侯秀寧,王玉龍,劉思瑤,陳相安,張學(xué)敏,2※
拖拉機(jī)駕駛室內(nèi)非常規(guī)污染物排放的CFD模擬與試驗(yàn)
侯秀寧1,王玉龍1,劉思瑤1,陳相安1,張學(xué)敏1,2※
(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 北京市現(xiàn)代農(nóng)業(yè)裝備優(yōu)化設(shè)計(jì)重點(diǎn)實(shí)驗(yàn)室,北京 100083)
為探究農(nóng)機(jī)駕駛室內(nèi)非常規(guī)污染物分布特征,該研究以東方紅1804型拖拉機(jī)為對(duì)象,通過Fluent仿真與實(shí)際測(cè)試進(jìn)行非常規(guī)污染物排放研究。結(jié)果表明:23℃靜止密閉狀態(tài)下,駕駛室橫截面呼吸帶和進(jìn)風(fēng)口中間截面區(qū)域內(nèi)苯的平均質(zhì)量分?jǐn)?shù)仿真值為2.70 和3.03g/m3;拖拉機(jī)駕駛室內(nèi)檢測(cè)出的揮發(fā)性有機(jī)物包括烷烴、烯烴、醇、醛酮、酯類及其他化合物共241種,檢測(cè)出的苯、甲苯、二甲苯、乙苯、苯乙烯的濃度分別為3.08、30.49、46.84、8.39和2.43g/m3,低于相關(guān)標(biāo)準(zhǔn)規(guī)定的最大限值;駕駛室內(nèi)人體呼吸區(qū)域的苯濃度試驗(yàn)值與仿真值誤差范圍在7.7%~10.0%之間,揮發(fā)性有機(jī)物濃度的變化趨勢(shì)與仿真結(jié)果大致相同。研究結(jié)果可為進(jìn)一步研究農(nóng)機(jī)駕駛室內(nèi)的空氣質(zhì)量提供理論依據(jù)。
拖拉機(jī);苯;計(jì)算流體動(dòng)力學(xué);駕駛室;揮發(fā)性有機(jī)物
隨著農(nóng)業(yè)機(jī)械化水平的提高和人們健康觀念的不斷提升,駕乘人員開始關(guān)注農(nóng)機(jī)駕駛室的舒適性以及空氣質(zhì)量。農(nóng)業(yè)機(jī)械主要運(yùn)用于農(nóng)林作業(yè),其工作環(huán)境非常惡劣。作業(yè)時(shí),農(nóng)機(jī)駕駛室周圍會(huì)產(chǎn)生大量的揚(yáng)塵[1-2],進(jìn)而影響駕駛室內(nèi)的空氣質(zhì)量。除此之外,農(nóng)機(jī)駕駛員工作時(shí)間長,勞動(dòng)強(qiáng)度高。因此,駕駛室內(nèi)空氣質(zhì)量特別是非常規(guī)污染物的排放嚴(yán)重威脅著駕乘人員的身體健康,展開對(duì)農(nóng)用拖拉機(jī)駕駛室非常規(guī)污染物排放的研究至關(guān)重要。
乘用車車內(nèi)空氣質(zhì)量的研究領(lǐng)先于對(duì)拖拉機(jī)駕駛室的研究。國外早在20世紀(jì)80年代初就開始對(duì)車內(nèi)空氣質(zhì)量進(jìn)行相應(yīng)的研究與分析,并頒布一系列相關(guān)的法規(guī)和政策[3]。各國專家學(xué)者也針對(duì)不同類型、不同車齡的汽車、公交車等研究車內(nèi)的苯、甲苯等揮發(fā)性有機(jī)化合物(Volatile Organic Compounds,VOC)含量[4-11]。中國2004年才進(jìn)行《車內(nèi)空氣質(zhì)量標(biāo)準(zhǔn)》的制定工作,2011年頒布了GB/T 27630—2011《乘用車內(nèi)空氣質(zhì)量評(píng)價(jià)指南》,2016年對(duì)其進(jìn)行修訂,提高了部分有害物質(zhì)的濃度限值[12]。陳利杰[13]對(duì)29輛轎車車內(nèi)的空氣質(zhì)量進(jìn)行了檢測(cè)與分析,發(fā)現(xiàn)苯的濃度范圍為0.03~1.5 mg/m3,超標(biāo)率為48.28%。尤為可等[14]檢測(cè)了幾輛不同類型的中檔轎車在靜止?fàn)顟B(tài)下的車內(nèi)空氣質(zhì)量,測(cè)試得到車內(nèi)空氣中的甲苯、二甲苯、總揮發(fā)性有機(jī)化合物(Total Volatile Organic Compounds,TVOC)最大濃度分別是0.45、0.28和2.19 mg/m3。
與乘用車相比,對(duì)農(nóng)機(jī)駕駛室內(nèi)空氣質(zhì)量的研究較少。Arslan等[15]測(cè)試了不同工況時(shí)拖拉機(jī)駕駛室內(nèi)顆粒物(Particulate Matter,PM)的含量;楊曉等[16]針對(duì)大型拖拉機(jī)駕駛室內(nèi)顆粒物質(zhì)量濃度超標(biāo)問題,選取不同空氣凈化方式,基于IAQx1.1-PM軟件進(jìn)行仿真分析。另外,還有少數(shù)機(jī)構(gòu)對(duì)農(nóng)機(jī)駕駛室的舒適性進(jìn)行研究[17-22],但是對(duì)于駕駛室內(nèi)非常規(guī)污染物排放的研究目前還處于空白期。本文通過應(yīng)用流體計(jì)算軟件Fluent對(duì)拖拉機(jī)駕駛室內(nèi)非常規(guī)污染物苯進(jìn)行數(shù)值模擬,并通過實(shí)際污染物測(cè)試驗(yàn)證模型可靠性,以期為后續(xù)駕駛室內(nèi)非常規(guī)污染物的研究提供理論基礎(chǔ)。
駕駛室內(nèi)空氣流動(dòng)狀態(tài)通過雷諾數(shù)(Reynolds number,R)來確定,定義為
當(dāng)農(nóng)機(jī)處于靜止密閉狀態(tài)時(shí),采用示蹤氣體衰減法測(cè)量駕駛室換氣率,進(jìn)而估算出駕駛室進(jìn)風(fēng)口的空氣流速。示蹤氣體衰減法是將部分示蹤氣體通入到待測(cè)的駕駛室內(nèi),由于室內(nèi)外存在空氣交換,示蹤氣體的濃度會(huì)呈指數(shù)衰減,根據(jù)示蹤氣體濃度隨著時(shí)間的變化計(jì)算出實(shí)際的通風(fēng)量。本文采用CO2作為示蹤氣體,CO2的測(cè)量應(yīng)用非色散式紅外線二氧化碳分析儀,駕駛室換氣率計(jì)算公式[23]為
式中-1為換氣率,h-1;0為測(cè)定初始狀態(tài)下示蹤氣體的濃度,mg/m3;C為經(jīng)過時(shí)間的示蹤氣體濃度,mg/m3;C為示蹤氣體的本底濃度,mg/m3;為測(cè)定時(shí)間,h。
駕駛室進(jìn)風(fēng)口空氣流速計(jì)算公式為
式中為駕駛室內(nèi)流場(chǎng)的總體積,m3;為進(jìn)風(fēng)口表面積,m2。
將本文所研究拖拉機(jī)的駕駛室體積、進(jìn)風(fēng)口表面積以及駕駛室換氣率帶入公式(3),計(jì)算可得,當(dāng)駕駛室處于靜止密閉狀態(tài)時(shí),進(jìn)風(fēng)口空氣流速為0.018 4 m/s。查閱相關(guān)文獻(xiàn)[23],當(dāng)駕駛室的空調(diào)系統(tǒng)處于外循環(huán)通風(fēng)狀態(tài)時(shí),進(jìn)風(fēng)口空氣流速為2 m/s。將拖拉機(jī)駕駛室處于靜止密閉和通風(fēng)狀態(tài)時(shí)的進(jìn)風(fēng)口空氣流速分別代入公式(1),得到不同狀態(tài)的雷諾數(shù),進(jìn)而判斷其空氣流動(dòng)狀態(tài)。
基于以上理論分析,對(duì)駕駛室內(nèi)的空氣流動(dòng)物理模型進(jìn)行如下假設(shè):
1)駕駛室內(nèi)部密封良好,除了送風(fēng)口和出風(fēng)口沒有空氣泄漏;
2)駕駛室內(nèi)部氣體的流動(dòng)速度較低,可認(rèn)為是不可壓縮流體,同時(shí)忽視由流體粘性力做功所產(chǎn)生的耗散熱;
3)駕駛室內(nèi)部的氣流運(yùn)動(dòng)可視為等溫流動(dòng),忽略熱浮升力效應(yīng);
4)由于駕駛室內(nèi)空氣污染物濃度很低,在計(jì)算中忽略污染物對(duì)流體物性的影響;
5)駕駛室內(nèi)部的空氣為透明介質(zhì),不參與輻射;
6)當(dāng)駕駛室處于靜止密閉狀態(tài)時(shí),駕駛室內(nèi)空氣流動(dòng)為層流流動(dòng);當(dāng)駕駛室的空調(diào)系統(tǒng)打開或處于通風(fēng)狀態(tài)時(shí),駕駛室內(nèi)空氣流動(dòng)為湍流流動(dòng)。
湍流模型選用計(jì)算精度更高、使用范圍更廣的RNG k-ε模型,湍動(dòng)能和湍動(dòng)耗散率的計(jì)算方程為
式中是流體密度,kg/m3;u是流速,m/s;x和x為流向分量;是湍動(dòng)耗散率,m2/s2;是湍動(dòng)能,m2/s2;G是的產(chǎn)生項(xiàng),由平均速度梯度引起,kg/( m3s);μ是湍流有效粘性系數(shù);1ε*反映了時(shí)均應(yīng)變率。α, α,2ε為經(jīng)驗(yàn)常數(shù),F(xiàn)luent軟件提供了具體數(shù)值。
本文以東方紅1804拖拉機(jī)為研究對(duì)象,應(yīng)用CATIA對(duì)駕駛室進(jìn)行三維模型建立,基本尺寸為長1 620 mm,寬1 615 mm,高1 713 mm,駕駛室內(nèi)有1個(gè)座椅。送風(fēng)口布置在頂棚,共4個(gè),直徑75 mm。2個(gè)回風(fēng)口在頂棚前面兩側(cè),尺寸為120 mm×190 mm,具體模型見圖1。
2.2.1 網(wǎng)格劃分
網(wǎng)格劃分選用適應(yīng)性更好的四面體法,為提高網(wǎng)格質(zhì)量,對(duì)流場(chǎng)的送風(fēng)口、回風(fēng)口和污染源部位等計(jì)算數(shù)據(jù)變化梯度較大的部位進(jìn)行局部加密。劃分的網(wǎng)格模型節(jié)點(diǎn)數(shù)為262 120個(gè),如圖2所示,網(wǎng)格總單元數(shù)為1 447 440個(gè),網(wǎng)格質(zhì)量Element Quality大于0.8,Skewness的平均值為0.22,遠(yuǎn)小于0.8,網(wǎng)格質(zhì)量符合要求且網(wǎng)格數(shù)量適中,能夠進(jìn)行后續(xù)模擬。
2.2.2 求解器和邊界條件設(shè)置
1)選用RNG k-ε湍流模型,送風(fēng)口設(shè)置為速度進(jìn)口(velocity-inlet)。根據(jù)公式(3)的求解,當(dāng)駕駛室處于靜止密閉狀態(tài)時(shí),進(jìn)風(fēng)口空氣流速設(shè)置為0.0184 m/s,方向垂直于邊界。當(dāng)拖拉機(jī)空調(diào)系統(tǒng)處于外循環(huán)通風(fēng)狀態(tài)時(shí),進(jìn)風(fēng)口空氣流速設(shè)置為2 m/s,方向垂直于邊界。另外本文對(duì)拖拉機(jī)駕駛室內(nèi)溫度進(jìn)行測(cè)量,將仿真環(huán)境溫度設(shè)置為測(cè)量得到的駕駛室室溫23 ℃。
2)污染源設(shè)置為質(zhì)量進(jìn)口(mass-flow-inlet)。為了簡(jiǎn)化模型,設(shè)定駕駛室內(nèi)的污染源為頂棚、座椅、儀表板,不同材料的溫度、材料側(cè)和空氣側(cè)的擴(kuò)散系數(shù)、材料中初始VOCs釋放量不同,通過公式(6)計(jì)算污染源釋放邊界條件,計(jì)算中設(shè)置計(jì)算次數(shù)為100。
式中為材料內(nèi)的VOCs擴(kuò)散時(shí)間,s;D為材料內(nèi)的VOCs傳質(zhì)擴(kuò)散系數(shù),m2/s;為材料的厚度,m;為材料中所含VOCs 物質(zhì)的質(zhì)量,mg;為單位面積材料的散發(fā)速率,mg/(m2·s)。
3)回風(fēng)口邊界條件設(shè)置為出流(outflow)。
4)其余壁面為無滑移、絕熱、無污染源釋放的壁面(wall)。
考慮對(duì)人體影響較大的駕乘人員呼吸帶區(qū)域和駕駛室內(nèi)部空氣流動(dòng)較大的送風(fēng)口區(qū)域,選取2個(gè)參考截面進(jìn)行研究,分別為=1.15 m的駕駛室橫截面呼吸帶區(qū)域(截面I)和=0 m的駕駛室送風(fēng)口中截面區(qū)域(截面II)。將送風(fēng)口正對(duì)座椅底部設(shè)置為原點(diǎn)(0, 0, 0)選取人體呼吸區(qū)域?qū)?yīng)點(diǎn)(0, 186.5, 1 150)作為參考點(diǎn),其位置位于方向盤上部和座椅頂部連線上,高度與駕乘人員呼吸帶高度相當(dāng),如圖5所示。同時(shí)由于苯的高致癌性[24],主要進(jìn)行拖拉機(jī)駕駛室內(nèi)苯濃度的數(shù)值模擬研究。
2.4.1 23 ℃密閉與通風(fēng)狀態(tài)下駕駛室氣流速度場(chǎng)分析
圖4為23 ℃時(shí),密閉狀態(tài)與通風(fēng)狀態(tài)下的駕駛室內(nèi)截面II的速度場(chǎng)流線圖。從圖4a可以看出,在座椅位置處和座椅后部之間存在空氣擾動(dòng)現(xiàn)象,形成漩渦,有利于污染物的迅速擴(kuò)散。因?yàn)樗惋L(fēng)口的氣流速度較低(0.018 4 m/s),在儀表盤和座椅下方(駕駛員腳所在位置)位置處基本不存在空氣擾動(dòng),容易造成污染物大量堆積,形成高濃度死區(qū)。從圖4b可以看出,在駕駛室送風(fēng)口氣流速度為2 m/s時(shí),不僅在座椅位置處和座椅后部大部分區(qū)域存在強(qiáng)烈的空氣擾動(dòng)現(xiàn)象,在座椅前方與儀表盤下部的地方(駕駛員腳所在位置)也存在空氣擾動(dòng)現(xiàn)象,進(jìn)而形成漩渦,有利于污染物的快速擴(kuò)散。
2.4.2 23 ℃密閉狀態(tài)下駕駛室內(nèi)苯濃度分布
圖5為拖拉機(jī)駕駛室在23 ℃、靜止密閉1、2、6、8、12和16 h時(shí),駕駛室內(nèi)不同參考截面的苯質(zhì)量分?jǐn)?shù)分布圖。從圖5a可以看出,由于座椅靠背處上方靠近空調(diào)的出風(fēng)口,因此這部分區(qū)域苯濃度較低,隨著密閉時(shí)間的增加分布較均勻。截面Ⅰ的整體苯濃度水平呈現(xiàn)中間低,兩側(cè)高的分布特征,其中,位于儀表盤正上方位置處的苯濃度較高。從圖5b可以看出,由于儀表盤和座椅下方(駕駛員腳所在位置)位置處基本不存在空氣擾動(dòng),所以該位置苯濃度較高。
圖6是苯濃度隨密閉時(shí)間的變化趨勢(shì)。從截面Ⅰ和點(diǎn)的變化中可以看出,密閉10 h后,各點(diǎn)的苯平均濃度達(dá)到平衡,不再發(fā)生變化。當(dāng)駕駛室處于靜止密閉狀態(tài),因?yàn)檐噧?nèi)外存在氣體交換(氣體交換速度為0.018 4 m/s),駕乘人員有一定的風(fēng)感,駕駛室內(nèi)存在一定的空氣擾動(dòng),使得截面Ⅱ的苯平均濃度相對(duì)截面Ⅰ較高,達(dá)到穩(wěn)定的時(shí)間也相對(duì)較長,密閉12 h后截面Ⅱ各點(diǎn)的苯濃度基本不發(fā)生變化。
當(dāng)駕駛室內(nèi)的苯質(zhì)量分?jǐn)?shù)達(dá)到平衡時(shí),點(diǎn)、截面Ⅰ和截面Ⅱ的苯平均濃度分別為1.81、2.70和3.03g/m3。雖然參考截面的苯濃度均在車內(nèi)空氣中有機(jī)物濃度要求的極限值以下,但是長時(shí)間處在含有苯的環(huán)境中會(huì)對(duì)人體的健康產(chǎn)生很大的危害。
圖6 苯濃度隨時(shí)間的變化趨勢(shì)
2.4.3 23 ℃外循環(huán)通風(fēng)狀態(tài)下駕駛室苯濃度分布
駕駛室密閉16 h后,將送風(fēng)口氣流速度設(shè)置為2 m/s,通風(fēng)30 min后駕駛室內(nèi)的苯的質(zhì)量分?jǐn)?shù)分布如圖7所示。從圖中可以看出,隨著新鮮空氣的進(jìn)入,截面I和截面II的苯濃度均有所降低,其中截面I苯的平均質(zhì)量百分?jǐn)?shù)降到1.71g/m3、截面II降到1.98g/m3,其中座椅后方濃度降低最大,頂棚處濃度降低較小。從圖4b駕駛室內(nèi)速度流線圖可知,在座椅后方存在強(qiáng)烈的空氣擾動(dòng)現(xiàn)象,可以在一定程度上帶走部分污染物,而頂棚處的氣流速度較小,易造成污染物聚集。可見,通風(fēng)可以在一定程度上提高排污效率,有利于駕駛室內(nèi)空氣質(zhì)量的提高。
本文的試驗(yàn)對(duì)象為東方紅1804型拖拉機(jī),該拖拉機(jī)具有5年車齡,其內(nèi)飾材料主要包括海綿、皮革、有機(jī)玻璃和ABS工程塑料。
根據(jù)HJ/T 400—2007《車內(nèi)揮發(fā)性有機(jī)物和醛酮類物質(zhì)采樣測(cè)定方法》中對(duì)試驗(yàn)環(huán)境的要求[25],在開始采集樣本之前,將待測(cè)車輛放置在環(huán)境氣流速度≤0.3 m/s,甲苯和甲醛濃度都不超過0.02 mg/m3的恒溫恒濕地下室中靜置至少6 h,試驗(yàn)前去掉駕駛室內(nèi)表面覆蓋物(如出廠時(shí)為了保護(hù)座椅、地毯等而應(yīng)用的塑料薄膜),將門窗(包括天窗)全部開啟。靜置6 h后對(duì)駕駛室進(jìn)行封閉,封閉時(shí)間為16 h,為避免重復(fù)開閉車門對(duì)駕駛室內(nèi)空氣污染物濃度產(chǎn)生影響,密閉前將采樣導(dǎo)管(不吸收、不釋放揮發(fā)性有機(jī)物的聚四氟乙烯或者不銹鋼管,使用前采用高純氮?dú)膺M(jìn)行預(yù)處理)經(jīng)車門縫隙放入駕駛室內(nèi),通過支架固定在采樣位置,并利用錫箔紙保證采樣處的密封,盡可能避免與外界環(huán)境進(jìn)行空氣交換(如圖8a)。駕駛室內(nèi)采樣點(diǎn)位于方向盤上部和座椅頂部連線上,采樣點(diǎn)高度與駕乘人員呼吸帶高度相一致(如圖8b)。駕駛室密閉16 h后,進(jìn)行揮發(fā)性有機(jī)物的樣品采集和數(shù)據(jù)記錄,記錄內(nèi)容包括采樣時(shí)的溫度和濕度等數(shù)據(jù)。
3.2.1 駕駛室內(nèi)TVOC采樣方法
駕駛室內(nèi)TVOC的樣本采集方法主要依據(jù)HJ/T 400 —2007《車內(nèi)揮發(fā)性有機(jī)物和醛酮類物質(zhì)采樣測(cè)定方法》[24]和美國國家環(huán)保局的標(biāo)準(zhǔn)方法[26]。利用填充有聚2,6-二苯基對(duì)苯醚(Tenax TA)的采樣管采集駕駛室內(nèi)揮發(fā)性有機(jī)物,使用恒流氣體采樣器進(jìn)行樣品采集,采樣流量為100 mL/min,采樣時(shí)間30 min。為了確保流量恒定,采樣開始與結(jié)束前使用干式氣體流量計(jì)進(jìn)行流量校準(zhǔn),保證流量偏差小于5%。采樣結(jié)束后,將采樣管用鋁箔密封,置于冰箱內(nèi)(溫度低于4 ℃)留待分析。
3.2.2 駕駛室內(nèi)TVOC分析方法
駕駛室內(nèi)TVOC的分析應(yīng)用二次熱解析-毛細(xì)管氣相色譜/質(zhì)譜聯(lián)用方法[26]。利用干燥的惰性氣體對(duì)采樣管進(jìn)行吹掃,隨后將采樣管加熱,使得熱脫附出的揮發(fā)性有機(jī)組分可以隨載氣進(jìn)到冷阱之中,經(jīng)過二次熱脫附后進(jìn)入毛細(xì)管氣相色譜/質(zhì)譜聯(lián)用儀對(duì)揮發(fā)性有機(jī)組分進(jìn)行分析。本試驗(yàn)采用的儀器為安捷倫5975-6890型氣質(zhì)聯(lián)用儀,其壓力控制精度為6.9 Pa,掃描范圍為50~300 amu。
通過試驗(yàn),在拖拉機(jī)駕駛室中一共定性檢測(cè)出241種揮發(fā)性有機(jī)物,分別屬于烷烴、烯烴、芳香類化合物、鹵代烴、醇、醛酮、酯類以及其他化合物,其中烷烴所占比例最大,其次是芳香族化合物、酯類物質(zhì)。圖9為總離子流色譜圖。
參照GBT 27630—2011《乘用車內(nèi)空氣質(zhì)量評(píng)價(jià)指南》[27]對(duì)被測(cè)拖拉機(jī)駕駛室內(nèi)的VOC進(jìn)行定量分析,結(jié)果如圖10所示。由圖10可知,駕駛室內(nèi)的苯、甲苯、二甲苯、乙苯、苯乙烯的濃度分別為3.08、30.49、46.84、8.39和2.43g/m3均低于GBT 27630—2011中所規(guī)定的限值。分析原因?yàn)楸粶y(cè)拖拉機(jī)車齡較大,且該標(biāo)準(zhǔn)是適用于乘用車的標(biāo)準(zhǔn)與指南,考慮到乘用車的密封性高于農(nóng)業(yè)機(jī)械,且其內(nèi)飾材料選用更為高檔,因此該標(biāo)準(zhǔn)與指南并不完全適用于農(nóng)業(yè)機(jī)械。另外,拖拉機(jī)的密封性相對(duì)乘用車來說較差,在相同試驗(yàn)條件下,密封性對(duì)駕駛室內(nèi)空氣中有機(jī)物的采集會(huì)產(chǎn)生很大的影響。
為驗(yàn)證數(shù)值模擬結(jié)果的準(zhǔn)確性,將密閉16 h后點(diǎn)苯濃度的3次試驗(yàn)測(cè)定值與仿真值1.81g/m3進(jìn)行對(duì)比(見表1),可得3次試驗(yàn)值均大于仿真值,相對(duì)誤差范圍為7.7%~10.0%,誤差值較小,仿真可靠。
為了進(jìn)一步驗(yàn)證數(shù)值模擬結(jié)果的可靠性,采用便攜式手持檢測(cè)儀對(duì)駕駛室內(nèi)采樣點(diǎn)的TVOC進(jìn)行實(shí)時(shí)檢測(cè),得到18 h內(nèi)的TVOC濃度變化趨勢(shì),如圖11。從圖中可以看出,在駕駛室靜止密閉狀態(tài)下,相比較于圖6,實(shí)際測(cè)得的污染物濃度積累較慢,污染物濃度曲線斜率明顯低于模擬曲線。分析原因,因?yàn)轳{駛室的密封性較差,而在模擬過程中認(rèn)為駕駛室是絕對(duì)密封的,所以導(dǎo)致上述曲線斜率問題的產(chǎn)生,但是采用便攜式手持檢測(cè)儀得到的濃度變化趨勢(shì)與模擬計(jì)算的變化趨勢(shì)大致相同,12 h后駕駛室內(nèi)TVOC濃度基本達(dá)到平衡,平衡后TVOC的濃度約103g/m3。因此可以證明模擬結(jié)果的準(zhǔn)確性和可靠性。
表1 苯濃度仿真與試驗(yàn)數(shù)據(jù)
1)通過應(yīng)用Fluent對(duì)拖拉機(jī)駕駛室內(nèi)的污染物苯進(jìn)行數(shù)值分析,得到其擴(kuò)散過程、空間和時(shí)間分布特征。其中,在駕駛室靜止密閉狀態(tài)下(溫度為23 ℃),密閉10小時(shí)后,駕駛室橫截面呼吸帶區(qū)域(截面I)內(nèi)各點(diǎn)的苯平均質(zhì)量分?jǐn)?shù)達(dá)到2.70g/m3且基本達(dá)到穩(wěn)定狀態(tài);密閉12 h后駕駛室進(jìn)風(fēng)口中間截面(截面II)苯質(zhì)量分?jǐn)?shù)達(dá)到3.03g/m3且基本達(dá)到平衡。除此之外,駕駛室在外循環(huán)通風(fēng)狀態(tài)下,隨著新鮮空氣的進(jìn)入,可以有效稀釋駕駛室內(nèi)污染物的濃度,起到良好的排污作用,通風(fēng)30 min后,駕駛室內(nèi)苯濃度有明顯的下降。
2)通過對(duì)拖拉機(jī)駕駛室空氣取樣檢測(cè)發(fā)現(xiàn),在受檢拖拉機(jī)駕駛室中一共定性檢測(cè)出揮發(fā)性有機(jī)物241種;而且駕駛室內(nèi)的檢測(cè)出的苯、甲苯、二甲苯、乙苯、苯乙烯的濃度分別為3.08、30.49、46.84、8.39和2.43g/m3,均低于GBT 27630—2011《乘用車內(nèi)空氣質(zhì)量評(píng)價(jià)指南》中所規(guī)定的最大濃度值,但是若長期處于該種情形下,也會(huì)對(duì)駕乘人員的身體健康產(chǎn)生威脅。
3)通過二次熱解析-毛細(xì)管氣相色譜/質(zhì)譜聯(lián)用法試驗(yàn)發(fā)現(xiàn),密閉16 h后拖拉機(jī)駕駛室內(nèi)人體呼吸區(qū)域的苯濃度試驗(yàn)值與仿真值的誤差范圍為7.7%~10.0%;通過便攜式手持檢測(cè)儀試驗(yàn)發(fā)現(xiàn),18 h內(nèi)的拖拉機(jī)駕駛室人體呼吸區(qū)域的揮發(fā)性有機(jī)化合物濃度的變化趨勢(shì)和仿真時(shí)該區(qū)域苯濃度的變化趨勢(shì)大致相同,證明模擬結(jié)果的準(zhǔn)確性和可靠性,為后續(xù)拖拉機(jī)駕駛室非常規(guī)污染物的排放研究提供了理論基礎(chǔ)。
[1] 鐘文杰,徐紅梅,徐奧. 基于CATIA的拖拉機(jī)駕駛室人機(jī)系統(tǒng)舒適性分析與評(píng)價(jià)[J]. 江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2017,38(1):47-51.
Zhong Wenjie, Xu Hongmei, Xu Ao. Comfort analysis and evaluation of man-machine system in tractor cab based on CATIA[J]. Journal of Jiangsu University: Natural Science Edition, 2017, 38(1): 47-51. (in Chinese with English abstract)
[2] 章倩,朱思洪. 拖拉機(jī)駕駛室舒適性滿意度情況調(diào)查研究[J]. 拖拉機(jī)與農(nóng)用運(yùn)輸車,2009,36(5):3-5.
Zhang Qian. Zhu Sihong. Investigation and research on satisfaction about tractor cab comfort[J]. Tractor and Farm Transporter, 2009, 36(5): 3-5. (in Chinese with English abstract)
[3] 馮順利. 汽車車內(nèi)空氣質(zhì)量檢測(cè)和評(píng)價(jià)方法的研究[D]. 西安:長安大學(xué),2008.
Feng Shunli. Study on the Method of Measurement and Estimation of the Pollution Gas in Automobile[D]. Xi’an: Chang’an University, 2008. (in Chinese with English abstract)
[4] Marion J F, Brent D K. Measurement of volatile organic compounds inside automobilesy[J]. Journal of Exposure Analysis and Environmental Epidemionlogy, 2003(13): 31-41.
[5] Yoshida T. Interior air pollution in automotive cabins by volatile organic compounds diffusing from interior materials II: Influence of manufacturer, specifications and usage status on air pollution, and estimation of air pollution levels in initial phases of delivery as a new car[J]. Indoor and Built Environment, 2006, 15(5): 445 -465.
[6] Yoshida T, Matsunaga I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use[J]. Environment International, 2006, 32: 58-79.
[7] Chien Y C. Variations in amounts and potential sources of volatile organic chemicals in new cars[J]. Science of the Total Environment, 2007(382): 228–239.
[8] Parra M A, Elustondo D, Berniejo R, et al. Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain[J]. Science of the Total Environment, 2008, 404(l): 18-25.
[9] Marion J F, Brent D K. Measurement of volatile organic compounds inside automobiles[J]. Journal of Exposure Analysis and Environmental Epidemiology, 2003, 13(l): 31 -34.
[10] Kim S R, Dominci F, Buckly T J. Concentrations of vehicle-related air pollutants in an urban parking garage[J]. Environmental Research, 2007, 105(3): 291-299.
[11] Otmar G, Salvatore T, Josefa B M, et al. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars[J]. Environment International, 2009, 35(8): 1188–1195.
[12] 呂國會(huì). 淺談降低汽車內(nèi)飾件用聚氨酯材料VOC的措施[J]. 化學(xué)推進(jìn)劑與高分子材料,2018(1):1-12.
Lv Guohui. Talking about means to reduce VOC of polyurethane materials for automotive interior parts[J]. Chemical Propellants & Polymeric Materials. 2018(1): 1-12. (in Chinese with English abstract)
[13] 陳利杰. 新車內(nèi)空氣中幾種有害物質(zhì)污染狀況調(diào)查[J]. 職業(yè)與健康,2007,23(7):536-537.
Chen Lijie. Investigation of the status of formaldehyde, Benzene and CO2 contamination inside new cars[J]. Occupation and Health, 2007, 23(7): 536-537. (in Chinese with English abstract)
[14] 尤為可,葛蘊(yùn)珊,馮波等. 轎車內(nèi)微環(huán)境空氣污染狀況的實(shí)驗(yàn)研究[J]. 北京理工大學(xué)學(xué)報(bào),2008,28(4):310-313.
You Kewei, Ge Yunshan, Feng Bo, et al. A study on air pollution inside passenger vehicles[J]. Transactions of Beijing Institude of Technology, 2008, 28(4): 310-313. (in Chinese with English abstract)
[15] Arslan S, Aybek A, Ekerbicer H. Measurement of personal PM10, PM2. 5 and PM1 exposures in tractor and combine operations and evaluation of health disturbances of operators[J]. Journal of Agricultural Sciences, 2010, 16(2): 104-115.
[16] 楊曉,毛恩榮,Zhang J S,等. 大型拖拉機(jī)駕駛室PM10和PM2.5凈化效果仿真分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):365-371.
Yang Xiao, Mao Enrong, Zhang J S, et al. Simulation of cleaning effect of PM10and PM2.5in high-power tractor cab[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 365-371. (in Chinese with English abstract)
[17] 張開興,張斕,楊剛,等. 基于骨骼關(guān)節(jié)識(shí)別的拖拉機(jī)駕駛室座椅舒適度評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S2):521-529,543.
Zhang Kaixing, Zhang Lan, Yang Gang, et al. Evaluation of seat comfort in tractor cab based on bone joint recognition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 521-529, 543. (in Chinese with English abstract)
[18] 楊曉,毛恩榮,Zhang J S等. 大型拖拉機(jī)駕駛室熱舒適性評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(S1):470-476.
Yang Xiao, Mao Enrong, Zhang J S, et al. Cab thermal comfort assessment of high-power tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 470-476. (in Chinese with English abstract)
[19] 楊飛,史慶春,萬小玲等. 基于Pro/E Manikin的拖拉機(jī)駕駛室人機(jī)工程評(píng)價(jià)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(9):32-38.
Yang Fei, Shi Qingchun, Wan Xiaoling, et al. Ergonomics evaluation method of tractor cab based on Pro/E Manikin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 32-38. (in Chinese with English abstract)
[20] 楊洋,李宛駿,李延凱,等. 基于生物力學(xué)模型的拖拉機(jī)離合踏板人機(jī)工程設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):82-91.
Yang Yang, Li Wanjun, Li Yankai, et al. Ergonomics design of tractor clutch pedal based on biomechanical model [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3):82-91. (in Chinese with English abstract)
[21] 仇瑩,朱忠祥,毛恩榮,等. 農(nóng)業(yè)裝備駕駛室虛擬人機(jī)工程學(xué)設(shè)計(jì)與評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(3):117-121.
Qiu Ying, Zhu Zhongxiang, Mao Enrong, et al. Virtual ergonomics design and evaluation of agricultural equipment cab[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3):117-121. (in Chinese with English abstract)
[22] 謝普康,陳洪濤,商潭蘇等. 基于STAR-CCM+的某型拖拉機(jī)駕駛室熱舒適性研究[J]. 拖拉機(jī)與農(nóng)用運(yùn)輸車,2016,43(3):14-17.
Xie Pukang, Chen Hongtao, Shang Tansu, et al. Research of tractor driver thermal comfort based on STAR-CCM+[J]. Tractor & Farm Transporter, 2016, 43(3): 14-17. (in Chinese with English abstract)
[23] 尤可為,葛蘊(yùn)珊,王務(wù)林等. 車內(nèi)污染物的測(cè)定和數(shù)值模擬研究[J]. 汽車工程,2010,32(8):727-730.
You Kewei, Ge Yushan, Wang Wulin, et al. A study on the measurement and numerical simulation of in-vehicle air pollutants[J]. Automotive Engineering, 2010, 32(8): 727-730. (in Chinese with English abstract)
[24] 陳智雄. 試析裝修材料對(duì)室內(nèi)環(huán)境的污染及其控制措施[J]. 陶瓷,2020 (12):122-123.
Chen Zhixiong. Analysis of the pollution of decoration materials to indoor environment and its control measures[J]. Ceramics,2020 (12):122-123. (in Chinese with English abstract)
[25] 國家環(huán)境保護(hù)總局. HJ/T 400—2007,車內(nèi)揮發(fā)性有機(jī)物和醛酮類物質(zhì)采樣測(cè)定方法[S]. 北京:中國環(huán)境科學(xué)出版社,2007.
[26] US Environmental Protection Agency. Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes[R]. Cincinnati: Center for Environment Research Information Office of Research and Development, 1999: 17-49.
[27] 環(huán)境保護(hù)部. GB/T 27630—2011,乘用車內(nèi)空氣質(zhì)量評(píng)價(jià)指南[S]. 北京:中國環(huán)境科學(xué)出版社,2012.
CFD simulation and test of unconventional pollutant emissions in tractor cab
Hou Xiuning1, Wang Yulong1, Liu Siyao1, Chen Xiang’an1, Zhang Xuemin1,2※
(1.,,100083,; 2.,100083,)
The widespread distribution of unconventional pollutants potentially exposes to the machinery cab, particularly with the continuous improvement of agricultural mechanization in China in recent years. Taking a tractor of Dongfanghong 1 804 as the research object, this study aims to clarify the emission characteristics of unconventional pollutants in the cab using the combination of simulation and test. 1) The diffusion process of unconventional pollutants in the cab was simulated by a Computational Fluid Dynamics (CFD) software (Fluent). The initial conditions were set at the ambient temperature of 23 ℃, where benzene was selected as a representative pollutant, considering the high carcinogenicity of benzene. Two reference sections were selected as the cross-sectional area of the breathing belt and the middle sectional area of the air supply outlet in a cab. The reason was that the breathing belt area of drivers with a great impact on the human body, while, the outlet area of air supply with a large air flow in the cab. In addition, the reference point was selected from the human breathing area, each of which was located on the connecting line between the upper part of the steering wheel and the top of the seat. The height was aligned with the height of the breathing belt of the driver and passengers. After that, a CFD simulation was conducted to obtain the temporal and spatial distribution of benzene concentration in different sections and reference points. The simulation results showed that the benzene concentration in each section basically reached equilibrium under the condition of a closed cab after 12 hours. The average benzene concentrations at the reference point and two reference sections were 1.81, 2.70, and 3.03g/m3, respectively, which were below the limit value required for the concentration of organic matter in the air in the vehicle. Furthermore, the pollutant concentration in the cab decreased significantly under the condition of external circulation ventilation, where the average mass percentage of benzene in two sections decreased to 1.71 and 1.98g/m3. Correspondingly, the entry of fresh air was conducive to the improvement of air quality in the cab. 2) A systematic test was carried out to verify the concentration of pollutants in the cab. According to HJ/t400-2007 sampling and determination s of volatile organic compounds and aldehydes and ketones in vehicles and the standard TO-17 of the National Environmental Protection Agency (EPA), the volatile organic compounds in the cab were collected by a Tenax TA tube, afterward they were analyzed by thermal desorption gas chromatography/mass spectrometry. It was found that there were a wide variety of volatile organic compounds detected in the cab of agricultural machinery, including 241 kinds of alkanes, olefins, halogenated hydrocarbons, alcohols, aldehydes, ketones, esters, and other compounds, of which alkanes accounted for the largest proportion, followed by aromatic compounds and esters. The detected concentrations of benzene, toluene, xylene, ethylbenzene, and styrene were 3.08, 30.49, 46.84, 8.39,and 2.43g/m3, respectively, which were lower than the maximum concentration specified in the national standard of GB/T27630-2011 guidelines for the evaluation of air quality in passenger cars. A comparison was made on the measured benzene concentration at the reference point after being closed for 16 hours with the simulation. It was found that the error range was 7.7%-10.0%, indicating the more reliable simulation. In addition, a portable handheld detector was used to detect the changing trend of total volatile organic compounds (TVOC) concentration in the cab within 18 hours at the reference point under the condition of the closed cab, in order to further verify the reliability of the numerical simulation. It was found that the TVOC concentration in the tractor cab basically reached equilibrium after 12 hours, and the changing trend was roughly the same as that of benzene concentration at the reference point during simulation, indicating the high reliability and accuracy of the model. This finding can provide a theoretical basis for further study of air quality in an agricultural machinery cab.
tractor; benzene; computational fluid dynamics; cab; volatile organic compounds
侯秀寧,王玉龍,劉思瑤,等. 拖拉機(jī)駕駛室內(nèi)非常規(guī)污染物排放的CFD模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):22-29.doi:10.11975/j.issn.1002-6819.2021.24.003 http://www.tcsae.org
Hou Xiuning, Wang Yulong, Liu Siyao, et al. CFD simulation and test of unconventional pollutant emissions in tractor cab[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 22-29. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.003 http://www.tcsae.org
2021-08-21
2021-10-11
科技部創(chuàng)新方法工作專項(xiàng)(2016IM030200)
侯秀寧,博士生,研究方向?yàn)檐囕v節(jié)能環(huán)保與新能源技術(shù)。Email:Houxiuning@163.com
張學(xué)敏,博士,副教授,博士生導(dǎo)師,研究方向?yàn)檐囕v節(jié)能環(huán)保與新能源技術(shù)。Email:xuemin_zh@cau.edu.cn
10.11975/j.issn.1002-6819.2021.24.003
S232.3
A
1002-6819(2021)-24-0022-08