于錦錦 薛雁 劉翠 陳蕾
[摘要]目的 探究大鼠蒼白球大麻素對(duì)運(yùn)動(dòng)行為的影響及受體機(jī)制。方法 將70只大鼠隨機(jī)分為10組,單側(cè)或雙側(cè)蒼白球分別微量注射含二甲基亞砜(DMSO)的人工腦脊液、人工合成大麻素WIN 55,212-2、大麻素1型受體阻斷劑AM 251、大麻素2型受體阻斷劑AM 630、WIN 55,212-2+AM 251、WIN 55,212-2+AM 630。采用爬桿實(shí)驗(yàn)和提升軀體搖擺實(shí)驗(yàn)觀察大麻素對(duì)正常大鼠運(yùn)動(dòng)行為的影響。結(jié)果 雙側(cè)蒼白球微量注射藥物后,WIN 55,212-2組大鼠爬桿時(shí)間較對(duì)照組明顯縮短(F=9.436,t=4.941,P<0.01);與WIN 55,212-2組相比,聯(lián)合給予AM 251和WIN 55,212-2可明顯阻斷WIN 55,212-2對(duì)正常大鼠爬桿時(shí)間的影響(t=3.565,P<0.05),而聯(lián)合給予AM 630和WIN 55,212-2不能阻斷WIN 55,212-2的效應(yīng)(t=0.514,P>0.05)。單側(cè)蒼白球微量注射WIN 55,212-2可引起大鼠明顯的對(duì)側(cè)搖擺(Z=3.641,P<0.01);聯(lián)合給予AM 251和WIN 55,212-2可明顯阻斷WIN 55,212-2誘導(dǎo)的對(duì)側(cè)搖擺(Z=3.416,P<0.01),然而這一效應(yīng)并沒(méi)有被AM 630阻斷(Z=0.764,P>0.05)。結(jié)論 蒼白球給予人工合成大麻素WIN 55,212-2可通過(guò)激活大麻素1型受體增強(qiáng)正常大鼠的運(yùn)動(dòng)行為。
[關(guān)鍵詞]蒼白球;大麻酚類;運(yùn)動(dòng)活動(dòng);受體,大麻酚,CB1;大鼠
[中圖分類號(hào)]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0178-04
[ABSTRACT]Objective To investigate the effect of intrapallidal cannabinoid on motor behavior of rats and the related receptor mechanism.?Methods A total of 70 rats were randomly divided into ten groups, and the globus pallidus at unilateral or bilateral sides was given microinjection of artificial cerebrospinal fluid containing dimethyl sulfoxide, WIN 55,212-2 (synthetic cannabinoid), AM 251 (cannabinoid receptor type 1 antagonist), AM 630 (cannabinoid receptor type 2 antagonist), WIN 55,212-2+AM 251, or WIN 55,212-2+AM 630. The pole test and the elevated body swing test were used to observe the effect of cannabinoid on the motor behavior of normal rats.?Results After the microinjection of drugs into the globus pallidus at bilateral sides, the WIN 55,212-2 group had a significant reduction in the time to reach the floor compared with the control group (F=9.436,t=4.941,P<0.01), and compared with the WIN 55,212-2 group, the administration of AM 251 and WIN 55,212-2 significantly blocked the influence of WIN 55,212-2 on the time to reach the floor (t=3.565,P<0.05), while the administration of AM 630 and WIN 55,212-2 did not block the influence of WIN 55,212-2 (t=0.514,P>0.05). The microinjection of WIN 55,212-2 into the globus pallidus at unilateral side induced significant contralateral-biased swing in rats (Z=3.641,P<0.01), and the administration of AM 251 and WIN 55,212-2 significantly blocked the contralateral-biased swing induced by WIN 55,212-2 (Z=3.416,P<0.01), while such effect was not blocked by AM 630 (Z=0.764,P>0.05).?Conclusion Administration of the synthetic cannabinoid WIN 55,212-2 into the globus pallidus enhances the motor behavior of normal rats by activating cannabinoid receptor type 1.
[KEY WORDS]globus pallidus; cannabinoids; motor activity; receptor, cannabinoid, CB1; rats
20世紀(jì)60年代鑒定出大麻的主要活性成分為△9-四氫大麻酚(△9-THC)[1],而內(nèi)源性大麻素(eCBs)是由人類或動(dòng)物自身合成的類似天然大麻素的生物活性物質(zhì)[2]。內(nèi)源性大麻素系統(tǒng)(ECS)主要由配體、受體以及配體的合成和降解酶組成。配體主要包括2-花生四烯基甘油(2-AG)[3]和花生四烯基乙醇酰胺(AEA)[4],二者的三維構(gòu)象均類似于△9-THC,人體內(nèi)2-AG的含量遠(yuǎn)高于AEA,2-AG的基礎(chǔ)水平是AEA的千倍[5-6]。大麻素1型受體(CB1R)[7]和大麻素2型受體(CB2R)[8]是eCBs作用的主要受體,均為Gi/o蛋白耦聯(lián)受體。CB1R是大腦中表達(dá)最廣泛的G蛋白耦聯(lián)受體[9],而CB2R主要分布在免疫系統(tǒng)[3, 10],在腦內(nèi)神經(jīng)元中有少量表達(dá)[11-12]。大量的研究結(jié)果表明,eCBs在食欲、成癮、痛覺(jué)、情緒、習(xí)慣養(yǎng)成、學(xué)習(xí)與記憶、獎(jiǎng)賞與動(dòng)機(jī)行為等方面發(fā)揮重要生理功能[2,13]。解剖學(xué)研究發(fā)現(xiàn),CB1R在基底神經(jīng)核中廣泛分布,提示eCBs參與運(yùn)動(dòng)調(diào)控[14]。有文獻(xiàn)報(bào)道,CB1R敲除小鼠轉(zhuǎn)輪運(yùn)動(dòng)減少[15]。蒼白球是基底神經(jīng)核重要的組成部分,其神經(jīng)纖維可投射到基底神經(jīng)核幾乎所有核團(tuán),起著重要的運(yùn)動(dòng)調(diào)節(jié)功能[16]。大量研究證實(shí),CB1R在蒼白球中的表達(dá)尤為豐富[17-18],但蒼白球大麻素系統(tǒng)對(duì)正常大鼠運(yùn)動(dòng)行為的調(diào)控及其受體機(jī)制尚不清楚。因此,本研究采用爬桿實(shí)驗(yàn)和提升軀體搖擺實(shí)驗(yàn)等行為學(xué)方法,探討蒼白球給予人工合成大麻素WIN 55,212-2對(duì)正常大鼠運(yùn)動(dòng)行為的影響及受體機(jī)制?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物 體質(zhì)量220~300 g健康雄性Wistar大鼠,由濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司提供。大鼠飼養(yǎng)在室溫(23±1)℃、濕度50%~55%、12 h-12 h晝夜交替光照條件下,自由飲水和進(jìn)食。
1.1.2 實(shí)驗(yàn)藥品 人工合成大麻素WIN 55,212-2購(gòu)自于Tocris公司,CB1R選擇性拮抗劑AM 251、CB2R選擇性拮抗劑AM 630購(gòu)于Sigma公司。使用時(shí),用二甲基亞砜(DMSO)溶解,人工腦脊液稀釋至10 μmol/L。
1.2 實(shí)驗(yàn)方法
1.2.1 實(shí)驗(yàn)分組 將70只正常大鼠隨機(jī)分為10組。其中6組大鼠進(jìn)行爬桿實(shí)驗(yàn),雙側(cè)蒼白球分別微量注射以下藥物:①人工腦脊液(含有DMSO);②WIN 55,212-2;③AM 251;④AM 630;⑤AM 251+WIN 55,212-2;⑥AM 630+WIN 55,212-2。另外4組大鼠進(jìn)行提升軀體搖擺實(shí)驗(yàn),單側(cè)蒼白球分別微量注射以下藥物:①人工腦脊液(其中含有DMSO);②WIN 55,212-2;③AM 251+WIN 55,212-2;④AM 630+WIN 55,212-2。
1.2.2 雙側(cè)蒼白球套管埋置 用80 g/L水合氯醛(0.2 g/kg)麻醉后,將大鼠俯臥位固定于腦立體定位儀上,在頭部正中位置做縱向切口,將骨膜剝離干凈,充分暴露前后囟,調(diào)節(jié)鼻夾高度使前后囟處于同一水平面。參考大鼠腦圖譜確定蒼白球位置:前囟后1.0 mm,旁開(kāi)3.0 mm,顱骨表面下5.0 mm。在該坐標(biāo)處用牙科鉆各鉆一個(gè)小孔,將外徑0.6 mm、內(nèi)徑0.4 mm、長(zhǎng)度11.0 mm的自制不銹鋼管置入蒼白球上方,并用自凝牙托粉固定套管。術(shù)后連續(xù)3 d注射8萬(wàn)單位青霉素防止感染。套管埋置后恢復(fù)5 d進(jìn)行運(yùn)動(dòng)行為學(xué)實(shí)驗(yàn)。行為學(xué)實(shí)驗(yàn)結(jié)束后通過(guò)組織學(xué)檢查確定注藥位置是否在蒼白球。
1.2.3 爬桿實(shí)驗(yàn) 爬桿實(shí)驗(yàn)用于測(cè)試動(dòng)物的運(yùn)動(dòng)功能[19]。不銹鋼桿高100.0 cm,直徑2.5 cm,桿的頂端裝有小球,為保證桿表面粗糙,用膠布將小球及桿包裹起來(lái)。行大鼠蒼白球微量注射藥物(每側(cè)0.5 μL)后,將其頭朝上置于桿頂部位置,測(cè)試并記錄大鼠爬下的時(shí)間。實(shí)驗(yàn)前讓大鼠進(jìn)行爬桿訓(xùn)練1次,實(shí)驗(yàn)時(shí)連續(xù)測(cè)定5次(每次測(cè)試間隔不超過(guò)30 s),取平均值。
1.2.4 提升軀體搖擺實(shí)驗(yàn) 篩選沒(méi)有偏轉(zhuǎn)傾向的大鼠進(jìn)行雙側(cè)埋管后恢復(fù)5 d,單側(cè)(隨機(jī)左側(cè)或右側(cè))注射藥物進(jìn)行實(shí)驗(yàn)。將大鼠放入大鼠籠里適應(yīng)10~20 min,捏住距尾根2.0 cm處提起大鼠,使其頭朝下鼻尖距箱底2.0 cm,觀察并記錄提尾10次中大鼠頭部左右偏轉(zhuǎn)方向及次數(shù),計(jì)算左右搖擺的百分率。大鼠頭部偏離垂直位角度大于10°認(rèn)定為搖擺行為。
1.3 統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)以x2±s形式表示,大鼠爬桿時(shí)間的比較采用單因素方差分析,事后檢驗(yàn)采用Bonferroni法;搖擺百分率的比較采用Kruskal-Wallis檢驗(yàn),組間兩兩比較采用Mann-Whitney檢驗(yàn)。
2 結(jié) 果
2.1 蒼白球微量注射WIN 55,212-2對(duì)大鼠爬桿時(shí)間的影響
爬桿實(shí)驗(yàn)結(jié)果顯示,對(duì)照組(n=6)、WIN 55,212-2組(n=6)、AM 251組(n=6)、AM 630組(n=6)、AM 251+WIN 55,212-2組(n=9)和AM630+WIN 55,212-2組(n=6)大鼠爬桿時(shí)間分別為(7.16±0.64)、(4.29±0.52)、(6.45±0.34)、(5.81±0.17)、(6.18±0.29)、(3.99±0.30)s。6組大鼠爬桿時(shí)間差異具有統(tǒng)計(jì)學(xué)意義(F=9.436,P<0.01)。組間兩兩比較,WIN 55,212-2組大鼠爬桿時(shí)間較對(duì)照組顯著縮短(t=4.941,P<0.01);與WIN 55,212-2組相比較,AM 251+WIN 55,212-2組大鼠爬桿時(shí)間顯著延長(zhǎng)(t=3.565,P<0.05),而AM 630+WIN 55,212-2組大鼠爬桿時(shí)間無(wú)明顯變化(t=0.514,P>0.05)。提示蒼白球給予WIN 55,212-2可通過(guò)激活CB1R增加大鼠運(yùn)動(dòng)行為。
2.2 蒼白球微量注射WIN 55,212-2對(duì)大鼠提升軀體搖擺行為的影響
提升軀體搖擺實(shí)驗(yàn)結(jié)果顯示,對(duì)照組(n=9)、WIN 55,212-2組(n=9)、AM 251+WIN 55,212-2組(n=6)和AM 630+WIN 55,212-2組(n=6)大鼠的對(duì)側(cè)搖擺率分別為(50.00±2.36)%、(80.00±2.89)%、(50.00±2.18)%和(83.33± 2.11)%。單側(cè)蒼白球微量注射的4組間比較,差異具有統(tǒng)計(jì)學(xué)意義(H=39.830,P<0.01)。與對(duì)照組相比,WIN 55,212-2組大鼠出現(xiàn)明顯的對(duì)側(cè)搖擺行為(Z=3.641,P<0.01);聯(lián)合給予AM 251和WIN 55,212-2可明顯阻斷WIN 55,212-2誘導(dǎo)的對(duì)側(cè)搖擺行為(Z=3.416,P<0.01),而聯(lián)合給予AM 630和WIN 55,212-2則未能阻斷大鼠對(duì)側(cè)搖擺行為(Z=0.764,P>0.05)。
3 討 論
大麻素受體廣泛分布于中樞神經(jīng)系統(tǒng),對(duì)運(yùn)動(dòng)行為產(chǎn)生重要影響。有文獻(xiàn)報(bào)道,CB1R敲除的小鼠轉(zhuǎn)輪活動(dòng)減少,包括跑步距離、跑步時(shí)間和最大跑步速度均下降[15]。小鼠腹腔注射CB1R拮抗劑SR141716得到相似結(jié)果,小鼠跑步距離和速度呈劑量依賴性下降[20]。WIN 55,212-2是人工合成大麻素[21],通過(guò)激活CB1R和CB2R產(chǎn)生多種效應(yīng),如抑制γ-氨基丁酸(GABA)釋放[22-23]。蒼白球表達(dá)高水平的大麻素受體。爬桿實(shí)驗(yàn)和提升軀體搖擺實(shí)驗(yàn)是評(píng)估動(dòng)物運(yùn)動(dòng)行為的有效方法[19],本研究采用此兩種方法觀察蒼白球微量注射WIN 55,212-2對(duì)正常大鼠運(yùn)動(dòng)行為的調(diào)控及其受體機(jī)制。爬桿實(shí)驗(yàn)結(jié)果顯示,雙側(cè)蒼白球微量注射WIN 55,212-2的大鼠爬桿時(shí)間明顯縮短;提升軀體搖擺實(shí)驗(yàn)結(jié)果顯示,單側(cè)蒼白球微量注射WIN 55,212-2的大鼠出現(xiàn)明顯的對(duì)側(cè)搖擺行為。上述研究結(jié)果提示,蒼白球給予WIN 55,212-2可增強(qiáng)正常大鼠運(yùn)動(dòng)行為。WIN 55,212-2可非選擇性激活CB1R和CB2R。
本研究進(jìn)一步聯(lián)合給予WIN 55,212-2和選擇性CB1R阻斷劑或CB2R阻斷劑,觀察蒼白球WIN 55,212-2調(diào)控運(yùn)動(dòng)的受體機(jī)制。實(shí)驗(yàn)結(jié)果顯示,蒼白球聯(lián)合給予CB1R阻斷劑AM 251可阻斷WIN 55,212-2對(duì)正常大鼠運(yùn)動(dòng)行為的增強(qiáng)效應(yīng),而聯(lián)合給予CB2R阻斷劑AM 630則不能阻斷WIN 55,212-2對(duì)運(yùn)動(dòng)的調(diào)控作用,提示蒼白球給予WIN 55,212-2主要通過(guò)CB1R發(fā)揮增強(qiáng)大鼠運(yùn)動(dòng)行為的作用。早期的行為學(xué)研究也揭示,單側(cè)蒼白球、紋狀體或黑質(zhì)網(wǎng)狀帶注射CB1R激動(dòng)劑CP55,940可能通過(guò)非多巴胺機(jī)制改善帕金森病模型動(dòng)物運(yùn)動(dòng)障礙[24]。
眾所周知,蒼白球是基底神經(jīng)核功能環(huán)路的關(guān)鍵核團(tuán),起著重要的運(yùn)動(dòng)調(diào)節(jié)功能[25]?;咨窠?jīng)核主要通過(guò)直接通路和間接通路調(diào)節(jié)機(jī)體的隨意運(yùn)動(dòng)、肌緊張等。直接通路是紋狀體表達(dá)多巴胺D1受體的中型多棘GABA能神經(jīng)元與基底神經(jīng)核輸出核團(tuán)(蒼白球內(nèi)側(cè)段/黑質(zhì)網(wǎng)狀帶)的單突觸聯(lián)系。間接通路則來(lái)源于紋狀體表達(dá)D2受體的中型多棘GABA能神經(jīng)元,通過(guò)蒼白球和丘腦底核發(fā)生神經(jīng)纖維聯(lián)系,再由丘腦底核發(fā)出谷氨酸能投射纖維至基底神經(jīng)核輸出核團(tuán)。這些輸出核團(tuán)發(fā)出抑制性GABA能神經(jīng)纖維投射到丘腦的外側(cè)腹核和前腹核,進(jìn)而投射至大腦皮質(zhì)運(yùn)動(dòng)前區(qū),形成一個(gè)神經(jīng)回路。直接通路提高大腦皮質(zhì)的興奮性,而間接通路作用相反,兩者相互協(xié)調(diào)、相互制約[26]。如果位于間接通路的蒼白球神經(jīng)元興奮性增加,通過(guò)其發(fā)出的GABA能神經(jīng)纖維就抑制丘腦底核,降低基底神經(jīng)核輸出核團(tuán)的興奮性,從而解除其對(duì)丘腦和大腦皮質(zhì)運(yùn)動(dòng)區(qū)的抑制效應(yīng),增強(qiáng)機(jī)體運(yùn)動(dòng)。本研究觀察到,蒼白球給予WIN 55,212-2可增強(qiáng)正常大鼠運(yùn)動(dòng)行為,提示W(wǎng)IN 55,212-2通過(guò)激活CB1R增加蒼白球神經(jīng)元興奮性。有文獻(xiàn)報(bào)道,CB1R在腦內(nèi)主要分布在突觸前末梢,可抑制GABA釋放[22-23]。蒼白球接受大量來(lái)自紋狀體神經(jīng)元軸突末梢以及蒼白球神經(jīng)元軸突側(cè)支的GABA能神經(jīng)纖維支配。我們推測(cè),蒼白球給予WIN 55,212-2可能通過(guò)激活突觸前末梢的CB1R,減少GABA釋放,增加蒼白球神經(jīng)元興奮性,進(jìn)而發(fā)揮其對(duì)運(yùn)動(dòng)的調(diào)控效應(yīng)。
綜上所述,蒼白球微量注射人工合成大麻素WIN 55,212-2可通過(guò)激活CB1R增強(qiáng)正常大鼠運(yùn)動(dòng)行為。本實(shí)驗(yàn)結(jié)果為腦內(nèi)大麻素系統(tǒng)在運(yùn)動(dòng)調(diào)控中的作用研究提供了一定的實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]MECHOULAM R, GAONI Y, HASHISH I V. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids[J]. Tetrahedron, 1965,21(5):1223-1229.
[2]CHANDA D, NEUMANN D, GLATZ J F C. The endocanna-]binoid system: overview of an emerging multi-faceted thera-peutic target[J]. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 2019,140:51-56.
[3]MECHOULAM R, BEN-SHABAT S, HANUS L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors[J]. Biochemical Pharmacology, 1995,50(1):83-90.
[4]DEVANE W A, HANUS L, BREUER A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor[J]. Science, 1992,258(5090):1946-1949.
[5]DI MARZO V, DE PETROCELLIS L. Why do cannabinoid receptors have more than one endogenous ligand[J]? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012,367(1607):3216-3228.
[6]MURATAEVA N, STRAIKER A, MACKIE K. Parsing the players:2-arachidonoylglycerol synthesis and degradation in the CNS[J]. British Journal of Pharmacology, 2014,171(6):1379-1391.
[7]MATSUDA L A, LOLAIT S J, BROWNSTEIN M J, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA[J]. Nature, 1990,346(6284):561-564.
[8]MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature, 1993,365(6441):61-65.
[9]KANO M, OHNO-SHOSAKU T, HASHIMOTODANI Y, et al. Endocannabinoid-mediated control of synaptic transmission[J]. Physiological Reviews, 2009,89(1):309-380.
[10]SPINELLI F, CAPPARELLI E, ABATE C, et al. Perspectives of cannabinoid type 2 receptor (CB2R) ligands in neurodegenerative disorders: structure-affinity relationship (SAfiR) and structure-activity relationship (SAR) studies[J]. Journal of Medicinal Chemistry, 2017,60(24):9913-9931.
[11]WU Q, WANG H. The spatiotemporal expression changes of CB2R in the Hippocampus of rats following pilocarpine-induced status epilepticus[J]. Epilepsy Research, 2018,148:8-16.
[12]SNCHEZ-ZAVALETA R, CORTS H, AVALOS-FUENTES J A, et al. Presynaptic cannabinoid CB2 receptors modulate [3H]-Glutamate release at subthalamo-nigral terminals of the rat[J]. Synapse (New York, N Y), 2018,72(11):e22061.
[13]AYMERICH M S, ASO E, ABELLANAS M A, et al. Cannabinoid pharmacology/therapeutics in chronic degenerative di-sorders affecting the central nervous system[J]. Biochemical Pharmacology, 2018,157:67-84.
[14]FERNANDEZ-RUIZ J. The endocannabinoid system as a target for the treatment of motor dysfunction[J]. Br J Pharmacol, 2009,156(7):1029-1040.
[15]DUBREUCQ S, KOEHL M, ABROUS D N, et al. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis[J]. Experimental Neurology, 2010,224(1):106-113.
[16]HEGEMAN D J, HONG E S, HERNANDEZ V M, et al. The external globus pallidus: progress and perspectives[J]. Eur J Neurosci, 2016,43(10):1239-1265.
[17]WONG D F, KUWABARA H, HORTI A G, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR[J]. NeuroImage, 2010,52(4):1505-1513.
[18]CORIA S M, ROURA-MARTNEZ D, UCHA M, et al. Strain differences in the expression of endocannabinoid genes and in cannabinoid receptor binding in the brain of Lewis and Fischer 344 rats[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014,53:15-22.
[19]HAMAUE N, OGATA A, TERADO M, et al. Brain catecholamine alterations and pathological features with aging in Parkinson disease model rat induced by Japanese encephalitis virus[J]. Neurochemical Research, 2006,31(12):1451-1455.
[20]KEENEY B K, RAICHLEN D A, MEEK T H, et al. Diffe-rential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behaviour[J]. Behav Pharmacol, 2008,19(8):812-820.
[21]SREEVALSAN S, SAFE S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells[J]. Molecular Cancer Therapeutics, 2013,12(11):2483-2493.
[22]ARAQUE A, CASTILLO P E, MANZONI O J, et al. Synaptic functions of endocannabinoid signaling in health and disease[J]. Neuropharmacology, 2017,124:13-24.
[23]WALLMICHRATH I, SZABO B. Cannabinoids inhibit st-riatonigral GABAergic neurotransmission in the mouse[J]. Neuroscience, 2002,113(3):671-682.
[24]SAUDO-PEA M C, PATRICK S L, KHEN S, et al. Cannabinoid effects in basal ganglia in a rat model of Parkinsons disease[J]. Neuroscience Letters, 1998,248(3):171-174.
[25]GOLDBERG J A, BERGMAN H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction[J]. Neuroscience, 2011,198:171-192.
[26]NAMBU A, TOKUNO H, TAKADA M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect pathway[J]. Neuroscience Research, 2002,43(2):111-117.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期