• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      黏滯阻尼器考慮激勵頻率影響的附加阻尼比簡化計(jì)算

      2021-06-06 08:59杜東升劉言杰徐慶陽
      振動工程學(xué)報(bào) 2021年1期

      杜東升 劉言杰 徐慶陽

      摘要: 目前減震結(jié)構(gòu)的附加阻尼比計(jì)算都需要先計(jì)算出結(jié)構(gòu)的動力反應(yīng),并進(jìn)行復(fù)雜的迭代過程,且在計(jì)算中一般都僅考慮激勵頻率等于結(jié)構(gòu)基頻的情況?;诜蔷€性黏滯阻尼器,提出了一種不需計(jì)算結(jié)構(gòu)動力反應(yīng),只根據(jù)結(jié)構(gòu)特性、激勵頻率和阻尼器參數(shù)直接求解結(jié)構(gòu)附加阻尼比的計(jì)算方法。分析了目前常用的幾種附加阻尼比的計(jì)算方法,推導(dǎo)出了減震體系在簡諧激勵下,當(dāng)激勵頻率等于結(jié)構(gòu)基頻時(shí),不需要計(jì)算結(jié)構(gòu)動力反應(yīng),且不需要迭代過程的附加阻尼比計(jì)算公式;研究了不同阻尼指數(shù)下激勵頻率對附加阻尼比計(jì)算取值的影響,并提出非共振情況下附加阻尼比的簡化計(jì)算公式,在此基礎(chǔ)上以反應(yīng)譜平均周期為地震動的激勵頻率,給出了考慮激勵頻率且不需要計(jì)算結(jié)構(gòu)動力反應(yīng)的附加阻尼比簡化計(jì)算方法;通過算例和非線性時(shí)程分析結(jié)果進(jìn)行對比,驗(yàn)證了所提出方法的準(zhǔn)確性。

      關(guān)鍵詞: 消能減震結(jié)構(gòu); 附加阻尼比; 非線性黏滯阻尼器; 反應(yīng)譜平均周期

      中圖分類號: TU352.11; TU311.3??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號: 1004-4523(2021)01-0029-09

      DOI:10.16385/j.cnki.issn.1004-4523.2021.01.004

      引? 言

      黏滯阻尼器附加阻尼比的計(jì)算是減震結(jié)構(gòu)設(shè)計(jì)的核心環(huán)節(jié),而非線性黏滯阻尼器附加阻尼比的計(jì)算由于其在地震作用下的非線性而更為復(fù)雜[1?3]。減震結(jié)構(gòu)的有效總阻尼比主要由三部分組成:結(jié)構(gòu)固有阻尼比、阻尼器附加給結(jié)構(gòu)的阻尼比以及結(jié)構(gòu)非線性行為下的滯回阻尼比,其中滯回阻尼比只有在結(jié)構(gòu)出現(xiàn)損傷時(shí)才會出現(xiàn),評估減震結(jié)構(gòu)彈性行為下減震效果的關(guān)鍵在于阻尼器附加阻尼比的計(jì)算。相關(guān)學(xué)者對于附加阻尼比的計(jì)算方法已經(jīng)做了大量研究,2008年,Charney等[4]運(yùn)用振型應(yīng)變能法、自由振動對數(shù)衰減法和復(fù)特征值特征向量法分析了單層單跨結(jié)構(gòu)的附加阻尼比;2009年Antonio[5]提出了一種基于動力系統(tǒng)狀態(tài)空間方程計(jì)算模態(tài)阻尼比的方法;2013年,巫振弘等[6]總結(jié)了規(guī)范方法和減震系數(shù)法兩種工程中用于減震結(jié)構(gòu)附加阻尼比計(jì)算的方法,并提出適宜于計(jì)算機(jī)編程計(jì)算的自由振動衰減法。這些方法都需要先計(jì)算出減震結(jié)構(gòu)的地震響應(yīng),且需要多次復(fù)雜的迭代計(jì)算過程,為了簡化附加阻尼比的計(jì)算,一些學(xué)者也提出了一些簡化計(jì)算方法。2008年,LI Bo等[7]根據(jù)改進(jìn)能力譜和給定的性能準(zhǔn)則得到結(jié)構(gòu)有效總阻尼比,進(jìn)而得到阻尼器的附加阻尼比,該方法經(jīng)一步計(jì)算就能求得結(jié)構(gòu)滿足性能目標(biāo)所需的附加阻尼比而無需迭代,但是該方法忽略了結(jié)構(gòu)非線性行為對于黏滯阻尼器附加阻尼比的影響;2012年,Diotallevi等[8]為了避免復(fù)雜的迭代計(jì)算,提出了一種基于阻尼指標(biāo)直接評估減震結(jié)構(gòu)附加阻尼比的方法,該方法可以根據(jù)阻尼指標(biāo)和結(jié)構(gòu)固有周期直接在圖譜中得到附加阻尼比,但是該圖譜仍需要迭代計(jì)算減震結(jié)構(gòu)響應(yīng)才能獲得;2014年,Lancli等[9]提出一種基于常數(shù)設(shè)計(jì)加速度曲線和常數(shù)設(shè)計(jì)位移曲線直接評估減震結(jié)構(gòu)附加阻尼比方法,該方法雖然避免了計(jì)算結(jié)構(gòu)響應(yīng),但是沒有考慮地震動激勵頻率對于結(jié)構(gòu)附加阻尼比的影響。

      目前計(jì)算非線性黏滯阻尼器附加阻尼比的方法通?;谀芰吭?sup>[10?11],未考慮地震動頻譜特性且需要迭代計(jì)算出響應(yīng)才能進(jìn)一步求得附加阻尼比,求解過程比較復(fù)雜,不便應(yīng)用于工程實(shí)際。

      1 通過計(jì)算結(jié)構(gòu)響應(yīng)求解非線性黏滯阻尼器的附加阻尼比

      1.1 通過能量比值計(jì)算非線性黏滯阻尼器的附加阻尼比

      由公式(28)可以得到El?Centro地震波激勵下結(jié)構(gòu)共振時(shí)附加阻尼比ζsdres=12.92%,將該值代入到公式(29)得到考慮El?Centro地震波頻譜特性后的附加阻尼比為13.97%,也可以根據(jù)阻尼系數(shù)cα,結(jié)構(gòu)自振周期T或El?Centro地震波的峰值加速度g0,在圖20?21中得到非線性黏滯阻尼器的附加阻尼比。

      采用表1中10條地震波作為輸入激勵,運(yùn)用能量比法式(9)、阻尼指標(biāo)法式(11)、本文方法式(28)和非線性時(shí)程分析法(NMA和“抗規(guī)”法)分別計(jì)算減震結(jié)構(gòu)共振時(shí)的附加阻尼比,將式(28)得到的附加阻尼比代入到公式(29)得到考慮地震動頻譜特性后的附加阻尼比。

      表2對比了這6種方法計(jì)算得到的附加阻尼比,發(fā)現(xiàn)結(jié)構(gòu)共振時(shí)的5種方法計(jì)算結(jié)果較為接近,其中,因?yàn)?0條地震波的峰值加速度調(diào)整為同一個(gè)值,所以阻尼指標(biāo)ε是常數(shù)值,進(jìn)而由阻尼指標(biāo)法求得的附加阻尼比為一個(gè)定值。

      考慮地震激勵頻譜特性后,因10條地震波對應(yīng)的Ωm/ω均大于1,所以公式(29)大于公式(28)的計(jì)算結(jié)果,與簡諧激勵頻率比大于1時(shí)附加阻尼比變化規(guī)律一致,如圖23所示。由于地震激勵的頻譜特性對于計(jì)算結(jié)構(gòu)附加阻尼比有著不可忽略的影響,所以公式(29)的計(jì)算結(jié)果理論上更為準(zhǔn)確。

      4 結(jié)? 論

      (1)推導(dǎo)出了在共振情況下減震結(jié)構(gòu)不需要計(jì)算動力反應(yīng)的附加阻尼比求解公式,然后分析了不同阻尼指數(shù)的阻尼器在考慮激勵頻率影響下,附加阻尼比隨頻率比的變化規(guī)律,進(jìn)而提出了考慮激勵頻率影響的附加阻尼比簡化計(jì)算公式。

      (2)在共振情況下阻尼器為結(jié)構(gòu)提供的附加阻尼比最小;當(dāng)激勵頻率小于結(jié)構(gòu)頻率時(shí),隨著激勵頻率減小,阻尼器為結(jié)構(gòu)提供的附加阻尼比以平方關(guān)系增加;當(dāng)激勵頻率大于結(jié)構(gòu)頻率時(shí),隨著激勵頻率增加,阻尼器為結(jié)構(gòu)提供的附加阻尼比以線性關(guān)系增加。

      (3)以6層剪切型結(jié)構(gòu)為例,將本文方法計(jì)算的結(jié)果與文獻(xiàn)[13]進(jìn)行了對比,并與能量比法、阻尼指標(biāo)法、非線性時(shí)程分析的計(jì)算結(jié)果進(jìn)行了對比,驗(yàn)證了本文方法的可行性和準(zhǔn)確性。

      在已知地震動特性、結(jié)構(gòu)特性和阻尼器參數(shù)的情況下,采用本文的方法可以方便地計(jì)算減震結(jié)構(gòu)的附加阻尼比,但地震動的頻率采用反應(yīng)譜平均周期進(jìn)行計(jì)算的方法有待完善。

      參考文獻(xiàn):

      [1]??????? Lin Y Y, Chang K C, Chen C Y. Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers[J]. Bulletin of Earthquake Engineering, 2008,(6):535?552.

      [2]??????? Enrico T, Laura R, Andrea D A. Probabilistic seismic response assessment of linear systems equipped with nonlinear viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2015,44(1):101?120.

      [3]??????? Patel C C. Dynamic response of adjacent structures coupled by nonlinear viscous damper[J]. Advances in Structural Engineering, 2015: 1091?1102.

      [4]??????? Charney Finley A, McNamara Robert J. Comparison of methods for computing equivalent viscous damping ratios of structures with added viscous damping[J]. Journal of Earthquake Engineering, 2008, 134(1): 32?44.

      [5]??????? Antonio Occhiuzzi. Additional viscous dampers for civil structures: Analysis of design methods based on effective evaluation of modal damping ratios[J]. Engineering Structures, 2009, 31(5): 1093?1101.

      [6]??????? 巫振弘,薛彥濤,王翠坤,等.多遇地震作用下消能減震結(jié)構(gòu)附加阻尼比計(jì)算方法[J].建筑結(jié)構(gòu)學(xué)報(bào),2013,34(12): 19-25.

      WU Zhenhong, XUE Yantao, WANG Cuikun, et al. Calculation method of additional damping ratio of energy dissipation structure under multiple earthquakes[J]. Journal of Building Structures, 2013,34(12): 19?25.

      [7]??????? LI Bo, LIANG Xingwen. Seismic design of structure with supplemental viscous dampers based on improved capacity spectrum method[C]. Proceeding of the Tenth International Symposium on Structural Engineering for Yong Expert, 2008: 1230?1236.

      [8]??????? Diotallevi P P, Landi L, Dellavalle A. A methodology for the direct assessment of the damping ratio of structures equipped with nonlinear viscous dampers[J]. Journal of Earthquake Engineering, 2012,16(3): 350?373.

      [9]??????? Landi L, Lucchi S, Diotallevi P P. A procedure for the direct determination of the required supplemental damping for the seismic retrofit with viscous dampers[J]. Engineering Structures, 2014,71: 137?149.

      [10]????? 中華人民共和國住房和城鄉(xiāng)建設(shè)部.GB50011-2010, 建筑抗震設(shè)計(jì)規(guī)范[S]. 北京: 中國建筑工業(yè)出版社, 2010.

      Ministry of Housing and Urban-Rural Developemnt of the People's Republic of China. GB50011-2010, Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010.

      [11]????? Chopra A K. Dynamics of Structures: Theory and Applications to Earthquake Engineering[M]. 2nd ed. Upper Saddle River: Prentice-Hall, 2001.

      [12]????? Rathje E M, Faraj F, Russel S, et al. Empirical relationships for frequency content parameters of earthquake ground motions[J]. Journal of Earthquake Spectra, 2004, 20:119?144.

      [13]????? Takewaki I. Optimal damper placement for minimum transfer functions[J]. Earthquake Engineering & Structural Dynamics, 1997, 26 (11): 1113?1124.

      [14]????? 魏? 巍,馮啟民.幾種push-over分析方法對比研究[J]. 地震工程與工程振動, 2002,22(4): 66?73.

      WEI Wei, FENG Qimin. Comparative study on several push-over analysis methods[J]. Journal of Earthquake Engineering and Engineering Vibration, 2002,22(4): 66-73.

      [15]????? 丁永君,劉勝林,李進(jìn)軍.黏滯阻尼結(jié)構(gòu)小震附加阻尼比計(jì)算方法的對比分析[J].工程抗震與加固改造, 2017,39(1):78-83.

      DING Yongjun, LIU Shenglin, LI Jinjun. Comparative analysis of calculation methods for additional damping ratio of small earthquakes with viscous damping structure[J]. Earthquake Resistant Engineering and Retrofitting, 2017,39(1):78-83.

      Abstract: At present, it is necessary for the calculation of the supplemental damping ratio of the aseismic structure to calculate the dynamic response of the structure and perform the iterative process. In addition, generally only the case where the excitation frequency is equal to the fundamental frequency of the structure is considered. Based on the nonlinear viscous damper, a calculation method that without calculating the structural dynamic response directly obtains the structural supplemental damping ratio based on structural characteristics, excitation frequency and damper parameters is proposed. Firstly, several frequently used methods of calculating supplemental damping ratio are analyzed. Then, the calculation formula of the supplemental damping ratio for the excitation frequency equals to the fundamental frequency of the structure, and without calculating the structural dynamic response and the iterative process is deduced. By studying on the influence of the excitation frequency on the calculation of the supplemental damping ratio for different damping indexes, a simplified calculation formula for supplemental damping ratio in the case of non-resonance is proposed. On this basis, taking response spectrum average period as the excitation frequency of the ground motion, a simplified calculation method of the supplemental damping ratio considering the excitation frequency and no need to calculate the structural dynamic response is given. Finally, the accuracy of the proposed method is verified by comparing the results of the example with the results of nonlinear time history analyses.

      Key words: energy dissipation structure; additional damping ratio; nonlinear viscous damper; response spectrum average period

      作者簡介: 杜東升(1977-),男,博士,副教授。 電話:13915955604; E-mail: ddshy@163.com

      大埔县| 泸水县| 浑源县| 来安县| 香港 | 奉贤区| 贵定县| 台中市| 梁平县| 漳州市| 乐陵市| 丘北县| 广西| 西华县| 边坝县| 新和县| 浠水县| 民丰县| 桑植县| 修水县| 蒙城县| 盐津县| 五常市| 东阳市| 开鲁县| 曲靖市| 昭觉县| 新乐市| 湘潭市| 莫力| 苍梧县| 雅江县| 北票市| 偏关县| 清水河县| 惠来县| 乌什县| 武隆县| 屏东县| 莱阳市| 集贤县|