宋新海
(中鐵十九局集團(tuán)第五工程有限公司 遼寧大連 116000)
城市地下綜合管廊將通水管道、通信管道、供熱管道、天然氣管道等[1]工程管道集成至地下的隧道之中,并設(shè)置專門的檢查通道以方便檢修,可以保證在不影響交通的情況下對不同的管線管道進(jìn)行維修,為生活及交通提供了極大便利。地下綜合管廊采用盾構(gòu)法施工具有掘進(jìn)速度快、使用方便等特點(diǎn),但盾構(gòu)法施工對巖土體形成擾動(dòng),尤其對于周圍土體的沉降影響較大。目前國內(nèi)外通常使用經(jīng)驗(yàn)公式法[2-3]、數(shù)值分析法[4]、模型試驗(yàn)法[5-6]及神經(jīng)網(wǎng)絡(luò)法[7-8]對盾構(gòu)施工沉降進(jìn)行預(yù)測[9]。段紹偉等[10]利用修正后的Peck公式,對長沙地鐵隧道施工過程中產(chǎn)生的地表沉降值進(jìn)行預(yù)測研究,取得了較好的效果。郭二新[11]利用Peck公式對常州市地鐵隧道施工引起的地表沉降進(jìn)行了相關(guān)研究。Mair等[12]通過對隧道開挖造成的沉降槽進(jìn)行分析研究,得出了沉降槽滿足高斯分布的結(jié)論,并提出黏土地基沉降槽的計(jì)算方法。
本文基于某城市地下綜合管廊項(xiàng)目D1-D2區(qū)間盾構(gòu)隧道的現(xiàn)場監(jiān)測數(shù)據(jù),對Peck公式運(yùn)用最小二乘法進(jìn)行擬合,得出適用于該地區(qū)盾構(gòu)施工的地表沉降槽寬度系數(shù)i和地表沉降最大值Smax的取值范圍,為該地區(qū)相同地質(zhì)條件下盾構(gòu)施工進(jìn)行地表沉降預(yù)測提供參考。
隧道掘進(jìn)過程中引起的斷面沉降,Peck公式認(rèn)為其近似符合正態(tài)分布曲線[9](見圖1),且假定地層損失量Vs與沉降槽體積VL相等。
圖1 隧道地表橫向沉降曲線
橫向地表沉降量預(yù)估公式及最大沉降量計(jì)算公式:
式中:S(x)為距隧道中心軸線x處的地面沉降;Smax為隧道正上方地表最大沉降量;Vs為盾構(gòu)隧道單位長度的地層損失量;i為地表沉降槽寬度;φ為土體內(nèi)摩擦角。
在對數(shù)據(jù)進(jìn)行分析時(shí),常會(huì)對數(shù)據(jù)(xi,yi)(i=0,1,…,m)的關(guān)系進(jìn)行相關(guān)性研究,即對給定的自變量 x及因變量 y進(jìn)行函數(shù)關(guān)系 y=s(x,a0,…,an)(n<m)的擬合,則此時(shí)ai為相關(guān)因子。因數(shù)據(jù)之間誤差的存在,且相關(guān)因子ai的個(gè)數(shù)少于數(shù)據(jù)個(gè)數(shù)(n<m),其與差值問題不同。該類問題的解決,往往不需要所有的數(shù)據(jù)點(diǎn)通過 y =s(x)=s(x,a0,…,an),只需給定的點(diǎn) xi誤差值 δi= s(xi)- yi(i=0,1,…,m)的平方和最小,當(dāng) s(x)∈span{φ ,φ ,…,01φx}時(shí),則有:
此時(shí),φ0(x),φ1(x),…,φx(x)∈C[a,b]為線性無關(guān)函數(shù)群,假設(shè)[a,b]上存在對應(yīng)的數(shù)組{(xi,yi),i=0,1,…,m},a≤xi≤b,和對應(yīng)權(quán)值,其中 ρi>0 為權(quán)系數(shù),為求得使 I(an,a1,…,an)最小的函數(shù) s(x)=span{φ0,φ1,…,φn},則有:
則該方法為最小二乘逼近法,由該方法得到擬合曲線y=s(x),該方法被稱為曲線擬合最小二乘法。式中 I(an,a1,…,an)為 an,a1,…,an的多元函數(shù),若求取I最小值,只需對多元函數(shù)I求取極值,則有:
依據(jù)內(nèi)積定理,引入帶權(quán)內(nèi)積記號,則有:
則公式(6)可表示為:
公式(8)中關(guān)于 a0,a1…an的線性方程組,也可表示為矩陣:
當(dāng){φj(x) j=0,1,…,n}為線性不相關(guān)時(shí),且點(diǎn)集 X = {x0,x1,…,xn}(m≥n)上則最多存在 n 個(gè)不同零點(diǎn),此時(shí) φ0,φ1,…,φn在 X 上滿足 Haar條件,故此矩陣(9)存在唯一解。記為:
則最小二乘法擬合曲線(11):
對Peck曲線進(jìn)行最小二乘法線性回歸分析,可得:
最終得到線性回歸方程:
由式(13)~式(18)可以得到回歸后的 Smax和i,即:
設(shè)R為線性回歸方程的線性相關(guān)系數(shù),則:
當(dāng)Peck曲線具有較高擬合度時(shí),其線性相關(guān)系數(shù)|R|>0.8,即可用 Peck曲線預(yù)測地表沉降;當(dāng)Peck曲線擬合度較低時(shí),其線性相關(guān)系數(shù)|R|<0.3,即該地區(qū)的沉降不適用Peck曲線進(jìn)行預(yù)測;其他情況則為中度相關(guān)。
該城市地下綜合管廊工程,起于和平區(qū)南運(yùn)河文體西路,止于大東區(qū)善鄰路。管廊設(shè)計(jì)采用平行雙洞式建筑結(jié)構(gòu),盾構(gòu)法施工,管廊內(nèi)徑為5.4 m,盾構(gòu)開挖直徑為6.2 m,平均地下埋深為20 m。管廊沿南運(yùn)河附近的道路沿線分布。該工程區(qū)間場地土層主要為中密實(shí)砂土層,地下水條件為第四系孔隙潛水,沒有連續(xù)的厚層隔水帶。
根據(jù)監(jiān)測設(shè)計(jì)規(guī)范要求,需在初始段100 m范圍內(nèi)和吊出井端部100 m范圍內(nèi),每間隔20 m設(shè)置一個(gè)監(jiān)測斷面,其他段每間隔30 m設(shè)置一個(gè)監(jiān)測斷面,監(jiān)測點(diǎn)布置如圖2所示。監(jiān)測點(diǎn)依據(jù)《城市軌道交通工程監(jiān)測技術(shù)規(guī)范》(GB 50911—2013)要求進(jìn)行布置,采用φ20以上的鋼筋打入地基土穩(wěn)定土層中,使鋼筋與土層保持穩(wěn)定,保證鋼筋不會(huì)因?yàn)橥翆映两刀l(fā)生位移。為防止車輛對監(jiān)測點(diǎn)造成影響,鋼筋頂部低于路面5~10 cm,并設(shè)置套管保護(hù),如圖3所示。
圖2 橫斷面監(jiān)測點(diǎn)布置(單位:mm)
圖3 地表沉降觀測點(diǎn)埋設(shè)
使用高精度水準(zhǔn)儀,對附近的水準(zhǔn)點(diǎn)及基準(zhǔn)點(diǎn)聯(lián)測得到初始高程。測量過程中,對測點(diǎn)各項(xiàng)限差進(jìn)行嚴(yán)格控制,每次讀數(shù)高差不大于0.3 mm,不在同一水準(zhǔn)線上的測點(diǎn),不超過3個(gè)。首次測量,應(yīng)連續(xù)兩次對測點(diǎn)進(jìn)行回測,且兩次高程差應(yīng)小于±1.0 mm,并取其平均值作為測量初始值。
選取5個(gè)監(jiān)測斷面的監(jiān)測數(shù)據(jù),對沉降曲線進(jìn)行擬合,如表1所示。
表1 斷面沉降數(shù)據(jù)轉(zhuǎn)換
續(xù)表1
將表1各斷面監(jiān)測數(shù)據(jù)代入式(12)~式(18)對各監(jiān)測斷面進(jìn)行回歸分析,則可得表2結(jié)果和各斷面回歸后的線性回歸函數(shù)。
表2 各斷面參數(shù)值
各斷面回歸后的線性方程:
將5個(gè)斷面的實(shí)測數(shù)據(jù)與回歸后的線性方程制圖進(jìn)行對比,見圖4。由圖4和表2可知:斷面ZK0+170、ZK0+200、ZK0+230和ZK0+260四個(gè)斷面的線性相關(guān)系數(shù)R均大于0.8,擬合度較高;斷面ZK0+290的線性相關(guān)系數(shù)R=0.722 1,其值介于0.3~0.8之間,故該工程區(qū)間段可用Peck公式進(jìn)行沉降預(yù)測。
圖4 各監(jiān)測斷面回歸情況
將求得參數(shù)代入式(1)可得到線性回歸后的Peck公式:
由回歸分析后所得Peck公式,可得出地表預(yù)測最大沉降量Smax和沉降槽寬度系數(shù)i,如表3所示,并將實(shí)測值與Peck公式預(yù)測曲線進(jìn)行對比分析,如圖5所示。
表3 沉降槽寬度系數(shù)和地表最大沉降量擬合值
圖5 各斷面實(shí)測值與Peck預(yù)測曲線
本地區(qū)各斷面土層參數(shù)較為接近,隧道埋深及施工參數(shù)也較為接近,但各斷面之間先后掘進(jìn)順序不同,水文地質(zhì)條件及覆土厚度也各有不同,故各斷面監(jiān)測數(shù)據(jù)不盡相同。根據(jù)線性回歸分析得到的Peck公式進(jìn)行數(shù)據(jù)分析可知:除斷面ZK0+290外,斷面ZK0+170、ZK0+200、ZK0+230和ZK0+260都具有較高的擬合度,其線性相關(guān)系數(shù)均大于0.8,且5個(gè)斷面的線性回歸相關(guān)性系數(shù)均高于0.7,符合Peck公式在該地區(qū)的運(yùn)用條件。由圖5和表2可知,地表沉降工程測量值與Peck曲線擬合值較為相近。因此,基于Peck公式運(yùn)用最小二乘法進(jìn)行擬合得到的回歸函數(shù),能夠?qū)υ摰貐^(qū)盾構(gòu)施工時(shí)引起的地表沉降進(jìn)行很好地預(yù)測。
由表3可知:對于該地區(qū)典型砂性土層條件,地表最大沉降值Smax取值范圍為10~14 mm;地表沉降槽寬度系數(shù)i取值范圍為2~5。
根據(jù)工程實(shí)測數(shù)據(jù)繪制斷面ZK0+200、ZK0+230和ZK0+260三個(gè)斷面的點(diǎn)位沉降-時(shí)間曲線,并進(jìn)行分析,如圖6~圖8所示。
圖6 ZK0+200監(jiān)測點(diǎn)沉降-時(shí)間關(guān)系曲線
圖7 ZK0+230監(jiān)測點(diǎn)沉降-時(shí)間關(guān)系曲線
圖8 ZK0+260監(jiān)測點(diǎn)沉降-時(shí)間關(guān)系曲線
由圖7可知,當(dāng)開挖至ZK0+230斷面時(shí),在ZK0+230斷面后方10 m、20 m的中線點(diǎn)發(fā)生2~3 mm的沉降,且距斷面20 m處較大;除此之外,在ZK0+230監(jiān)測斷面前方10 m、20 m處發(fā)生0~1 mm隆起,且距斷面10 m處隆起值較大。隨著盾構(gòu)施工的進(jìn)行,當(dāng)盾構(gòu)襯砌脫離盾尾時(shí),ZK0+230監(jiān)測斷面后方同樣位置處,沉降量急劇增大到12~18 mm,且單次最大沉降值為總沉降值的0.7~0.8倍。注漿處理后,地表沉降逐漸趨于穩(wěn)定狀態(tài),土層也隨之發(fā)生蠕變和固結(jié)現(xiàn)象,且在1~4 mm范圍內(nèi);隨著開挖繼續(xù)進(jìn)行,ZK0+230監(jiān)測斷面各監(jiān)測點(diǎn)沉降值急劇增大,其中ZK0+23004監(jiān)測點(diǎn)沉降值為12 mm,為該點(diǎn)總沉降值的0.85倍,其沉降速率先趨于緩慢,然后逐漸達(dá)到平穩(wěn)狀態(tài)。該斷面的其他測點(diǎn)變化規(guī)律與之相似。
ZK0+200和ZK0+260斷面各監(jiān)測點(diǎn)沉降規(guī)律與ZK0+230斷面大致相同。ZK0+200斷面最大單次沉降為12.28 mm,為該處總沉降值的0.66倍。與其他兩個(gè)斷面相比,其單次沉降占比較小。此現(xiàn)象表明該斷面各點(diǎn)的沉降速率比其他兩個(gè)斷面各點(diǎn)的沉降速率較小,可能是由于盾構(gòu)機(jī)掘進(jìn)速度的變化與上覆土層厚度不同所造成。通過對大量工程監(jiān)測數(shù)據(jù)的分析,發(fā)現(xiàn)工程地質(zhì)條件相近、施工條件大致相同時(shí),盾構(gòu)施工對地表沉降的影響會(huì)隨著上覆土層厚度的增大而減小,但施工影響范圍會(huì)變大。
由現(xiàn)場工程資料可知,斷面ZK0+230上覆土層厚度比斷面ZK0+200上覆土層厚度大1 m,ZK0+230斷面較ZK0+200斷面中線監(jiān)測點(diǎn)沉降最大累計(jì)值小4.63 mm,ZK0+230斷面較ZK0+200斷面距隧道邊緣3 m處監(jiān)測點(diǎn)沉降累計(jì)值大1~2 mm。此現(xiàn)象的產(chǎn)生,是由于隧道開挖時(shí),在垂直方向距地表較遠(yuǎn),因土體損失向水平方向發(fā)展,致使垂直方向土體損失逐漸減弱。
本文基于某市城市地下綜合管廊項(xiàng)目D1-D2區(qū)間的現(xiàn)場監(jiān)測數(shù)據(jù),運(yùn)用最小二乘法最優(yōu)化方法對Peck公式進(jìn)行擬合。通過擬合Peck曲線得到適用于該地層沉降槽寬度系數(shù)i初步取值范圍為2~5;地表最大沉降值Smax取值范圍為10~14 mm。對3個(gè)監(jiān)測斷面監(jiān)測點(diǎn)進(jìn)行縱向地表沉降分析得知,盾構(gòu)施工時(shí),在距盾構(gòu)機(jī)前后15~20 m范圍內(nèi),土體會(huì)產(chǎn)生隆起和沉降現(xiàn)象;當(dāng)盾構(gòu)機(jī)脫離洞口時(shí),盾尾脫出部位沉降速率最大,其沉降量占總沉降量的70%~80%。研究成果對該地區(qū)同類型工程的設(shè)計(jì)和施工具有一定的參考價(jià)值。