楊陽 王寶磊 韓佳琦
摘要:
針對傳統(tǒng)集裝箱碼頭輪胎式龍門起重機(rubber-tyred gantry crane,RTG)大車在直線行駛過程中產(chǎn)生橫向偏移的問題,提出一種RTG大車速度差自動糾偏方法。該方法通過磁尺傳感器采集RTG大車橫向偏移距離和偏移角,建立RTG大車橫向偏移數(shù)學(xué)模型?;谧顑?yōu)控制理論構(gòu)建運行性能指標函數(shù),推導(dǎo)出最優(yōu)控制矩陣的黎卡提方程并采用線性二次型最優(yōu)控制方法求解。引入慣性、加減速、PLC延遲等干擾進行Simulink仿真,得到最終解。在現(xiàn)場調(diào)試中,PLC根據(jù)該代數(shù)解完成RTG大車行駛自動糾偏。研究結(jié)果表明:大車橫向偏移距離保持在30 mm內(nèi),實際運行效果理想,達到RTG大車自動糾偏目的。
關(guān)鍵詞:
輪胎式龍門起重機(RTG); 速度差自動糾偏; 最優(yōu)控制理論; 黎卡提方程
中圖分類號:? U653.921; TP27
文獻標志碼:? A
收稿日期: 2019-11-11
修回日期: 2020-08-19
基金項目:
國家自然科學(xué)基金(71701126)
作者簡介:
楊陽(1983—),女,上海人,講師,碩導(dǎo),博士,研究方向為物流工程與管理, (E-mail)yyang@shmtu.edu.cn
Automatic deviation correction system design and
deviation correction strategy for RTG cart
YANG Yang, WANG Baolei, HAN Jiaqi
(Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)
Abstract:
To solve the rubber-tyred gantry crane (RTG) cart transverse deviation problem in the straight-line driving, a method of automatic deviation correction for RTG cart velocity difference is proposed. Based on the data of transverse deviation displacement and deviation angle collected by the magnetic ruler sensor, the mathematical model of the RTG cart transverse deviation is established. The operational performance index function is constructed based on the optimal control theory, and the Riccati equation of the optimal control matrix is derived and solved by the linear quadratic optimal control method. The Simulink simulation is carried out to obtain the final solution, where the interference of inertia, acceleration, deceleration and PLC delay is introduced. In the field experiment, the PLC automatically corrected the RTG cart travelling deviation according to the algebraic solution. The results show the RTG cart transverse deviation displacement is kept within 30 mm, the actual operation effect is ideal, and the purpose of automatic deviation correction is achieved.
Key words:
rubber-tyred gantry crane (RTG); automatic deviation correction for velocity difference; optimal control theory; Riccati equation
0 引 言
輪胎式龍門起重機(rubber-tyred gantry crane, RTG)是目前國內(nèi)集裝箱碼頭堆場搬運、裝卸、堆垛等作業(yè)的專用機械。相比于軌道式龍門起重機(rail-mounted gantry crane, RMG),RTG的機動性較好、通用性較強,可以進行跨箱區(qū)作業(yè)。
由于RTG沒有軌道約束,偏斜行駛會產(chǎn)生剮箱、撞箱等問題,甚至造成嚴重的損失。
為實現(xiàn)碼頭自動化轉(zhuǎn)型升級,對RTG的自動化改造的關(guān)鍵就是解決RTG大車自動糾偏問題。本文對RTG進行糾偏系統(tǒng)設(shè)計和糾偏策略研究。
針對起重機大車行駛的自動糾偏改造,國內(nèi)學(xué)者提出了不同的技術(shù)方案:閆德鑫等[1]利用GPS定位計算當前RTG大車的偏移距離,并根據(jù)偏移距離推算糾偏控制量,但是糾偏效果欠佳。圖像識別法[2]通過在RTG大車直線行進方向上畫參考線,利用圖像識別器判定當前大車是否跑偏,但該方法未考慮糾偏系統(tǒng)的干擾、延遲等因素,而且圖像處理易受天氣影響。激光糾偏法[3]以堆場上的集裝箱側(cè)面之間的距離作為參考,判定大車是否跑偏,但是該方法未公開其糾偏控制系統(tǒng)的設(shè)計,無法判斷糾偏效果。超聲波法[4]利用超聲波傳感器測量RTG大車與參照物之間的距離,根據(jù)該測量距離與預(yù)設(shè)距離的比較結(jié)果發(fā)送不同的控制信號,但該方法同樣未公開具體的糾偏控制系統(tǒng),無法比較其糾偏誤差范圍。王科等[5]采用電控羅經(jīng)與激光距離傳感器相結(jié)合的糾偏方法,建立了基于航向角和激光偏差值的糾偏模型來規(guī)避RTG大車輪胎壓力造成的影響,實現(xiàn)在RTG大車作業(yè)過程中對偏離方向的超前預(yù)測,并增加偏差補償,將糾偏誤差控制在200 mm以內(nèi)。洪輝等[6]基于RTG大車輪胎的速度差,單方面調(diào)整海側(cè)或陸側(cè)大車行駛速度,也可以同時對不同側(cè)的大車進行不同的處理提高糾偏效率。其中,GPS糾偏系統(tǒng)控制器負責(zé)糾偏方向和糾偏量的計算任務(wù),PLC和變頻器仍然負責(zé)邏輯判斷和數(shù)據(jù)傳輸。高強生等[7]認為PLC在RTG大車糾偏控制環(huán)節(jié)既能計算偏移量,又能對大車行駛狀態(tài)進行動態(tài)實時調(diào)整。王吉明[8]考慮電氣系統(tǒng)的安全性、穩(wěn)定性和性價比,采用PLC實現(xiàn)了對造船龍門起重機的電氣系統(tǒng)的具體控制。
第二次RTG大車仿真實驗設(shè)置:大車運行速度為2 m/s,初始偏移角為0,初始橫向偏移距離為-0.1 m;大車的橫向偏
移距離x的增益值Kx=6.4,偏移角θ的增益值Kθ為6.282v+19.87。實驗?zāi)繕耸菍⑵湔{(diào)整到中心處。由圖4可知,在15s左右時糾偏完成,此后RTG大車的橫向偏移距離在-0.01m到0.01 m之間振蕩,這表明本模型可以對橫向偏移進行糾正。
第三次仿真實驗將RTG大車橫向偏移距離x的增益值Kx調(diào)整為3.2,其他參數(shù)與第二次仿真實驗的相同,仿真運行結(jié)果見圖5。
對比第二次與第三次仿真實驗:在第二次實驗中RTG大車經(jīng)過15 s左右進入穩(wěn)定狀態(tài);在第三次實驗中RTG大車經(jīng)過30 s左右進入穩(wěn)定狀態(tài),但第三
次實驗中RTG大車橫向偏移距離的振蕩幅度比第二次實驗的略低。這說明第二次仿真實驗采用計算出的最優(yōu)增益矩陣并不能達到最優(yōu)目的。這是因為最優(yōu)增益矩陣是在理想的數(shù)學(xué)模型下求得的,而仿真模型中引入了大量的干擾,如慣性、加減速、PLC延遲等。通過調(diào)整最優(yōu)增益矩陣的值,可以減小振蕩幅度,但會引入延遲,因此在現(xiàn)場測試中可通過調(diào)整最優(yōu)增益矩陣使延遲時間和振蕩幅度都在可接受的范圍內(nèi)。
3 現(xiàn)場實驗及分析
根據(jù)仿真結(jié)果,橫向偏移距離x的增益值Kx=3.2,偏移角θ的增益值Kθ為6.282v+19.87。取該糾偏參數(shù)在廈門海通碼頭10號RTG大車上進行測試,結(jié)果發(fā)現(xiàn),由于現(xiàn)場磁場路面等環(huán)境的影響,將Kx調(diào)整為2.4時RTG大車自動糾偏的效果最好。RTG軌距為26 m,基距9.8 m,現(xiàn)場使用的數(shù)據(jù)采集工具是CNS-MRS磁尺傳感器。該傳感器安裝在大車車架上,可以精確定位磁釘位置,量程為±20 cm,精度為1 mm,其中被檢測的磁條鋪設(shè)在RTG大車輪胎中心線下方,見圖6。
根據(jù)式(8),RTG大車跨距
為b,即
在RTG大車加減速的過程中,不能實施即時糾偏,因此需要將加減速過程拆分成多個階段來執(zhí)行。
圖7~10分別給出了在不同的RTG大車速度(vm為大車允許的最大速度)條件下進行糾偏的效果,以證明糾偏策略的有效性和穩(wěn)定性。根據(jù)第1節(jié)的模型,按照RTG大車的行駛方向,RTG大車左輪速度為v1,右輪速度為v2。
圖7是RTG大車速度為0.05vm時的糾偏結(jié)果??梢钥闯?,RTG大車在行駛過程中受到瞬間干擾,但是該干擾對整體糾偏沒有太大影響,大車能通過調(diào)節(jié)快速進入穩(wěn)定狀態(tài)。大車右側(cè)變頻器輸出給定輪胎速度v2為0.05vm,如圖所示直接提速到0.05vm。在RTG大車行駛過程中,磁尺傳感器反饋橫向偏移距離x和偏移角θ,控制器根據(jù)Δv=Kθθ+Kxx得出對應(yīng)的速度差Δv,左側(cè)變頻器輸出輪胎速度v1=∣v2-Δv∣實現(xiàn)糾偏。圖7a表示RTG大車從開始運行到停止前的偏移。速度不能為負,則對左側(cè)糾偏速度限幅0.05vm,RTG大車擺正后停車。
圖8是RTG大車速度為0.5vm時的糾偏結(jié)果。圖8顯示,RTG大車能保證在位置偏移30 mm以內(nèi)穩(wěn)定運行,而不再偏移過大。在RTG大車加減速過程中,將給定速度拆分為多階段給定,實現(xiàn)該過程RTG大車的糾偏控制。
圖9是RTG大車速度為0.7vm時的糾偏結(jié)果。圖10是RTG大車速度為vm時的糾偏結(jié)果。圖10為了測試大車急停的穩(wěn)定性,采用直接停車,最后RTG大車位置偏差在10 mm以內(nèi)。
分析上述幾次實驗可知,智能糾偏策略對RTG大車運行無速度要求,即只要速度在0.05vm~vm范圍內(nèi)都可實現(xiàn)穩(wěn)定糾偏。本糾偏策略對RTG大車行駛進行全自動糾偏,大車行駛糾偏有效,糾偏效果顯著,可以投入現(xiàn)場作業(yè)使用。進入穩(wěn)態(tài)后,位置偏差在30 mm內(nèi)波動,大車中心位置在0位波動。糾偏策略的特點有:進入穩(wěn)定狀態(tài)后,
不會再有大角度偏移;只要RTG大車速度在0.05vm~vm范圍內(nèi)均能實現(xiàn)穩(wěn)定糾偏;抗干擾能力強。
4 結(jié) 論
針對輪胎式龍門起重機(RTG)在直線行駛過程中的偏移問題,采用磁尺傳感器對環(huán)境進行檢測,建立了RTG大車橫向偏移數(shù)學(xué)模型。該模型是關(guān)于橫向偏移距離和偏移角的線性微分空間狀態(tài)方程。提出一種利用最優(yōu)控制理論實現(xiàn)RTG大車自動糾偏的方法,使得RTG大車能夠?qū)崿F(xiàn)自動糾偏。
實驗結(jié)果表明:本文所設(shè)計的糾偏控制系統(tǒng)運行效果良好,可以將RTG大車控制到軌道中心線的位置,且位置偏移可以控制在30 mm以內(nèi),抗干擾能力強。本文提出的智能糾偏策略可以應(yīng)用于傳統(tǒng)碼頭的自動化改造,既能減少碼頭改造成本,又能避免人工糾偏精度低的問題,提高RTG大車運行的安全性。
參考文獻:
[1]閆德鑫, 李俊, 潘金貴. GPS在輪胎吊自動駕駛中的應(yīng)用[J]. 計算機工程與應(yīng)用, 2005, 41(33): 206-210. DOI: 10.3321/j.issn:1002-8331.2005.33.063.
[2]南通通鐳軟件有限公司, 上海冠東國際集裝箱碼頭有限公司. 集裝箱龍門吊位置圖像識別與定位糾偏系統(tǒng):? 201020106135.3[P]. 2011-06-29[2019-11-11].
[3]上海海鐳激光科技有限公司. 輪胎吊行走定位糾偏及防撞的系統(tǒng):? 201420312741.9[P]. 2014-12-10[2019-11-11].
[4]青島港(集團)有限公司. 一種輪胎式集裝箱龍門起重機的糾偏方法:? 200710015431.5[P]. 2007-09-19[2019-11-11].
[5]王科, 張福雷, 嚴彩忠, 等. 基于電控羅經(jīng)的輪胎式龍門起重機全自動糾偏方法[J]. 工業(yè)控制計算機, 2019, 32(1): 17-22.
[6]洪輝, 蔣旻. GPS技術(shù)在輪胎式龍門吊自動糾偏中的應(yīng)用[J]. 集裝箱化, 2013, 24(2): 22-26.
[7]高強生, 王曼. 淺析PLC控制器在起重機自動糾偏系統(tǒng)中的作用[J]. 數(shù)控技術(shù), 2016(10): 13-13. DOI: 10.19695/j.cnki.cn12-1369.2016.10.008.
[8]王吉明. 造船龍門起重機電氣控制系統(tǒng)的設(shè)計與應(yīng)用[D]. 上海: 華東理工大學(xué), 2011.
(編輯 賈裙平)