王明辰 李子龍 周蘇云 李浩
摘要:該文主要研究新型冠狀病毒肺炎疫情流行環(huán)境下,對(duì)小區(qū)進(jìn)行封閉式管理時(shí),利用無人機(jī)進(jìn)行物資運(yùn)輸及體溫測(cè)量的問題。首先分析主流小區(qū)的規(guī)模及戶型結(jié)構(gòu)數(shù)據(jù),篩選出能最具有代表性的小區(qū)。對(duì)選定小區(qū)的住戶,在疫情隔離的情況下所需的日常生活用品進(jìn)行分析,并整理各貨品的規(guī)格數(shù)據(jù),依照整理所得的住戶日常生活用品數(shù)量及規(guī)格數(shù)據(jù),根據(jù)無人機(jī)貨艙的尺寸數(shù)據(jù),評(píng)價(jià)分析貨物的需求度,建立穩(wěn)定性模型,進(jìn)行三維裝箱優(yōu)化。然后根據(jù)送貨目的地,進(jìn)行三維空間路徑圖的坐標(biāo)系轉(zhuǎn)化,建立最優(yōu)路徑搜索模型,并結(jié)合貨物的時(shí)間需求度對(duì)相應(yīng)目的地進(jìn)行賦權(quán),轉(zhuǎn)化為帶權(quán)無向連通圖,運(yùn)用混合粒子群算法進(jìn)行計(jì)算,得出最終的無人機(jī)運(yùn)送路線圖。
關(guān)鍵詞: 時(shí)間需求度;穩(wěn)定性模型;最優(yōu)路徑搜索模型;混合粒子群算法;無人機(jī)裝載運(yùn)輸
中圖分類號(hào):TP311? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-3044(2021)36-0114-02
開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research on UAV Loading and Transportation Optimization Based on Optimal Path Search
WANG Ming-chen,LI Zi-long,ZHOU Su-yun,LI Hao
(Xuzhou University of Technology, Xuzhou 221111, China)
Abstract:This paper mainly studies the problems of the use of unmanned aerial vehicles to transport materials and measure body temperature in the enclosed management of the community under the epidemic environment. Firstly, the scale and house type structure data of the mainstream communities are analyzed to select the most representative communities. For selected community residents, in the case of epidemic isolation needed supplies were analyzed, and the daily life and organize the data of the specifications of the goods, in accordance with the number of resident daily life things sorted and specification data, based on the size of the unmanned aerial vehicle hold data, evaluation analysis of goods demand, establish stability model, the three-dimensional packing optimization. Then, according to the delivery destination, coordinate the three-dimensional space path graph, establish the optimal path search model, and combine the time demand degree of the goods to give weight to the corresponding destination, transform it into a weighted undirected connected graph, and use Hybrid Particle Swarm Optimization algorithm to calculate, get the final drone transport roadmap.
Key words:time demand degree; stability model; optimal path search model; Hybrid Particle Swarm Optimization; Drone Loading and Transportation
1 引言
2020年初,新型冠狀病毒肺炎疫情逐漸在全球范圍蔓延。為了有效地切斷傳播途徑,以人們聚集居住地區(qū)為單位,進(jìn)行封閉式隔離管理。在封閉式隔離管理時(shí),滿足人們生活必要的物資需求是社區(qū)工作人員任務(wù)的重中之重。在派送物資的時(shí)候,如何有效地避免接觸,并節(jié)約有限的人力和防護(hù)物資是一個(gè)重要的問題。為了解決這個(gè)問題,很多地方選取無人機(jī)進(jìn)行送貨,然而無人機(jī)的負(fù)載和最大飛行距離有限,如何在最短的時(shí)間內(nèi),利用有限數(shù)量的無人機(jī)完成最多的送貨任務(wù),是本文研究的核心問題。
2? 無人機(jī)裝載及路徑聯(lián)合優(yōu)化
首先搜集新型冠狀病毒肺炎疫情期間進(jìn)行封閉式管理的小區(qū)的規(guī)模及戶型等數(shù)據(jù),并進(jìn)行數(shù)據(jù)清洗,剔除離群值,而后對(duì)剩余數(shù)據(jù)進(jìn)行聚類分析,最終得出最具代表性的小區(qū)為武漢市江岸區(qū)六合花園,其主要以高層樓房與復(fù)式樓別墅組成,其詳細(xì)數(shù)據(jù)如表1與表2所示:
其中,樓層高度為2.8m。建立三維坐標(biāo)系O-xyz,結(jié)合六合花園戶型分布,以西南門為左邊原點(diǎn)O,并且為起始地點(diǎn)。根據(jù)篩選所得的居民日常生活物資供給標(biāo)準(zhǔn),結(jié)合第n戶的人口數(shù)[Hn],其中老幼等弱勢(shì)人口數(shù)為[Hn1],青壯年人口數(shù)為[Hn2]([Hn=Hn1+Hn2])。不同年齡段群體的日常物資供給量(g)為[SP1和SP2],對(duì)應(yīng)的物資時(shí)間需求度為[TN1]和[TN2],可得第n戶的物資獲取時(shí)間需求度函數(shù):
[GTNn=k=12Hnk?TNk/k=12Hnk?SPk]
其中,[GTNn]為第n戶的物資獲取時(shí)間需求度。根據(jù)小區(qū)的三維坐標(biāo)圖,對(duì)每個(gè)目標(biāo)的坐標(biāo)點(diǎn)進(jìn)行賦權(quán),轉(zhuǎn)化為帶權(quán)無向連通圖,結(jié)合AOE網(wǎng)和滿意度優(yōu)先算法的原理,建立最優(yōu)路徑搜索模型:
[max SF=n=1273GTNn/tn]
上式中,SF為完成所有的運(yùn)送任務(wù)后,住戶總的時(shí)間需求滿足度;[tn]為無人機(jī)從出發(fā)到飛達(dá)第n戶完成該戶的運(yùn)送任務(wù)的時(shí)間。再根據(jù)貨物數(shù)據(jù)和無人機(jī)貨艙的規(guī)格,建立貨物穩(wěn)定性模型,確保在貨物完好的情況下,最大化利用貨艙空間。最后運(yùn)用混合粒子群算法,計(jì)算得出最大滿足度的無人機(jī)送貨路線圖,如圖(圖1、圖2)所示:
3 結(jié)論
本文成功實(shí)現(xiàn)了封閉式管理下,小區(qū)居民物資的最佳運(yùn)輸方式,保證了各住戶需求都均衡地得到滿足,節(jié)約了人力和時(shí)間成本。
參考文獻(xiàn):
[1] Wang C,Wang J,Shen Y,et al. Autonomous navigation of UAVs in large-scale complex environments:a deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology,2019,68(3):2124-2136.
[2] Huang H, Yang Y, Wang H, et al. Deep reinforcement learning for UAV navigation through massive MIMO technique[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1117-1121.
[3] 夏蕊,楊兆建,李博,等.基于離散元法的煤散料堆積角試驗(yàn)研究[J].中國(guó)粉體技術(shù),2018,24(6):36-42.
[4] 嚴(yán)磊,雷磊,蔡圣所,等.基于路徑規(guī)劃的無人機(jī)加權(quán)高效分簇方法[J].計(jì)算機(jī)工程,2018,44(11):276-281.
[5] Chen Xia, Hu Naikuan. Operational effectiveness evaluation of reconnaissance UAV based on improved support vector machine [J]. Firepower and command control, 2018, 43 (10): 31-34.
[6] Yang Yisen, Cui Jiankun. Optimized scheme of UAV rescue and disaster relief based on ant colony algorithm [J]. Agricultural equipment and vehicle engineering, 2018, 56 (10): 96-100.
[7] 馮宏.基于攝像頭的旋翼無人機(jī)在熱電廠巡檢中的應(yīng)用[J].科技創(chuàng)新與應(yīng)用,2018(23):176-177.
[8] 張海峰,韓芳林.基于任務(wù)協(xié)同的無人機(jī)多偵察載荷使用[J].海軍航空工程學(xué)院學(xué)報(bào),2018,33(3):333-338.
【通聯(lián)編輯:唐一東】