張西寧,劉書語,余迪,雷建庚,李霖
(西安交通大學(xué)機(jī)械制造系統(tǒng)工程國家重點(diǎn)實(shí)驗(yàn)室,710049,西安)
隨著機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)測(cè)量規(guī)模增大、測(cè)點(diǎn)數(shù)量的增多,機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷進(jìn)入了“大數(shù)據(jù)時(shí)代”[1]。傳統(tǒng)的基于信號(hào)處理的故障診斷方法采用手動(dòng)提取特征后輸入分類模型進(jìn)行故障識(shí)別[2],過程嚴(yán)重依賴人工經(jīng)驗(yàn)和先驗(yàn)知識(shí),這在數(shù)據(jù)規(guī)模大、獲取速度快的今天顯得捉襟見肘。如何從海量的機(jī)械大數(shù)據(jù)中自動(dòng)提取有用特征,并精準(zhǔn)地對(duì)軸承等零部件進(jìn)行故障診斷成為當(dāng)下研究熱點(diǎn)。
深度學(xué)習(xí)因?yàn)樘幚頂?shù)據(jù)和識(shí)別復(fù)雜問題能力強(qiáng)[3-4]受到了學(xué)術(shù)界和企業(yè)越來越多的關(guān)注。深度卷積神經(jīng)網(wǎng)絡(luò)(DCNN)是深度學(xué)習(xí)中最重要的模型之一,最早在20世紀(jì)80年代被提出,興起于計(jì)算機(jī)視覺和自然語言處理等領(lǐng)域[5],如今被廣泛應(yīng)用在機(jī)械故障診斷領(lǐng)域。賈京龍等用卷積神經(jīng)網(wǎng)絡(luò)對(duì)變壓器進(jìn)行診斷并成功識(shí)別出故障[6];張偉等通過批量標(biāo)準(zhǔn)化和小批量訓(xùn)練的方法提高了卷積神經(jīng)網(wǎng)絡(luò)在多負(fù)載、強(qiáng)噪聲環(huán)境下對(duì)軸承故障的識(shí)別能力[7];向宙等以卷積和池化后的特征為權(quán)值對(duì)反卷積核進(jìn)行疊加,把信號(hào)逐層重構(gòu)回原信號(hào)空間,通過觀察重構(gòu)信號(hào),解釋了卷積神經(jīng)網(wǎng)絡(luò)對(duì)信號(hào)提取的實(shí)質(zhì)[8]。
深度卷積神經(jīng)網(wǎng)絡(luò)通過局部連接、權(quán)值共享和池化,不僅具有一定程度的平移不變性,還大大減少了網(wǎng)絡(luò)的參數(shù)數(shù)量來避免過擬合[9]。常用的平均池化和最大池化都存在明顯的缺點(diǎn):平均池化是區(qū)域內(nèi)每個(gè)活性值的權(quán)值相等,使得重要特征模糊化;最大池化只保留區(qū)域內(nèi)的活性最大值,拋棄區(qū)域內(nèi)其他神經(jīng)元活性值的同時(shí)必然丟失大量的信息。針對(duì)這個(gè)問題,本文提出了一種用小尺度卷積核通過跳動(dòng)的方式對(duì)特征進(jìn)行降采樣的方法。從神經(jīng)元活性值與分布的角度[10],分析了提出的方法優(yōu)于兩種池化方式的原因,并在實(shí)驗(yàn)室變轉(zhuǎn)速多軸承數(shù)據(jù)集上進(jìn)行測(cè)試,對(duì)比了運(yùn)用所提出池化方法的改進(jìn)DCNN與其他兩種DCNN在收斂速度、識(shí)別正確率和穩(wěn)定性等方面的優(yōu)勢(shì)。
深度卷積神經(jīng)網(wǎng)絡(luò)是參考生物學(xué)中感受野機(jī)制而提出的一種局部連接和權(quán)重共享的深度前饋神經(jīng)網(wǎng)絡(luò)[11]。典型深度卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)如圖1所示。卷積層的輸入與輸出關(guān)系的數(shù)學(xué)表達(dá)如下
圖1 典型深度卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)Fig.1 Typical DCNN structure
Y=f(W*X+b)
(1)
式中:X∈RM×N×D和Y∈Rm×n×p分別為網(wǎng)絡(luò)的輸入和輸出;W∈RU×V×P×D為卷積核;b為標(biāo)量偏置;f(·)為非線性激活函數(shù)。池化層的作用是降低特征數(shù)量從而減少參數(shù)的數(shù)量,防止深度卷積神經(jīng)網(wǎng)絡(luò)過擬合。常用的池化層有最大池化層和平均池化層兩種。
深度卷積神經(jīng)網(wǎng)絡(luò)通過誤差反向傳播對(duì)參數(shù)進(jìn)行學(xué)習(xí),計(jì)算卷積層和池化層的梯度后再通過鏈?zhǔn)角髮?dǎo)法可以對(duì)整個(gè)網(wǎng)絡(luò)的梯度傳播進(jìn)行計(jì)算。
損失函數(shù)L關(guān)于第l層的卷積核和偏置的偏導(dǎo)數(shù)為
(2)
(3)
式中:L為損失函數(shù);W(l,p,d)為卷積核;Z(l,p)為第l層的第p個(gè)沒經(jīng)過非線性激活函數(shù)的凈活性值;X(l-1,d)為第l-1層的輸入;δ(l,p)為損失函數(shù)關(guān)于Z(l,p)的偏導(dǎo)數(shù);b(l,p)為第l層的第p個(gè)偏置。
池化層由于沒有權(quán)值,只需要計(jì)算損失函數(shù)關(guān)于池化層的輸入神經(jīng)元的導(dǎo)數(shù)。在進(jìn)行最大池化時(shí),正向傳播只記錄最大活性值所在的位置;反向傳播只將梯度傳遞給記錄下的神經(jīng)元,其余神經(jīng)元不參與傳遞。數(shù)學(xué)表達(dá)式如下
(4)
式中:al(i,t)為神經(jīng)元;tm為正向傳播時(shí)神經(jīng)元最大活性值所在位置。
最大池化層是選擇每個(gè)區(qū)域內(nèi)所有神經(jīng)元的最大活性值代表這個(gè)區(qū)域;平均池化層是對(duì)每個(gè)區(qū)域內(nèi)所有神經(jīng)元活性值取平均代表這個(gè)區(qū)域。最大池化和平均池化的數(shù)學(xué)表達(dá)式如下
(5)
(6)
式中:xi是區(qū)域Rk中每個(gè)神經(jīng)元的活性值。
池化層雖然可以大幅度減少神經(jīng)元的數(shù)量和參數(shù)量,但兩種池化方式都存在比較明顯的缺陷:平均池化是區(qū)域內(nèi)每個(gè)活性值的權(quán)值相等,雖然綜合考慮了區(qū)域內(nèi)所有神經(jīng)元活性值但會(huì)模糊重要的特征,效果通常不如最大池化好;最大池化操作假設(shè)越重要的特征活性值越大,因此只保留區(qū)域內(nèi)神經(jīng)元活性值的最大值,這種過于簡(jiǎn)單的選擇方式,拋棄區(qū)域內(nèi)其他神經(jīng)元的活性值,必然會(huì)導(dǎo)致進(jìn)行降采樣的同時(shí)丟失圖像大量的信息。
為了解決常用池化層的缺點(diǎn),提出了用步長為2、激活函數(shù)為ReLU的小尺度卷積層代替最大池化層,對(duì)圖片進(jìn)行池化的策略。圖像卷積層前后的輸入、輸出尺寸關(guān)系用數(shù)學(xué)公式可表示如下
N=[(Q-F+2P)/S]+1
(7)
式中:N為圖像輸出尺寸;Q為圖像輸入尺寸;F為卷積核尺寸;P為填充數(shù)量;S為卷積核滑動(dòng)步長。
將卷積核的步長設(shè)置為2并不進(jìn)行零補(bǔ)時(shí),圖像經(jīng)過這樣的卷積層后得到的輸出尺寸變?yōu)檩斎氤叽绲囊话?起到和池化層一樣的降采樣效果。此外,這種池化方式可以使卷積核通過學(xué)習(xí)調(diào)整自身的權(quán)重,挑選有用的信息,既綜合考慮區(qū)域內(nèi)所有神經(jīng)元的活性值,又能按每個(gè)神經(jīng)元的重要程度分配不同的權(quán)重,使輸出結(jié)果中蘊(yùn)含著更多有用的信息,同時(shí)彌補(bǔ)了最大池化和平均池化的缺點(diǎn)。
小尺度卷積池化示意如圖2所示。這種改進(jìn)的池化方式因?yàn)楹屑せ詈瘮?shù)增加了整個(gè)網(wǎng)絡(luò)的非線性,提高了深度卷積神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)與表示能力。卷積操作會(huì)給網(wǎng)絡(luò)引入更多需要學(xué)習(xí)的參數(shù),對(duì)此引入3種策略平衡添加卷積操作導(dǎo)致參數(shù)大量增加的問題:首先選取引入?yún)?shù)相對(duì)較少的3×3小尺度卷積核;其次在最后用來池化的卷積層中使用深度可分離卷積核,對(duì)輸入的每個(gè)通道分別執(zhí)行空間卷積,然后通過逐點(diǎn)卷積將輸出通道混合,需要的參數(shù)和計(jì)算量都少很多;最后用全局平均池化層代替平鋪層和第一個(gè)全連接層。
圖2 小尺度卷積核池化示意圖 Fig.2 Schematic diagram of small-scale convolutional pooling
為了分析提出的小尺度卷積池化性能優(yōu)于最大池化的原因,將實(shí)驗(yàn)室中采集的變轉(zhuǎn)速滾動(dòng)軸承故障信號(hào)時(shí)頻圖輸入到使用最大池化層的傳統(tǒng)DCNN中,將網(wǎng)絡(luò)中最大池化層可視化。經(jīng)統(tǒng)計(jì),傳統(tǒng)DCNN每個(gè)最大池化層的通道總數(shù)與被激活通道的數(shù)量如表1所示。分析表1可以看出,輸入傳統(tǒng)DCNN中的圖像在經(jīng)過最大池化層時(shí)許多通道處于未激活的狀態(tài)。
表1 傳統(tǒng)DCNN最大池化層被激活通道數(shù)量Table 1 Number of activated channels in the maxpooling layers of traditional DCNN
對(duì)圖像進(jìn)行歸一化,使像素縮放到[0,1]區(qū)間,然后輸入到傳統(tǒng)DCNN中統(tǒng)計(jì)最大池化層中神經(jīng)元活性值的分布情況,如圖3所示,以此分析最大池化層丟失大量信息的原因。從圖中可以看出,最大池化層中神經(jīng)元活性值大多集中在0附近,雖然活性值的分布隨著網(wǎng)絡(luò)深度的增加有擴(kuò)展到[0,40]區(qū)間的趨勢(shì),但分布區(qū)間還是較小。把相同的時(shí)頻圖輸入到使用小尺度卷積池化的改進(jìn)DCNN中,對(duì)用來池化的卷積層進(jìn)行可視化。統(tǒng)計(jì)改進(jìn)DCNN各卷積池化層的總通道數(shù)與被激活通道的數(shù)量如表2所示。
(a)第1層
對(duì)比表1和表2的數(shù)值可以看出,與傳統(tǒng)DCNN相比,圖像經(jīng)過使用小尺度卷積池化的改進(jìn)DCNN時(shí),每個(gè)池化層中更多的通道處于激活狀態(tài),說明提出的池化方法更有效率。
表2 改進(jìn)DCNN卷積池化層被激活通道數(shù)量Table 2 Number of activated channels in the convolutional pooling layers of improved DCNN
按照?qǐng)D3相同的方式,統(tǒng)計(jì)改進(jìn)DCNN中卷積池化層神經(jīng)元活性值的分布情況如圖4所示。雖然多數(shù)神經(jīng)元活性值仍集中在0附近,但活性值的分布區(qū)間更大,在第4層小尺度卷積池化層中,神經(jīng)元活性值的范圍擴(kuò)展到了[0,120]。結(jié)合所用激活函數(shù)ReLU的圖像可知,神經(jīng)元活性值大于0時(shí)才處于激活狀態(tài)。為證明提出的池化方法比最大池化在保留信息的數(shù)量與多樣性上都存在優(yōu)勢(shì),計(jì)算了兩者激活的神經(jīng)元占神經(jīng)元總數(shù)的比例和神經(jīng)元活性值的信息熵,計(jì)算結(jié)果如表3、表4所示。計(jì)算信息熵的公式如下所示
表3 兩種池化方式神經(jīng)元激活比例Table 3 Activation ratio of neurons in two pooling methods
表4 兩種池化方式神經(jīng)元活性值的信息熵Table 4 Shannon entropy of the activity values of neurons in two pooling methods
(8)
式中:P(xi)為激活值xi的出現(xiàn)概率;n為不同激活值的數(shù)量。
(a)第1層
分析表3、表4可以得知,每個(gè)小尺度卷積池化層被激活的神經(jīng)元比例都比相應(yīng)的最大池化層要高,而且神經(jīng)元活性值的信息熵都有所增大。這種神經(jīng)元活性值分布的多樣性必然會(huì)蘊(yùn)含著更豐富的信息,一定程度上解決了最大池化時(shí)丟失大量信息的缺點(diǎn),有助于網(wǎng)絡(luò)更全面的學(xué)習(xí)與表示。
為了驗(yàn)證提出的改進(jìn)深度卷積神經(jīng)網(wǎng)絡(luò)的性能,在實(shí)驗(yàn)室采集了比較復(fù)雜的變轉(zhuǎn)速滾動(dòng)軸承故障信號(hào)。變轉(zhuǎn)速下滾動(dòng)軸承振動(dòng)信號(hào)經(jīng)常會(huì)發(fā)生調(diào)頻、調(diào)幅和調(diào)相等現(xiàn)象[12],時(shí)域信號(hào)很難全面地反映信號(hào)中蘊(yùn)含的復(fù)雜信息。時(shí)頻分析可以把一維時(shí)域信號(hào)映射到二維時(shí)頻平面上,全面反映出了變轉(zhuǎn)速下采集到的非平穩(wěn)信號(hào)時(shí)頻聯(lián)合特征。把采集的時(shí)域信號(hào)通過時(shí)頻變換得到的時(shí)頻圖作為輸入,通過深度卷積神經(jīng)網(wǎng)絡(luò)逐層進(jìn)行特征提取與學(xué)習(xí),可實(shí)現(xiàn)網(wǎng)絡(luò)對(duì)變轉(zhuǎn)速下軸承故障信號(hào)的識(shí)別與分類[13]。
如圖6所示,實(shí)驗(yàn)室中的軸承實(shí)驗(yàn)臺(tái)由直流電機(jī)、軸承安裝座、加速度傳感器、電渦流傳感器、預(yù)緊裝置、徑向加載裝置和數(shù)據(jù)采集卡UA300構(gòu)成。加速度傳感器靈敏度為8.8 pC/(m·s-2),頻率測(cè)量范圍是0.27~10 kHz;電渦流傳感器靈敏度為8×10-3V/μm。
圖5 軸承故障實(shí)驗(yàn)臺(tái)實(shí)物圖Fig.5 Picture of bearing experiment platform
實(shí)驗(yàn)中待測(cè)軸承為6308深溝球軸承,分為滾動(dòng)體故障(B)、保持架故障(C)、內(nèi)圈故障(I)、外圈故障(O)和正常(ZC)5種類別,每種類別包含4個(gè)軸承。實(shí)驗(yàn)過程中,手動(dòng)調(diào)節(jié)直流電機(jī)的轉(zhuǎn)速在200~2 400 r/min之間不均勻變化,徑向加載7.7 kg的重物。每個(gè)類別的4個(gè)軸承各采2組信號(hào),采樣頻率為10 240 Hz,采樣時(shí)間為20 s,一共得到40組長度為204 800個(gè)點(diǎn)的信號(hào)。采集的40組信號(hào)中既包含升速過程也包含降速過程,通過相應(yīng)的鍵向信號(hào)可以計(jì)算出軸承轉(zhuǎn)速變化信息。由于深度學(xué)習(xí)需要大量的樣本對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,將40組信號(hào)分別從第1個(gè)點(diǎn)開始取連續(xù)的4 096個(gè)點(diǎn)作為一個(gè)樣本,并且每隔2 048個(gè)點(diǎn)開始取下一個(gè)樣本,樣本的截取過程如圖6所示。
圖6 截取時(shí)域信號(hào)示意圖Fig.6 Schematic diagram of samples collection
每種類別獲取了784個(gè)數(shù)據(jù)樣本,總計(jì)3 920個(gè)數(shù)據(jù)樣本。將數(shù)據(jù)樣本分為訓(xùn)練集、驗(yàn)證集和測(cè)試集3個(gè)部分,其中數(shù)據(jù)樣本數(shù)量分別為3 420、250、250。將數(shù)據(jù)樣本進(jìn)行連續(xù)小波變換,得到數(shù)據(jù)樣本的時(shí)頻圖,不同小波基連續(xù)小波變換得到的時(shí)頻圖對(duì)于故障診斷結(jié)果存在一定的影響。根據(jù)文獻(xiàn)[13-14]和實(shí)驗(yàn)結(jié)果對(duì)不同小波基連續(xù)小波變換進(jìn)行對(duì)比,最終選擇效果更佳的morlet小波基連續(xù)小波變換。保存時(shí)頻圖作為訓(xùn)練和測(cè)試深度卷積神經(jīng)網(wǎng)絡(luò)性能的數(shù)據(jù)集,數(shù)據(jù)集的組成情況如表5所示。
表5 實(shí)驗(yàn)室變轉(zhuǎn)速數(shù)據(jù)集組成Table 5 Composition of variable speed datasets from laboratory
將訓(xùn)練集的時(shí)頻圖像素歸一化到區(qū)間[0,1]內(nèi),以輸入150×150的初始尺寸搭建的改進(jìn)DCNN進(jìn)行訓(xùn)練,每經(jīng)過一輪訓(xùn)練后用驗(yàn)證集來驗(yàn)證網(wǎng)絡(luò)是否發(fā)生過擬合,待網(wǎng)絡(luò)訓(xùn)練完成后將測(cè)試集輸入網(wǎng)絡(luò)中進(jìn)行診斷和分類。實(shí)驗(yàn)使用的編程語言為Python 3.7.4,程序運(yùn)行的環(huán)境為TensorFlow,使用計(jì)算機(jī)配置為Core i5-9500 CPU @ 3.00 GHz。改進(jìn)DCNN的結(jié)構(gòu)和詳細(xì)參數(shù)如圖7所示。
圖7 改進(jìn)DCNN結(jié)構(gòu)和詳細(xì)參數(shù)Fig.7 Improved DCNN structure and detailed parameters
網(wǎng)絡(luò)第1層使用較大尺寸的卷積核可以提取時(shí)頻圖中較大視野的整體特征信息[7],后面的幾層采用小卷積核可以提取時(shí)頻圖中較小的局部特征信息,也可以減少網(wǎng)絡(luò)中需要訓(xùn)練的參數(shù)。為了減少網(wǎng)絡(luò)中的過擬合現(xiàn)象,在訓(xùn)練網(wǎng)絡(luò)時(shí)使用了小批量訓(xùn)練[7]和dropout技巧[15]。此外網(wǎng)絡(luò)采用了分類交叉熵?fù)p失函數(shù),并選擇Adam[16]優(yōu)化算法更新權(quán)值直到損失函數(shù)最小。將實(shí)驗(yàn)室變轉(zhuǎn)速滾動(dòng)軸承故障數(shù)據(jù)集分別輸入沒有改進(jìn)的典型DCNN(DCNN-1)、使用最大池化的改進(jìn)DCNN(DCNN-2)和使用小尺度卷積池化的改進(jìn)DCNN(DCNN-3)。其中,DCNN-3的結(jié)構(gòu)和詳細(xì)參數(shù)和圖7一致;DCNN-2是將DCNN-3所有小尺度卷積池化層改回傳統(tǒng)的最大池化層,其余結(jié)構(gòu)和參數(shù)完全一致;DCNN-1沒有使用任何改進(jìn)策略,是一個(gè)網(wǎng)絡(luò)深度和參數(shù)與前面兩個(gè)模型完全一致的典型DCNN模型。設(shè)置迭代次數(shù)為40進(jìn)行20次實(shí)驗(yàn),計(jì)算出3種網(wǎng)絡(luò)測(cè)試集分類精度平均值和標(biāo)準(zhǔn)差如表6所示,各次實(shí)驗(yàn)測(cè)試集分類正確率變化曲線如圖8所示。
表6 測(cè)試集分類正確率的平均值與標(biāo)準(zhǔn)差Table 6 Mean and standard deviation of the recognition accuracy rates of the test set
結(jié)合表6與圖8,對(duì)比DCNN-1和DCNN-2的結(jié)果可知,用全局平均池化層代替平鋪層和第1個(gè)全連接層對(duì)DCNN進(jìn)行改進(jìn)后,網(wǎng)絡(luò)的分類正確率從85.7%提升至93.4%,說明用全局平均池化代替平鋪層和第1個(gè)全連接層改進(jìn)的DCNN-2比典型DCNN-1具有更強(qiáng)的泛化能力,但網(wǎng)絡(luò)的分類正確率和穩(wěn)定性仍不夠高。對(duì)比DCNN-2和DCNN-3的結(jié)果可知,在DCNN-2基礎(chǔ)上使用小尺度卷積池化進(jìn)行改進(jìn)的DCNN-3將網(wǎng)絡(luò)的分類正確率提升到了98.4%,標(biāo)準(zhǔn)差減小了63.4%,說明提出的池化方法使網(wǎng)絡(luò)的性能和穩(wěn)定性都進(jìn)一步的提高。此外DCNN-2在第30次迭代時(shí)才開始收斂,而DCNN-3在第18次迭代時(shí)達(dá)到最大值并保持平穩(wěn)。由于收斂速度快,DCNN-3的訓(xùn)練時(shí)間比DCNN-2減少了40%以上。為了定量驗(yàn)證使用小尺度卷積池化的DCNN-3比使用傳統(tǒng)最大池化的DCNN-2提取特征的效果更好,計(jì)算網(wǎng)絡(luò)最后一層的輸出特征的類間距和類內(nèi)距,結(jié)果如表7所示。類間距和類內(nèi)距計(jì)算式如下
表7 DCNN-2和DCNN-3輸出特征類間距和類內(nèi)距Table 7 Intra-class distance and inter-class distance of output features of DCNN-2 and DCNN-3
圖8 3種網(wǎng)絡(luò)測(cè)試集分類正確率對(duì)比 Fig.8 Comparison of recognition accuracy rates of 3 networks on the test set
(9)
(10)
式中:Ci為第i類樣本的協(xié)方差矩陣;n為樣本類別的數(shù)量;
tr為矩陣的跡;P(wi)為i類樣本的數(shù)量占總體樣本數(shù)量的比例;Mi和M0為第i類樣本矩陣的均值和總體樣本矩陣的均值。
從計(jì)算結(jié)果看出,使用小尺度卷積池化的DCNN-3提取的特征類間距比傳統(tǒng)最大池化的DCNN-2大,類內(nèi)距比DCNN-2小,再一次說明了使用小尺度卷積池化的DCNN-3性能更佳。
將使用小尺度卷積池化的DCNN-3對(duì)測(cè)試集故障分類結(jié)果表示成標(biāo)準(zhǔn)混淆矩陣,如圖9所示??梢钥闯?5種類別的滾動(dòng)軸承幾乎無誤地被分到正確的類別中,分類精度最低的內(nèi)圈故障滾動(dòng)軸承也能達(dá)到98%,說明本文提出的小尺度卷積池化DCNN-3在變轉(zhuǎn)速滾動(dòng)軸承故障被診斷中基本滿足工程需求。
圖9 故障分類結(jié)果標(biāo)準(zhǔn)混淆矩陣 Fig.9 Standard confusion matrix of fault classification results
為了解決兩種常用池化方式的缺點(diǎn),本文提出了一種用步長為2的小尺度卷積層代替常用池化層進(jìn)行降采樣的改進(jìn)DCNN。運(yùn)用改進(jìn)DCNN和其他深度卷積神經(jīng)網(wǎng)絡(luò)在實(shí)驗(yàn)室變轉(zhuǎn)速多軸承數(shù)據(jù)集上進(jìn)行測(cè)試,得到結(jié)論如下。
(1)本文提出的方法相比最大池化有更多神經(jīng)元處于激活狀態(tài),并且擴(kuò)展了神經(jīng)元活性值的區(qū)間。最后一個(gè)池化層神經(jīng)元活性值的熵從2.46 bit提高到4.07 bit,增加了神經(jīng)元活性值的多樣性,完善了最大池化和平均池化的缺點(diǎn)。
(2)在變轉(zhuǎn)速多軸承數(shù)據(jù)集上分別對(duì)使用了小尺度卷積池化的改進(jìn)DCNN和其他深度卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行測(cè)試,結(jié)果表明,提出的改進(jìn)DCNN不僅擁有更高的故障識(shí)別精度和穩(wěn)定性,還將訓(xùn)練網(wǎng)絡(luò)所用時(shí)間減少了40%以上。
(3)由提出的改進(jìn)DCNN在測(cè)試集進(jìn)行故障診斷的標(biāo)準(zhǔn)混淆矩陣觀察到,5類滾動(dòng)軸承均分到了正確的類別,說明提出的改進(jìn)DCNN在變轉(zhuǎn)速滾動(dòng)軸承的故障診斷中基本滿足工程需求。