遲曉琦 李浩然 吳雪 張文秀 韓曉華
[摘要]目的 探討血管緊張素Ⅱ(AngⅡ)對大鼠血管平滑肌細胞(VSMCs)鈣激活氯通道ANO1蛋白表達的影響及其受體機制。方法 用不同濃度(1、10、100、500、1 000 nmol/L)AngⅡ處理VSMCs 24 h或用100 nmol/L AngⅡ處理VSMCs不同時間(1、6、12、24、48 h),觀察AngⅡ?qū)NO1表達的影響。AngⅡ處理(100 nmol/L,24 h)前分別加入血管緊張素Ⅰ型受體(AT1R)阻斷劑氯沙坦鉀(LP)和血管緊張素Ⅱ型受體(AT2R)阻斷劑PD123319(PD),進一步探討AngⅡ作用的受體機制。以組織貼塊法進行大鼠VSMCs的原代培養(yǎng),采用Western blot法檢測ANO1蛋白表達水平。結(jié)果 與對照組相比,以10~1 000 nmol/L AngⅡ處理24 h可明顯提高細胞中ANO1蛋白表達水平,其中以100 nmol/L AngⅡ的作用最為顯著(F=18.56,P<0.01);與對照組相比較,以100 nmol/L AngⅡ處理12~48 h可顯著上調(diào)細胞中ANO1蛋白的表達(F=10.84,P<0.01)。AT1R阻斷劑LP可完全阻斷AngⅡ誘導的ANO1表達(F=9.68,P<0.05),而AT2R阻斷劑PD無此作用。結(jié)論 AngⅡ以濃度和時間依賴性的方式顯著上調(diào)VSMCs中ANO1蛋白的表達,該作用是通過AngⅡ與AT1R結(jié)合而實現(xiàn)的。
[關(guān)鍵詞]血管緊張素Ⅱ;肌細胞,平滑肌;氯化物通道;ANO1;受體,血管緊張素;大鼠
[中圖分類號]R329.25;R544
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0214-04
[ABSTRACT]Objective To investigate the effect of angiotensin Ⅱ (AngⅡ) on the expression of anoctamin 1 (ANO1) in rat vascular smooth muscle cells (VSMCs) and its receptor mechanism.?Methods VSMCs were treated with different concentrations of AngⅡ (1, 10, 100, 500, and 1 000 nmol/L) for 24 h or were treated with 100 nmol/L AngⅡ for different durations (1, 6, 12, 24, and 48 h), and the effect of AngⅡ on the expression of ANO1 was observed. The angiotensin Ⅱ type 1 receptor (AT1R) antagonist losartan potassium (LP) or the angiotensin Ⅱ type 2 receptor (AT2R) antagonist PD123319 (PD) was added before the treatment with 100 nmol/L AngⅡ for 24 h to further explore the receptor mechanism of AngⅡ. The tissue patch me-thod was used for the primary culture of rat VSMCs, and Western blot was used to measure the protein expression level of ANO1.Results Compared with the control group, the cells treated with 10-1 000 nmol/L AngⅡ for 24 h showed a significant increase in the protein expression level of ANO1, and 100 nmol/L AngⅡ showed the most significant effect (F=18.56,P<0.01). Compared with the control group, the cells treated with 100 nmol/L AngⅡ for 12-48 h had a significant increase in the protein expression of ANO1 (F=10.84,P<0.01). The AT1R antagonist LP completely blocked the expression of ANO1 induced by AngⅡ (F=9.68,P<0.05), while the AT2R antagonist PD had no such effect.?Conclusion AngⅡ significantly upregulates the protein expression of ANO1 in VSMCs in a concentration- and time-dependent manner, possibly by binding to AT1R.
[KEY WORDS]angiotensin Ⅱ; myocytes, smooth muscle; chloride channels; ANO1; receptors, angiotensin; rats
高血壓是一種以血壓持續(xù)升高為主要臨床表現(xiàn)的心血管疾病,具有很高的發(fā)病率和致殘率[1-3]。長期的高血壓會導致血管結(jié)構(gòu)和功能的改變,即血管重構(gòu)[4],而后者是導致高血壓重要靶器官(如心、腦、腎等)損傷的關(guān)鍵病理生理學基礎[5]。腎素-血管緊張素系統(tǒng)(RAS)對心血管功能具有重要的調(diào)節(jié)作用[6]。血管緊張素Ⅱ(AngⅡ)是RAS的主要活性成分,可以通過誘導血管收縮和外周血管阻力增加
升高血壓;此外,AngⅡ?qū)ρ芷交〖毎╒SMCs)具有重要的調(diào)節(jié)作用,可通過促進VSMCs的增殖、遷移和血管外基質(zhì)分泌等作用,促進血管重構(gòu)的發(fā)生[7-8]。在自發(fā)性高血壓大鼠(SHR)血漿和心血管組織中AngⅡ水平明顯升高,提示AngⅡ可能是促進高血壓形成和發(fā)展的重要因素[9]。
ANO1是2008年發(fā)現(xiàn)的鈣激活氯通道,在心血管系統(tǒng)中有廣泛的表達[10-11]。ANO1參與血管舒縮功能的調(diào)節(jié)已有較多報道[12-14],這可能是由于ANO1激活導致VSMCs內(nèi)Cl-外流和膜除極,進而激活細胞膜電壓依從性鈣通道,觸發(fā)胞外鈣內(nèi)流和血管收縮,但是ANO1和血管重構(gòu)的關(guān)系報道較少。有研究發(fā)現(xiàn),ANO1參與了腎型高血壓大鼠大腦中動脈血管重構(gòu)的形成[15]; ANO1能通過血管重構(gòu)促進肺動脈高壓(PH)的形成[16];在野百合堿和低氧誘導的大鼠PH模型中,ANO1被證實是肺動脈VSMCs的鈣激活氯通道,且高表達的ANO1通過促進血管收縮和血管重構(gòu)參與PH的形成[14]。WANG等[17]的研究結(jié)果表明,ANO1在SHR的血管組織和VSMCs中均呈高表達,并參與了SHR高血壓的形成,但是誘導ANO1高表達的因素并未被闡明。根據(jù)前期研究,我們推測AngⅡ可能通過促進VSMCs的ANO1蛋白表達,參與對VSMCs功能調(diào)控。因此,本實驗利用原代培養(yǎng)的大鼠胸主動脈VSMCs,觀察AngⅡ上調(diào)ANO1表達的量-效和時-效關(guān)系,并進一步探討AngⅡ作用的受體機制。
1 材料與方法
1.1 試劑與儀器
AngⅡ、血管緊張素Ⅰ型受體(AT1R)阻斷劑氯沙坦鉀(LP)和血管緊張素Ⅱ型受體(AT2R)阻斷劑PD123319(PD)由ApexBio公司提供,ANO1抗體購自Abcam公司,β-actin抗體購自北京博奧森公司,DMEM高糖培養(yǎng)粉購自Gibco公司,胎牛血清購自美國BI公司,BCA蛋白檢測試劑盒購自Thermo公司,RIPA裂解液由碧云天生物科技研究所提供,其他試劑均為國產(chǎn)分析純。實驗儀器包括CO2培養(yǎng)箱、無菌超凈工作臺、Eppendorf高速離心機、SpectraMax M5多功能酶標儀、微量分析天平以及Western顯影儀等。
1.2 VSMCs的原代培養(yǎng)
實驗選用體質(zhì)量80~100 g的Wistar大鼠,采用組織貼塊法進行VSMCs的原代培養(yǎng)[18-20]。大鼠以80 g/L水合氯醛(400 mg/kg)腹腔注射麻醉后,用體積分數(shù)0.75的乙醇消毒,迅速剝離胸主動脈,轉(zhuǎn)移到提前加入培養(yǎng)液的預冷玻璃皿中,清理血管內(nèi)的血液及血管外筋膜,輕輕刮去內(nèi)皮,將血管條剪成約1 mm3的小塊,鋪于培養(yǎng)瓶底部,加入含體積分數(shù)0.20胎牛血清的DMEM培養(yǎng)液4 mL,垂直放入CO2培養(yǎng)箱中,靜置4~5 h后翻瓶,培養(yǎng)約1周后VSMCs在血管塊周圍長出,選5~8代細胞進行后續(xù)實驗。
1.3 實驗分組
實驗1將VSMCs分為對照組(加入無血清培養(yǎng)液處理)和AngⅡ組(分別加入1、10、100、500、1 000 nmol/L AngⅡ),處理24 h后觀察AngⅡ?qū)NO1蛋白表達的影響。實驗2分為對照組(加無血清培養(yǎng)液)和AngⅡ組(加入100 nmol/L AngⅡ),觀察AngⅡ作用不同時間(1、6、12、24、48 h)對ANO1蛋白表達的影響。實驗3分為對照組(加無血清培養(yǎng)液)、AngⅡ組(加100 nmol/L AngⅡ作用24 h)、AngⅡ+LP組(AngⅡ處理前加入1 μmol/L LP)、AngⅡ+PD組(AngⅡ處理前加入1 μmol/L PD),觀察AngⅡ受體阻斷劑對ANO1蛋白表達的影響。
1.4 Western blot檢測
藥物處理結(jié)束后以RIPA裂解液提取蛋白,用BCA法檢測蛋白濃度。樣品均以20 μg蛋白上樣,經(jīng)SDS-PAGE電泳后轉(zhuǎn)移至PVDF膜上,加100 g/L脫脂奶粉在室溫下?lián)u床慢搖封閉60~120 min,分別加入ANO1(1∶1 000)和β-actin(1∶10 000)一抗,在4 ℃搖床上孵育過夜。用TBST洗膜3次后,加入二抗,在室溫下?lián)u床慢搖孵育1 h,TBST再洗膜3次后,用ECL發(fā)光液顯影。用Image J軟件分析條帶的灰度值,結(jié)果以ANO1/β-actin比值表示。實驗重復3~4次,取平均值。
1.5 統(tǒng)計學分析
應用GraphPad Prism 5.0軟件進行統(tǒng)計學處理。結(jié)果以x2±s表示,多組均數(shù)比較采用單因素方差分析(one-way analysis of variance, ANOVA),繼以Tukeys多重對比法進行兩兩比較。以P<0.05認為差異有統(tǒng)計學意義。
2 結(jié) 果
2.1 不同濃度AngⅡ?qū)NO1蛋白表達的影響
對照組ANO1蛋白表達水平為0.78±0.02,以1、10、100、500、1 000 nmol/L AngⅡ處理細胞24 h后,ANO1蛋白表達水平分別升高至0.85±0.05、0.92±0.03、1.14±0.10、0.95±0.02和0.91±0.02(n=3,F(xiàn)=18.56,P<0.01)。在各濃度組中,以10、100和500 nmol/L AngⅡ組的改變具有統(tǒng)計學意義(q=4.866~12.820,P<0.01),且以100 nmol/LAngⅡ作用最為顯著(圖1)。
2.2 AngⅡ作用不同時間對ANO1蛋白表達影響
對照組ANO1蛋白表達水平為1.00±0.09,以100 nmol/L AngⅡ處理1、6、12、24、48 h后,ANO1蛋白表達水平分別升高至1.05±0.17、1.28±0.30、1.65±0.28、1.82±0.14和1.58±0.12(n=4,F(xiàn)=10.84,P<0.01),其中AngⅡ作用12、24和48 h后,ANO1蛋白的表達顯著增加(q=5.661~8.053,P<0.01)。見圖2。后續(xù)實驗選用100 nmol/L的AngⅡ處理24 h進行觀察。
2.3 AngⅡ受體阻斷劑對AngⅡ誘導的ANO1蛋白表達的影響
對照組、AngⅡ組、AngⅡ+LP組和AngⅡ+PD組細胞蛋白表達水平分別為1.00±0.19、1.45±0.14、0.95±0.16和1.41±0.06(n=3,F(xiàn)=9.68,P<0.05)。與對照組相比,AngⅡ組ANO1蛋白表達水平升高(q=5.313,P<0.05);與AngⅡ組相比,AngⅡ+LP組ANO1蛋白表達降低至對照組水平(q=5.872,P<0.05),而AngⅡ+PD組ANO1蛋白的表達水平無明顯改變(q=0.452,P>0.05)。結(jié)果提示AT1R阻斷劑LP能夠完全阻斷AngⅡ誘導的ANO1蛋白表達,而AT2R阻斷劑PD則無此作用。見圖3。
3 討 論
AngⅡ是RAS的主要活性物質(zhì)[21],也是公認的誘導高血壓發(fā)生發(fā)展的關(guān)鍵致病因素。系統(tǒng)或血管局部生成的AngⅡ,不僅可以通過誘導血管平滑肌收縮和外周阻力增加升高血壓,還可以通過刺激VSMCs異常增殖、遷移和細胞外基質(zhì)形成,促進高血壓血管重構(gòu)的發(fā)生發(fā)展[8,22]。AngⅡ主要通過結(jié)合AT1R或AT2R發(fā)揮作用[23]。AngⅡ與AT1R結(jié)合后,可激活磷脂酶C(PLC)/三磷酸肌醇(IP3)信號通路,通過肌質(zhì)網(wǎng)內(nèi)鈣釋放,導致胞內(nèi)鈣水平升高,AngⅡ也可以激活AKT、ERK、RhoA/ROCK信號途徑以及升高胞內(nèi)活性氧(ROS)等多條途徑,參與對VSMCs的功能調(diào)控[24]。AngⅡ?qū)T2R的親和力較低,一般認為AngⅡ與AT2R結(jié)合可拮抗其與AT1R結(jié)合所產(chǎn)生的效應[25]。
ANO1是血管平滑肌上的鈣激活氯通道[26],可參與血管功能和血壓的調(diào)節(jié),并且和高血壓的血管重構(gòu)密切相關(guān)。一項針對SHR的研究表明,ANO1在血管組織和原代培養(yǎng)的VSMCs中均高表達,并且參與了SHR高血壓的形成[17]。由于SHR血循環(huán)和血管組織局部RAS過度激活已有報道[9],且WSTEN-VAN ASPEREN等[27]研究發(fā)現(xiàn),AngⅡ能夠增強ANO1依賴性鈣激活氯電流,因此我們推測AngⅡ很可能促進了VSMCs中的ANO1蛋白表達,進而參與AngⅡ?qū)SMCs的功能調(diào)控。
本研究首先利用組織貼塊法進行VSMCs的原代培養(yǎng),然后通過將不同濃度AngⅡ加入VSMCs作用不同時間,觀察AngⅡ?qū)NO1蛋白表達的影響。研究結(jié)果顯示,AngⅡ能夠明顯促進VSMCs的ANO1表達,并且呈明顯的劑量和時間依賴性。而通過利用特異性的血管緊張素受體阻斷劑,本研究進一步明確了AngⅡ上調(diào)ANO1的作用是通過與AT1R結(jié)合而實現(xiàn)的。鈣激活氯通道ANO1是心血管領域的一個新的研究熱點,本研究通過探討AngⅡ?qū)SMCs中ANO1表達的影響及受體機制,為進一步明確ANO1可能參與AngⅡ誘導的VSMCs功能異常提供了前期的實驗依據(jù)。目前,臨床上對高血壓血管重構(gòu)的預防和治療效果并不理想,而對ANO1的深入研究,可能為高血壓血管重構(gòu)的防治提供新的思路。
[參考文獻]
[1]ST PAUL A, CORBETT C B, OKUNE R, et al. Angiotensin Ⅱ, hypercholesterolemia, and vascular smooth muscle cells: a perfect trio for vascular pathology[J]. International Journal of Molecular Sciences, 2020,21(12):E4525.
[2]OPARIL S, ACELAJADO M C, BAKRIS G L, et al. Hypertension[J]. Nature Reviews Disease Primers, 2018,4:18014.
[3]VIERA A J. Hypertension update: current guidelines[J]. FP Essentials, 2018,469:11-15.
[4]ZHANG C J, SHI Y N, LIAO D F, et al. Molecular mechanism of vascular remodeling in hypertension and Chinese medicine intervention[J]. Acta Physiologica Sinica, 2019,71(2):235-247.
[5]GAO Y, CHEN G, TIAN H M, et al. Prevalence of hypertension in China: a cross-sectional study[J]. PLoS One, 2013,8(6):e65938.
[6]MCKINNEY C A, FATTAH C, LOUGHREY C M, et al. Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling[J]. Clinical Science (London, England), 2014,126(12):815-827.
[7]BORGHI C, URSO R, CICERO A F. Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia[J]. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2017,27(2):115-120.
[8]EGUCHI S, KAWAI T, SCALIA R, et al. Understanding angiotensin Ⅱ type 1 receptor signaling in vascular pathophysio-logy[J]. Hypertension (Dallas, Tex:1979), 2018,71(5):804-810.
[9]BATENBURG W W, DE BRUIN R J, VAN GOOL J M, et al. Aliskiren-binding increases the half life of renin and prorenin in rat aortic vascular smooth muscle cells[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008,28(6):1151-1157.
[10]YANG Y D, CHO H, KOO J Y, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008,455(7217):1210-1215.
[11]SCHROEDER B C, CHENG T, JAN Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008,134(6):1019-1029.
[12]HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. The Journal of Clinical Investigation, 2014,124(2):675-686.
[13]DAM V S, BOEDTKJER D M, NYVAD J, et al. TMEM16A knockdown abrogates two different Ca(2+)-activated Cl(-) currents and contractility of smooth muscle in rat mesenteric small arteries[J]. Pflugers Archiv: European Journal of Phy-siology, 2014,466(7):1391-1409.
[14]LEBLANC N, FORREST A S, AYON R J, et al. Molecular and functional significance of Ca(2+)-activated Cl (-) channels in pulmonary arterial smooth muscle[J]. Pulmonary Circulation, 2015,5(2):244-268.
[15]WANG M, YANG H, ZHENG L Y, et al. Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation[J]. Circulation, 2012,125(5):697-707.
[16]FORREST A S, JOYCE T C, HUEBNER M L, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension[J]. American Journal of Physiology Cell Physiology, 2012,303(12):C1229-C1243.
[17]WANG B X, LI C L, HUAI R T, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension[J]. Journal of Mole-cular and Cellular Cardiology, 2015,82:22-32.
[18]HAN Y, SUN H J, TONG Y, et al. Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFκB-mediated NLRP3 expression in spontaneously hypertensive rats[J]. The Journal of Nutritional Biochemistry, 2019,72:108212.
[19]WU N, YE C, ZHENG F, et al. MiR155-5p inhibits cell migration and oxidative stress in vascular smooth muscle cells of spontaneously hypertensive rats[J]. Antioxidants (Basel, Switzerland), 2020,9(3):E204.
[20]LIU H M, JIA Y, ZHANG Y X, et al. Dysregulation of miR-135a-5p promotes the development of rat pulmonary arterial hypertension in vivo and in vitro[J]. Acta Pharmacologica Sinica, 2019,40(4):477-485.
[21]JACKSON L, ELDAHSHAN W, FAGAN S C, et al. Within the brain: the renin angiotensin system[J]. International Journal of Molecular Sciences, 2018,19(3):E876.
[22]DE SOUZA-NETO F P, CARVALHO SANTUCHI M, DE MORAIS E SILVA M, et al. Angiotensin-(1-7) and alamandine on experimental models of hypertension and atherosclerosis[J]. Current Hypertension Reports, 2018,20(2):17.
[23]BALAKUMAR P, JAGADEESH G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology[J]. Cellular Signalling, 2014,26(10):2147-2160.
[24]HIGUCHI S, OHTSU H, SUZUKI H, et al. Angiotensin Ⅱ signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology[J]. Clinical Science (London, England:1979), 2007,112(8):417-428.
[25]YANG J, CHEN C Y, REN H M, et al. Angiotensin Ⅱ AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats[J]. Journal of Hypertension, 2012,30(6):1176-1184.
[26]OH U, JUNG J. Cellular functions of TMEM16/anoctamin[J]. Pflügers Archiv-European Journal of Physiology, 2016,468(3):443-453.
[27]WSTEN-VAN ASPEREN R M, LUTTER R, SPECHT P A, et al.Acute respiratory distress syndrome leads to reduced ra-tio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin Ⅱ receptor antagonist[J]. The Journal of Pathology, 2011,225(4):618-627.
(本文編輯 馬偉平)