陳華霆 譚平
摘要: 附加減震裝置的一維桿或剪切梁模型屬于非連續(xù)的非經(jīng)典阻尼分布參數(shù)系統(tǒng)。對于它的動力分析,通常是建立分段的運動方程,然后利用各段動力反應(yīng)的實振型疊加形式和連續(xù)條件進行動力計算。這是一種實模態(tài)綜合方法,盡管它可以求得近似的動力反應(yīng),但反映不出阻尼對整體系統(tǒng)動力特性的影響。為了考慮附加減震裝置引起的阻尼和剛度非連續(xù)性,基于廣義函數(shù)理論,建立了整體系統(tǒng)的無量綱化運動方程,利用Laplace變換推導(dǎo)了振型函數(shù)和特征值方程,并給出了振型函數(shù)的正交條件,最終導(dǎo)出了適用于非經(jīng)典阻尼分布參數(shù)系統(tǒng)的復(fù)振型疊加方法。由于特征值方程為復(fù)雜的超越方程,為了同時求出多個自振頻率,建議了一種基于柯西積分定理的等效多項式方法。這種方法將自振頻率轉(zhuǎn)變成了線性代數(shù)方程組的求解,更簡便、實用。最后以基底隔震分布參數(shù)系統(tǒng)為例,展示了復(fù)振型疊加法的應(yīng)用,同時對隔震結(jié)構(gòu)設(shè)計得出了有益的結(jié)論。給出的復(fù)振型疊加法是傳統(tǒng)的經(jīng)典阻尼連續(xù)系統(tǒng)實振型疊加法的推廣,具有一定理論意義和應(yīng)用價值。
關(guān)鍵詞: 線性振動; 非經(jīng)典阻尼; 分布參數(shù)系統(tǒng); 動力分析; 復(fù)振型疊加方法
中圖分類號: O321; TU311.3??? 文獻標志碼: A??? 文章編號: 1004-4523(2021)01-0048-12
DOI:10.16385/j.cnki.issn.1004-4523.2021.01.006
引? 言
對于線性振動系統(tǒng),通常采用振型疊加法進行動力分析。由于系統(tǒng)振動一般是低階振型起主導(dǎo)作用,因此,振型疊加法可以僅取前若干階振型參與計算,從而很大程度地降低計算量。按照阻尼分布的特點,可將線性系統(tǒng)分為經(jīng)典阻尼系統(tǒng)和非經(jīng)典阻尼系統(tǒng)。前者可采用傳統(tǒng)的振型疊加法進行動力分析,這種方法基于無阻尼振型,通常也稱為實振型疊加法。若系統(tǒng)中附加了額外阻尼,則阻尼矩陣就不滿足無阻尼振型解耦的Caughey條件[1?2],而成為非經(jīng)典阻尼矩陣。這時,就需要采用復(fù)振型疊加法。這種方法首先由Traill?Nash[3]和Foss[4]提出,而后經(jīng)過許多學者[5?8]的研究得以不斷完善。目前,在減震控制結(jié)構(gòu)中已有較好的應(yīng)用[9?12]。
當前,復(fù)振型疊加法的研究主要集中在有限自由度離散系統(tǒng),而實際結(jié)構(gòu)都是具有連續(xù)分布特性的無限自由度體系,將結(jié)構(gòu)離散為有限自由度進行求解只能獲得結(jié)構(gòu)真實動力行為的近似解。同時,對某些特殊結(jié)構(gòu),如橋梁、煙囪、拱壩等,采用分布參數(shù)模型(偏微分方程)來描述其動力行為更為合理[13?14]。此外,基于分布參數(shù)模型更容易發(fā)現(xiàn)、解釋一些物理現(xiàn)象,如波的傳播。在分布參數(shù)模型中,一維桿或剪切梁模型是最簡單的模型,但在實踐中是一個很好的力學模型。例如,可以用來研究多層框架結(jié)構(gòu)的動力特性[15]。另外,這類模型還可以安裝阻尼裝置用來研究振動控制問題,如Skinner等[16]用剪切梁模型研究了隔震結(jié)構(gòu)的動力特點,深海開采系統(tǒng)中鉆桿的振動控制、地震作用下橋梁的縱向減震問題也可以采用一維桿或剪切梁模型來描述其動力行為[17?18]。由于一維桿和剪切梁模型具有相同的運動方程,本文統(tǒng)一用一維桿來表述。
關(guān)于無阻尼一維桿的振動問題可詳見文獻[13?14,19?21]。附加阻尼裝置的一維桿屬于非經(jīng)典阻尼系統(tǒng)。對于該系統(tǒng)的動力分析,目前僅限于幾種特殊情況。如Singh等[22]給出了解析的含黏滯阻尼邊界(黏滯阻尼器布置在桿端)的一維桿特征值方程和振型函數(shù);Hull[23]研究了這種模型在集中荷載作用下的振型疊加法;Cortés等[24?25]將上述黏滯阻尼邊界考慮為黏彈性邊界推導(dǎo)了特征值方程和頻響函數(shù)的解析表達式;Yüksel等[26?27]進一步研究了黏滯阻尼邊界位于桿內(nèi)部(黏滯阻尼器一端固定,另一端與桿內(nèi)部一點相連)的情況。此外,對于這類非經(jīng)典阻尼分布參數(shù)系統(tǒng)的動力分析,尚不能像離散系統(tǒng)那樣基于復(fù)振型正交條件建立復(fù)振型疊加法,其關(guān)鍵問題在于附加阻尼裝置的桿,沿軸線方向阻尼和剛度屬性發(fā)生突變,屬于非連續(xù)系統(tǒng)。這種非連續(xù)系統(tǒng)動力分析的經(jīng)典方法是將整個桿在非連續(xù)點位置劃分為若干段,對每一段分別建立運動方程,然后利用在非連續(xù)點位置位移或內(nèi)力的連續(xù)條件和邊界條件進行求解。文獻[22?27]就是利用這種方法推導(dǎo)出的特征值方程和振型函數(shù),但基于這種分段的振型函數(shù)建立正交關(guān)系就不是那么容易了。為了考慮阻尼裝置引起的剛度和阻尼非連續(xù)性,本文采用廣義函數(shù)理論對整個系統(tǒng)建立一個運動方程[28?32],從而求出的振型函數(shù)只有一個表達式。
為了方便公式推導(dǎo),本文只考慮布置一個阻尼裝置,這也很容易推廣到多個阻尼裝置的情況。本文首先基于廣義函數(shù)理論,建立無量綱化的非連續(xù)桿系統(tǒng)的運動方程;然后,利用Laplace變換,推導(dǎo)在齊次邊界條件下特征值方程和振型函數(shù)的解析表達式,并建立振型函數(shù)正交關(guān)系,推導(dǎo)桿在單位脈沖荷載、一般荷載、簡諧荷載和支座激勵作用的復(fù)振型疊加法表達式;同時,對于特征值方程的求解,本文采用一種基于柯西積分定理的等效多項式方法;最后,利用數(shù)值算例驗證本文建議方法的有效性。
1 運動方程
非連續(xù)桿模型如圖1所示,由AB和BC兩段組成,總長為l,單位長度的質(zhì)量、橫截面面積、彈性模量分別為m,A,E。在x0位置,兩段之間由彈簧和阻尼元件連接,其剛度系數(shù)、阻尼系數(shù)分別為k,c。整個桿在B點力學屬性發(fā)生突變,屬于非連續(xù)系統(tǒng)。傳統(tǒng)的分析方法是分別對AB和BC段建立運動方程,即
支座阻尼對復(fù)振型的影響如圖3所示,其中實部曲線中綠色實線表示無阻尼實振型,其他4條曲線分別對應(yīng)于cnorm=0.1,0.2,0.3,0.4,阻尼越大相應(yīng)的虛部的幅值也越大??梢钥闯觯簭?fù)振型函數(shù)在支座位置處均有突變;阻尼對復(fù)振型實部基本沒有影響,主要影響復(fù)振型的虛部,而虛部主要與空間質(zhì)點的振動相位有關(guān);同時,若不考慮阻尼,其振動形狀與復(fù)振型實部的形態(tài)更為接近。
自由端位移、支座反力的頻響函數(shù)幅值如圖4?5所示,很明顯在結(jié)構(gòu)第1階自振頻率附近,隨著阻尼的增大結(jié)構(gòu)的響應(yīng)是降低的,但隨著輸入頻率的增大,阻尼的耗能效果降低,并出現(xiàn)增大結(jié)構(gòu)響應(yīng)的現(xiàn)象。這說明阻尼的耗能效果是受輸入頻率的影響,只有在較低的頻率范圍內(nèi)才具有降低結(jié)構(gòu)響應(yīng)的作用;高頻輸入下,增加阻尼對結(jié)構(gòu)不利。
圖6?7給出了在3種輸入頻率下(ω=1.94,13.98和27.46 rad/s,分別對應(yīng)于不考慮阻尼影響的隔震結(jié)構(gòu)前3階自振頻率)離散質(zhì)點系模型的響應(yīng),其中單元數(shù)目n取20,40,80和100四種情況。圖中縱坐標表示離散質(zhì)點系模型響應(yīng)與本文建議的分布參數(shù)模型之比,橫坐標表示隔震支座阻尼大小。在離散質(zhì)點系模型頻率響應(yīng)計算中,忽略了阻尼的非經(jīng)典特性,即采用強迫解耦方法,這也是實際中常用的方法??梢钥闯?,在支座阻尼較小時,單元數(shù)目對響應(yīng)影響較大,特別是高頻輸入下。此外,隨著支座阻尼的增大,強迫解耦方法的誤差越來越大,并且明顯受輸入頻率的影響。如當ω=1.94 rad/s時,與精確值相比,強迫解耦方法計算出的支座反力隨著支座阻尼的增大不斷降低,而當ω=13.98 rad/s時,強迫解耦方法計算出的支座反力不斷增大而后趨于穩(wěn)定。顯然,強迫解耦方法的適用性非常受限。在輸入頻率ω=1.94 rad/s時,若支座阻尼在0.15以內(nèi),支座反力精度可達到95%;而高頻輸入下,同樣精度的適用阻尼變得非常小。
7 結(jié)? 論
對于含阻尼裝置的非連續(xù)桿模型,本文基于廣義函數(shù)建立了無量綱化的運動方程,利用分離變量研究了這種非連續(xù)桿系統(tǒng)的復(fù)振型疊加方法。文中推導(dǎo)出了在齊次邊界條件下的特征值方程,其為超越方程,為了求出一定數(shù)量的解,介紹了一種等效多項式方法,該方法比常用的基于Newton迭代的方法簡單、有效。非連續(xù)的振型函數(shù)滿足正交條件,可以用來解耦運動方程,給出了結(jié)構(gòu)在單位脈沖荷載、一般荷載、簡諧荷載和支座激勵下的動力響應(yīng)表達式,并且其與標準的單自由度運動方程相聯(lián)系,便于實際應(yīng)用。最后,利用一基底隔震系統(tǒng)對本文建議的復(fù)振型疊加法進行了有效性驗證,其結(jié)果對隔震結(jié)構(gòu)的設(shè)計具有一定的指導(dǎo)意義。
參考文獻:
[1]??????? Caughey A K. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, ASME, 1960, 27(2): 269-271.
[2]??????? Caughey A K, OKelly M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics ASME, 1965, 32(3): 583-588.
[3]??????? Traill-Nash R W. An analysis of the response of a damped dynamical system subjected to impress forces[R]. Australian Department of Supply, Aeronautical Research Laboratory Report, 1950, SM.151.
[4]????? Foss K A. Co-ordinates which uncouple the linear dynamic systems[J]. Journal of Applied Mechanics, Transactions of the ASME, 1958, 24:361-364.
[5]??????? Traill-Nash R W. Modal methods in the dynamics of systems with non-classical damping [J]. Earthquake Engineering and Structural Dynamics, 1981, 9:153-169.
[6]????? Veletsos A S, Ventura C E. Modal analysis of non-classically damped linear systems[J]. Earthquake Engineering and Structural Dynamics, 1986, 14(2):217-243.
[7]??????? Igusa T, Kiureghian A D, Sackman J L. Modal decomposition method for stationary response of non-classically damped systems[J]. Earthquake Engineering and Structural Dynamics, 1984,12(1):121-136.
[8]??????? 陳華霆,譚? 平,彭凌云,等.復(fù)振型疊加法截斷誤差及改進[J].振動工程學報, 2017, 30(4):556-563.
Chen H, Tan P, Peng L, et al. Truncation error and improvement of complex modal superposition approach[J]. Journal of Vibration Engineering, 2017,30(4):556-563.
[9]??????? 周錫元,董? 娣,蘇幼坡.非正交阻尼線性振動系統(tǒng)的復(fù)振型地震響應(yīng)疊加分析方法[J].土木工程學報,2003,36(5):30-36.
Zhou X, Dong D, Su Y. New method for linear systems with non-classical damping under ground motion [J]. China Civil Engineering Journal, 2003, 36(5): 30-36.
[10]????? Zhou X, Yu R, Dong D. Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system[J]. Journal of Earthquake Engineering, 2004, 8(4):597-641.
[11]????? 周錫元,馬東輝,俞瑞芳.工程結(jié)構(gòu)中的阻尼與復(fù)振型地震響應(yīng)的完全平方組合[J].土木工程學報,2005,38(1):31-39.
Zhou X, Ma D, Yu R. Damping in structures and complete quadratic combination (CCQC) of complex mode seismic responses[J]. China Civil Engineering Journal, 2005, 38(1): 31-39.
[12]????? 周錫元,俞瑞芳.非比例阻尼線性體系基于規(guī)范反應(yīng)譜的CCQC法[J].工程力學,2006,23 (2):10-17.
Zhou X, Yu R. CCQC method for seismic response of non-classically damped linear system based on code response spectra?[J]. Engineering Mechanics, 2006, 23 (2):10-17.
[13]????? Clough R W, Penzien J. Dynamic of Structures[M]. 3rd ed. Berkeley, Califomia, USA: Computers and Structures Inc., 1995: 365-424.
[14]????? Chopra A K. Dynamics of Structures: Theory and Applications to Earthquake Engineering?[M]. 4th ed. USA: Prentice Hall, 2012: 698-724.
[15]????? 沈聚敏,周錫元,高小旺,等.抗震工程學[M].第2版.北京:中國建筑工業(yè)出版社, 2015:106-116.
Shen J, Zhou X, Gao X, et al. Aseismic Engineering[M]. 2nd ed. Beijing: China Architecture and Building Press, 2015: 106-116.
[16]????? Skinner R I, Robison W H, McVerry G H. An Introduction to Seismic Isolation[M]. Baffins Lane, Chichester, England: John Wiley & Sons Ltd., 1993:119-159.
[17]????? Aso K, Kan K, Doki H, et al. Effects of vibration absorbers on the longitudinal vibration of a pipe string in the deep sea―Part 1: In case of mining cobalt crust[J]. International Journal of Offshore and Polar Engineering, 1992,2(4):309-317.
[18]????? Feng Q, Shinozuka M. Control of seismic response of bridge structures using variable dampers[J]. Journal of Intelligent Material Systems and Structures, 1993,4: 117-122.
[19]????? 廖振鵬.工程波動理論導(dǎo)論[M].第2版.北京:科學出版社, 2002:67-81.
Liao Z P. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press, 2002:67-81.
[20]????? Graff K F. Wave Motion in Elastic Solids[M]. New York: Dover Publications Inc., 1991:75-133.
[21]????? Kinsler L E, Frey A R, Coppens A B, et al. Fundamentals of Acoustics?[M]. 4th ed. New York: John Wiley & Sons Inc., 2000:68-86.
[22]????? Singh R, Lyons W M, Prater G. Complex eigensolution for longitudinally vibration bars with a viscously damped boundary[J]. Journal of Sound and Vibration, 1989, 133(2): 364-367.
[23]????? Hull A J. A closed form solution of a longitudinal bar with a viscous boundary condition[J]. Journal of Sound and Vibration, 1994, 169(1): 19-28.
[24]????? Cortés F, Elejabarrieta M J. Longitudinal vibration of a damped rod. Part I: Complex natural frequencies and mode shapes?[J]. International Journal of Mechanical Science, 2006,48(9): 969-975.
[25]????? Cortés F, Elejabarrieta M J. Forced response of a viscoelastically damped rod using the superposition of modal contribution functions?[J]. Journal of Sound and Vibration, 2008,315(1-2): 58-64.
[26]????? Yüksel S, Gürg?ze M. Continuous and discrete models for longitudinally vibrating elastic rods viscously damped in-span[J]. Journal of Sound and Vibration, 2002, 257(5): 996-1006.
[27]????? Yüksel S, Dalli U. Longitudinally vibrating elastic rods with locally and non-locally reacting viscous dampers [J]. Shock and Vibration, 2005, 12(2): 109-118.
[28]????? Yavari A, Sarkani S, Moyer E M Jr. On the applications of generalized functions to beam bending problems[J]. International Journal of Solids and Structures, 2000,37(40): 5675-5705.
[29]????? Zemanian A H. Distribution Theory and Transform Analysis[M]. New York: McGraw-Hill, 1965.
[30]????? Kanwal R P. Generalized Functions Theory and Applications[M]. New York: Academic Press, 1983.
[31]????? Schwarz L. Théorie des Distributions[M]. Paris: Hermann, 1966.
[32]????? Wang J, Qiao P. Vibration of beams with arbitrary discontinuities and boundary conditions?[J]. Journal of Sound and Vibration, 2007, 308(1-2):12-27.
[33]????? Jackson D. Non-essential singularities of functions of several complex variables[J]. The Annals of Mathematics, 1916, 17(4): 172-179.
[34]????? Jackson D. Roots and singular points of semi-analytic functions?[J]. The Annals of Mathematics, 1917, 19(2): 142-151.
[35]????? Luck R, Stevens J W. Explicit solutions for transcendental equations?[J]. SIAM Review, 2002, 44(2): 227-233.
[36]????? Boyd J P. Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2014.
[37]????? Luck R, Zdaniuk G J, Cho H. An efficient method to find solutions for transcendental equations with several roots[J]. International Journal of Engineering Mathematics, 2015: 523043.
Abstract: One-dimensional bar or shear-type beam with additional energy dissipation devices is a distributed-parameter system with non-classical damping. For its dynamic analysis, the conventional way is to construct an equation of motion for each segment and obtain the dynamic response by using the real mode superposition method and the continuous condition. In essence, this method is a component mode synthesis based on undamped modes of substructure. Even though approximated dynamic responses can be estimated, it cannot consider the effect of damping on the dynamic behavior. To consider the discontinuity of damping and stiffness resulting from the additional damper, utilizing the generalized function theory, one non-dimensional equation of motion for the whole system is constructed in this paper. Then, using the Laplace integral transformation, the eigen function (complex mode) and eigenvalue equation are derived. Finally, the complex mode superposition method for distributed-parameter systems with non-classical damping is developed based on the derived orthogonality condition of eigen functions. In addition,? the eigenvalue equation is a very complex transcendental equation, in order to get several natural frequencies, an equivalent polynomial method based on the Cauchy integral theorem is proposed, in which the eigenvalue equation is transformed into a set of linear equations such that their solutions can be obtained more easily. In the last section of this paper, the application of the proposed method is illustrated in a base-isolated shear-type beam and some useful information for the design of base-isolated structures is provided. To summarize, the complex mode superposition method is an extension of the conventional real mode superposition method for classically damped continuous and distributed-parameter systems, which is meaningful and valuable in the theory and application.
Key words: linear vibration; non-classical damping; distributed-parameter systems; dynamic analysis; complex mode superposition method
作者簡介: 陳華霆(1988-),男,講師。電話:(020)86395053;E-mail: huntingchen@foxmail.com
通訊作者: 譚? 平(1973-),男,研究員,博士生導(dǎo)師。電話:(020)86395007;E-mail: ptan@foxmail.com