guān)鍵精度指標(biāo)MAPE為例,本研究提出的基于多頻模態(tài)分量組合預(yù)測(cè)模型,較普通EMD 分解后模型分別降低了84.07%、57.57%和49.81%,預(yù)測(cè)精度顯著提高,證明針對(duì)多頻分量的預(yù)測(cè)策略可提升模型性能。
4.6.3基于EMD-RF-LSTM組合預(yù)測(cè)模型分析
對(duì)預(yù)測(cè)結(jié)果分析可發(fā)現(xiàn),經(jīng)驗(yàn)?zāi)B(tài)分解具備多尺度提取對(duì)蝦養(yǎng)殖溶解氧時(shí)間序列信息的特性,數(shù)據(jù)分解之后會(huì)在保留原始信息基礎(chǔ)上得到更多的本征模態(tài)系數(shù)時(shí)間序列信號(hào);而RF可有效提取低頻IMF數(shù)據(jù)信息,LSTM模型對(duì)高頻數(shù)據(jù)有理想的效果,對(duì)于時(shí)間序列信息能夠高效利用。
本研究提出的基于EMD-RF-LSTM組合模型結(jié)合了經(jīng)驗(yàn)?zāi)B(tài)分解的多尺度特征提取、LSTM 對(duì)長(zhǎng)時(shí)間序列高頻數(shù)據(jù)預(yù)測(cè)以及RF算法對(duì)低頻IMF數(shù)據(jù)信息提取的優(yōu)勢(shì),能獲得較高的對(duì)蝦養(yǎng)殖水體溶解氧濃度預(yù)測(cè)精度,預(yù)測(cè)曲線能夠很好地?cái)M合養(yǎng)殖溶解氧濃度非線性時(shí)間序列變化趨勢(shì),取得很好的預(yù)測(cè)效果。
5討論與結(jié)論
5.1討論
在對(duì)對(duì)蝦養(yǎng)殖水質(zhì)長(zhǎng)期檢測(cè)數(shù)據(jù)的觀察中發(fā)現(xiàn),養(yǎng)殖水質(zhì)尤其是溶解氧(DO)濃度變化相對(duì)緩慢,在文獻(xiàn)[7]和[12]中均可見(jiàn)溶解氧濃度在30min內(nèi)變化很小。相對(duì)于文獻(xiàn)[30]中數(shù)據(jù)采集周期、采集間隔及訓(xùn)練數(shù)據(jù)量,本研究在檢測(cè)周期同為一個(gè)月的情況下,適當(dāng)增大了數(shù)據(jù)采集間隔,以減少用于訓(xùn)練的總樣本數(shù)量。由于LSTM作為一種時(shí)間循環(huán)神經(jīng)網(wǎng)絡(luò)是為解決RNN存在長(zhǎng)期依賴問(wèn)題而設(shè)計(jì),對(duì)于時(shí)間序列數(shù)據(jù)有較好的記憶能力,對(duì)于長(zhǎng)度較短的時(shí)間序列數(shù)據(jù)也具有一定預(yù)測(cè)效果。在文獻(xiàn)[25]中,LSTM模型在經(jīng)驗(yàn)?zāi)J椒纸夂蟮母哳l分量上預(yù)測(cè)效果表現(xiàn)優(yōu)異,而在訓(xùn)練樣本較少的低頻分量上預(yù)測(cè)效果不佳;而文獻(xiàn)[31]為驗(yàn)證訓(xùn)練樣本較少的訓(xùn)練效果,為提出的EMD-LSTM模型選擇了1500組數(shù)據(jù)作為訓(xùn)練樣本,并獲得較好預(yù)測(cè)效果。綜上,本研究綜合考慮變量數(shù)量、總體樣本量比例關(guān)系,為驗(yàn)證本研究提出EMD-RF- LSTM模型在訓(xùn)練樣本較少情況下的表現(xiàn),從現(xiàn)場(chǎng)數(shù)據(jù)中選擇了采集周期為一個(gè)月、采樣間隔為30min、共計(jì)1488組溶解氧濃度時(shí)序數(shù)據(jù)作為訓(xùn)練樣本開展研究。
本研究在選擇訓(xùn)練樣本較少的情況下,首先驗(yàn)證LSTM在經(jīng)驗(yàn)?zāi)J椒纸夂蟮牡皖l分量上預(yù)測(cè)效果不佳的情況,然后通過(guò)試驗(yàn)結(jié)果將IMF1—IMF4劃分為適合LSTM模型訓(xùn)練的高頻分量,將IMF5—IMF7及Rn劃分為適合RF模型訓(xùn)練的分量,并構(gòu)建了EMD-RF-LSTM組合模型以提升預(yù)測(cè)精度。此外,本研究利用歷史數(shù)據(jù)進(jìn)行交叉驗(yàn)證,模型展現(xiàn)了較好預(yù)測(cè)結(jié)果,為進(jìn)一步驗(yàn)證在訓(xùn)練樣本較少時(shí)歷史數(shù)據(jù)的影響,在后續(xù)試驗(yàn)中將加入實(shí)際現(xiàn)場(chǎng)測(cè)試結(jié)果對(duì)本模型性能進(jìn)行驗(yàn)證;并調(diào)整可能會(huì)引起溶氧劇烈變化的時(shí)刻的采樣頻率,如投餌時(shí),或早晚,或天氣變化時(shí),調(diào)整采樣間隔。
5.2結(jié)論
本研究針對(duì)對(duì)蝦養(yǎng)殖水體溶解氧濃度采集數(shù)據(jù)不穩(wěn)定和多尺度特征等特點(diǎn),分析了訓(xùn)練樣本較少情況下非線性時(shí)序列數(shù)據(jù)經(jīng)驗(yàn)?zāi)B(tài)分解后不同頻域模態(tài)分量預(yù)測(cè)精度不佳的問(wèn)題,利用EMD對(duì)對(duì)蝦水質(zhì)溶解氧濃度數(shù)據(jù)進(jìn)行多尺度分解,使用LSTM用于高頻分量預(yù)測(cè)、RF用于低頻分量預(yù)測(cè),對(duì)不同頻段數(shù)據(jù)分量進(jìn)行分別建模預(yù)測(cè),通過(guò)真實(shí)養(yǎng)殖環(huán)境數(shù)據(jù)試驗(yàn)證明,本研究提出基于EMD-RF-LSTM的組合預(yù)測(cè)模型的MAPE、RMSE和MAE指標(biāo)分別為0.0129、0.1156和0.0844,與經(jīng)驗(yàn)?zāi)J椒纸夂蟮腅MD- ELM、EMD-RF和EMD-LSTM模型相比關(guān)鍵指標(biāo)分別降低了84.07%、57.57%和49.81%,在訓(xùn)練樣本較少的情況下對(duì)于對(duì)蝦養(yǎng)殖水體溶解氧濃度具有良好的預(yù)測(cè)效果,有效提高了預(yù)測(cè)精度和魯棒性。
參考文獻(xiàn):
[1]于道德,宋靜靜,葉海斌,等.生態(tài)理念下對(duì)蝦健康養(yǎng)殖發(fā)展建議[J].生態(tài)學(xué)雜志,2021,40(2): 568-576.
YU D, SONG J, YE H, et al. Suggestions on the development of healthy shrimp culture under ecological. framework[J]. Chinese Journal. of Ecology, 2021, 40 (2): 568-576.
[2]朱林,車軒,劉興國(guó),等.簡(jiǎn)易式工廠化循環(huán)水對(duì)蝦養(yǎng)殖系統(tǒng)構(gòu)建及試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2020, 36 (15): 210-216.
ZHU L, CHE X, LIU X, et al. Construction and experiment of simple industrial. recirculating water shrimp culture system[J]. Transactions of the CSAE, 2020, 36 (15): 210-216.
[3]吳靜,李振波,朱玲,等.融合ARIMA模型和GAWNN的溶解氧含量預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017, 48 (S1): 205-210.
WU J, LI Z, ZHU L, et al. Hybrid model of ARIMA model and GAWNN for dissolved oxygen content pre- diction[J]. Transactions of the CSAM, 2017, 48(S1): 205-210.
[4]陳英義,程倩倩,方曉敏,等.主成分分析和長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)水產(chǎn)養(yǎng)殖水體溶解氧[J].農(nóng)業(yè)工程學(xué)報(bào),2018, 34(17): 183-191.
CHEN Y, CHENG Q, FANG X, et al. Principal. component analysis and long short-term memory neural. network for predicting dissolved oxygen in water for aquaculture[J]. Transactions of the CSAE, 2018, 34 (17): 183-191.
[5] SWETA B, AMBIKA H, MAHESHAWARI J.,Simple rapid and on spot dye-based sensor for the detection of Vibrio load in shrimp culture fanns[J]. Archives of Clinical. Microbiology, 2021 (1): 1-8.
[6] LIU S, XU L, JIANG Y, et al. A hybrid WA-CPSOLSSVR model for dissolved oxygen content prediction in crab culture[J]. Engineering Applications of Artificial. Intelligence, 2014, 29(3): 114-124.
[7]徐龍琴,陳躍霞,張軍,等.基于WA-ABC-WLSSVR 的南美白對(duì)蝦工廠化育苗溶解氧預(yù)測(cè)模型[J].武漢大學(xué)學(xué)報(bào)(工學(xué)版),2017, 50(4): 608-617.
XU L, CHEN Y, ZHANG J, et al. Prediction model of dissolved oxygen in industrialized vannamei breeding based on wavelet analysis and weighted least squares support vector regression optimized by artificial. bee colony algorithm[J]. Engineering Journal. of WuhanUniversity, 2017, 50(4): 608-617.
[8] HUAN J, LI H, LI M, et al. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Changzhou fishery demonstration base, China[J]. Computers and Electronics in Agriculture, 2020, DOI: 10.1016/j.compag.2020.105530.
[9]朱南陽(yáng),吳昊,尹達(dá)恒,等.基于長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的蟹塘溶解氧估算優(yōu)化方法[J].智慧農(nóng)業(yè)(中英文),2019, 1(3): 67-76.
ZHU N, WU H, YIN D, et al. An improved method for estimating dissolved oxygen in crab ponds based on Long Short-Term Memory[J]. Smart Agriculture, 2019, 1(3): 67-76.
[10] CAO W, HUAN J, LIU C, et al. A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction[J]. Aquacultural. Engineering, 2019, 84: 50-59.
[11] RAHMAN A, DABROWSKI J, MCCULLOCH J. Dissolved oxygen prediction in prawn ponds from a group of one step predictors[J]. Information Processing in Agriculture, 2020, 7(2): 307-317.
[12]施珮,匡亮,袁永明,等.基于改進(jìn)極限學(xué)習(xí)機(jī)的水體溶解氧預(yù)測(cè)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2020, 36 (19): 225-232.
SHI P, KUANG L, YUAN Y, et al. Dissolved oxygen prediction for water quality of aquaculture using improved ELM network[J]. Transactions of the CSAE, 2020,36(19):225-232.
[13] REN Q, WANG X, LI W, et al. Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network[J]. Aquacultural. Engineering, 2020,90:ID 102085.
[14] LIU Y, ZHANG Q, SONG L, et al. Attention-based recurrent neural. networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture, 2019, 165: ID 104964.
[15]樊宇星,任妮,田港陸,等.基于DeepAR-RELM的池塘溶解氧時(shí)空預(yù)測(cè)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(81):405-412.
FAN Y, REN N, TIAN G, et al. Spatio-temporal. prediction method of dissolved oxygen in ponds based on DeepAR-RELM[J]. Transactions of the CSAM, 2020, 51(S1): 405-412.
[16]饒偉,楊衛(wèi)中,位耀光,等.魚菜共生水體溶解氧時(shí)空變化規(guī)律及其影響因素研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017, 48(81):374-380.
RAO W, YANG W, WEI Y, et al. Temporal. and spatial. variability of water dissolved oxygen with influencefactors in aquaponics system [J]. Transactions of the CSAM, 2017, 48(S1): 374-380.
[17]于輝輝.基于機(jī)器學(xué)習(xí)的池塘養(yǎng)殖水質(zhì)關(guān)鍵因子預(yù)測(cè)方法研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2017.
YU H. Research on prediction method of key factors of pond aquaculture water quality based on machine leaming[D]. Beijing: China Agricultural. University,2017.
[18]胡鶯慶,陳徽鵬,程哲,等.基于經(jīng)驗(yàn)?zāi)B(tài)分解和深度卷積神經(jīng)網(wǎng)絡(luò)的行星齒輪箱故障診斷方法[J].機(jī)械工程學(xué)報(bào),2019, 55(7): 9-18.
HU N, CHEN H, CHENG Z, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional. neural. networks[J]. Journal. of Mechanical. Engineering, 2019, 55⑺:9-18.
[19]楊建華,韓帥,張帥,等.強(qiáng)噪聲背景下滾動(dòng)軸承微弱故障特征信號(hào)的經(jīng)驗(yàn)?zāi)B(tài)分解[J].振動(dòng)工程學(xué)報(bào),2020, 33(3): 582-589.
YANG J, HAN S, ZHANG S, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional. neural. networks[J]. Journal. of Vibration Engineering, 2020, 33(3): 582-589.
[20]劉云,許自強(qiáng),董王英,等.基于經(jīng)驗(yàn)?zāi)B(tài)分解和長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)的變壓器油中溶解氣體濃度預(yù)測(cè)方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2019, 39(13): 3998-4008.
LIU Y, XU Z, DONG W, et al. Concentration prediction of dissolved gases in transformer oil based on empirical. mode decomposition and long short-term memory neural. networks[J]. Proceedings of The Chinese Society for Electrical. Engineering, 2019, 39(13): 3998- 4008.
[21]徐龍琴,張軍,李乾川,等.基于EMD和ELM的工廠化育苗水溫組合預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016, 47(4): 265-271.
XU L, ZHANG J, LI Q, et al. Combined prediction model of water temperature in industrialized cultivation based on empirical. mode decomposition and extreme learning machine[J]. Transactions of the CSAM,2016, 47(4):265-271.
[22]施珮,袁永明,匡亮,等.基于EMD-IGA-SELM的池塘養(yǎng)殖水溫預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018, 49 (11):312-319.
SI P, YUAN Y, KUANG L, et al. Water temperature prediction in pond aquaculture based on EMD-IGA- SELM neural. network[J]. Transactions of the CSAM, 2018, 49(11): 312-319.
[23]楊亮,劉春紅,郭昱辰,等.基于EMD-LSTM的豬舍氨氣濃度預(yù)測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019, 50 (S1): 353-360.
YANG L, LIU C, GUO Y, et al. Prediction of ammonia concentration in fattening piggery based on EMD- LSTM[J]. Transactions of the CSAM, 2019, 50(Sl): 353-360.
[24]戴邵武,陳強(qiáng)強(qiáng),劉志豪,等.基于EMD-LSTM的時(shí)間序列預(yù)測(cè)方法[J].深圳大學(xué)學(xué)報(bào)(理工版),2020, 37 (3): 265-270.
DAI S, CHEN Q, LIU Z, et al. Time series prediction based on EMD-LSTM model[J]. Journal. of Shenzhen University (Science & Engineering), 2020, 37(3): 265-270.
[25]趙曉東,蘇公瑾,李克利,等.一種融合EMD分解和LSTM網(wǎng)絡(luò)的頻譜占用度預(yù)測(cè)模型[J].計(jì)算機(jī)科學(xué),2020, 47(S1):294-298.
ZHAO X, SU G, LI K, et al. Spectrum occupancy prediction model based on EMD decomposition and LSTM networks [J]. Computer Science, 2020, 47(S1): 294-298.
[26]秦喜文,呂思奇,李巧玲,等.利用整體經(jīng)驗(yàn)?zāi)B(tài)分解和隨機(jī)森林的腦電信號(hào)分類研究[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2018, 37(6): 665-672.
QIN X, LYU S, LI Q. Recognition of EEG based on ensemble empirical. mode decomposition and random fbrest[J]. Chinese Journal. of Biomedical. Engineering, 2018,37(6): 665-672.
[27] ANNA C, SALAH S, BRETT W. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69.
[28] DHIVYA E, DURAI R, VISHAL. S, et al. Forecasting yield by integrating agrarian factors and machine learning models: A survey[J]. Computers and Electronics in Agriculture, 2018, 155: 257-282.
[29]劉峻明,和曉彤,王鵬新,等.長(zhǎng)時(shí)間序列氣象數(shù)據(jù)結(jié)合隨機(jī)森林法早期預(yù)測(cè)冬小麥產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2019, 35(6): 158-166.
LIU J, HE X, WANG P, et al. Early prediction of winter wheat yield with long time series meteorological. data and random forest method[J]. Transactions of the CSAE, 2019,35(6): 158-166.
[30]陳英義,方曉敏,梅思遠(yuǎn),等.基于WT-CNN-LSTM的溶解氧含量預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020, 51(10): 284-291.
CHEN Y, FANG X, MEI S, et al. Principal. component analysis and long short-term memory neural. network for predicting dissolved oxygen in water for aquacul- ture[J]. Transactions of the CSAM, 2020, 51(10): 284-291.
[31]金秀章,劉岳,于靜,等.基于變量選擇和EMD-LSTM網(wǎng)絡(luò)的出口SO_2濃度預(yù)測(cè)[J/OL].中國(guó)電機(jī)工程學(xué)報(bào),(2021-04-19). http://kns.cnki.net/kcms/detail/11.2107.TM.20210416.1541.009.html.
JIN X, LIU Y, YU J, et al. Prediction of outlet SO2concentration based on variable selection and EMD- LSTM[J/OL], Proceedings of The Chinese Society for Electrical. Engineering, (2021-04-19). http://kns.cnki.net/kcms/detail/11.2107.TM.20210416.1541.009.html.
EMD-RF-LSTM: Combination Prediction Model of Dissolved Oxygen Concentration in Prawn Culture
YIN Hang1,3,4, LI Xiangtong1,3,4, XU Longqin1,3,4, LI Jingbin2, LIU Shuangyin1,2,3,4,5, CAO Liang1,3,4, FENG Dachun1,3,4, GUO Jianjun1,3,4, LI Liqiao2*
(1. Zhongkai University of Agriculture and Engineering, College of Information Science and Technology, Guangzhou, 510225, China; 2. Shihezi University, College of Mechanical. and Electric Engineerings, Shihezi, 832000, China; 3. Zhongkai University of Agriculture and Engineering, Academy of Smart Agricultural. Engineering Innovations, Guangzhou 510225, China; 4. Zhongkai University of Agriculture and Engineering, Smart Agriculture Engineering Research Center of Guangdong Higher Education Institutes, Guangzhou 510225, China; 5. Zhongkai University of Agriculture and Engineering, Guangdong Key Laboratory of Waterflow Health Breeding, Guangzhou 510225, China)
Abstract: Dissolved oxygen is an important environmental. factor for prawn breeding. In order to improve the prediction accuracy of dissolved oxygen concentration in prawn pond, and solve the problem of low prediction accuracy of different frequency domain modal. classification after empirical. modal. decomposition of nonlinear time series data when there are few training samples, an combination prediction model based on empirical. mode decomposition (EMD), random forest (RF) and long short term memory neural. network (LSTM) was proposed in this research. Firstly, the time series data of prawn breeding dissolved oxygen concentration were decomposed at multiple scales by EMD to obtain a set of stationary intrinsic mode function (IMF). Secondly, with fewer training samples, poor predicts effects on the low-frequency were verified component by LSTM. Then, IMF 1 —IMF4 were divided into high-frequency components through test results and used for LSTM model. IMF5—IMF7, Rn were divided for RF model, the EMD-RF-LSTM combination model was constructed to improve the prediction accuracy. Modeled low- frequency and high-frequency components IMF using RF and LSTM, then predictions of each component were accumulated and the prediction value of dissolved oxygen of sequence data were got. Finally, the performance of the model was compared with the limit learning machine (ELM), RF, standard LSTM, EMD-ELM and EMD-RF, EMD-LSTM, etc. In the test based on real. dataset, the EMD-ELM model contrasted with ELM model, reduced the mean absolute error (MAPE), root mean square error (RMSE) and mean absolute error (MAE) by 30.11%, 29.60% and 32.95%, respectively. The MAPE, RMSE, MAE for the proposed models were 0.0129, 0.1156, 0.0844, respectively. MAPE decreased by 84.07%, 57.57%, and 49.81% compared with EMD-ELM, EMD-RF and EMD-LSTM, respectively, the prediction accuracy was significantly improved. The results show that the proposed model EMD-RF-LSTM has good prediction performance and generalization ability, which is meets the actual. demand of accurate prediction of dissolved oxygen concentration in prawn culture, and can provide reference for the prediction and early warning of prawn pond water quality.
Key words: prawn pond; dissolved oxygen prediction; empirical. mode decomposition; random forest; short and long-term memory neural. network
(登陸www.smartag.net.cn免費(fèi)獲取電子版全文)
作者簡(jiǎn)介:尹航(1978—),男,博士,副教授,研究方向?yàn)槿斯ぶ悄芎椭卮笱b備健康管理。E-mail:736028008@qq.com。
*通訊作者:李利橋(1988—),女,博士,副教授,研究方向?yàn)橹腔坜r(nóng)業(yè)和農(nóng)牧機(jī)械裝備研究。電話:17590396517。E-mail:liliqiao1108@163.com。