張承啟,王曉妍,陳莉
肌動蛋白結合蛋白FgAbp1參與禾谷鐮孢生長、發(fā)育和毒素體形成
張承啟,王曉妍,陳莉
安徽農業(yè)大學植物保護學院/作物有害生物綜合治理安徽省重點實驗室/植物病蟲害生物學與綠色防控安徽普通高校重點實驗室,合肥 230036
【】Abp1作為肌動蛋白結合蛋白家族成員之一,在各種真核生物肌動蛋白骨架形成過程中具有核心作用。本研究旨在分析禾谷鐮孢()中肌動蛋白結合蛋白FgAbp1在生長發(fā)育、對新型殺菌劑氰烯菌酯敏感性以及毒素體形成等生物學過程中的功能。利用融合PCR和酵母空隙修復技術分別構建基因敲除打靶片段和融合熒光蛋白載體,再通過聚乙二醇介導的原生質體轉化的方法獲取基因缺失突變體ΔFgAbp1和熒光標記菌株。觀察比較野生型PH-1、突變體ΔFgAbp1和回補體ΔFgAbp1-C的菌絲生長、有性生殖以及無性繁殖,并測定基因敲除突變體ΔFgAbp1對殺菌劑氰烯菌酯的敏感性。通過融合綠色熒光蛋白,明確FgAbp1在菌絲中的分布情況;利用透射電子顯微鏡觀察分析FgAbp1對細胞中液泡/囊泡形態(tài)的影響。在非產毒環(huán)境和誘導產毒條件下,通過雙熒光共定位分析FgAbp1在禾谷鐮孢毒素體形成過程中的作用。禾谷鐮孢中,F(xiàn)gAbp1主要呈顆粒狀定位于近細胞膜處。在MM培養(yǎng)基中,基因敲除突變體ΔFgAbp1的生長速率與野生型相比降低了15%,但在營養(yǎng)豐富的CM中ΔFgAbp1的生長速率卻減慢了38%。突變體ΔFgAbp1在無性繁殖以及有性生殖過程中相較野生型沒有明顯缺陷。然而在0.5 μg·mL-1氰烯菌酯的作用下,ΔFgAbp1的菌絲生長完全受到抑制,并且分生孢子萌發(fā)率顯著下降。此外,敲除基因導致細胞中液泡不能正常形成且囊泡增多。在非產毒條件下,F(xiàn)gAbp1與DON毒素合成關鍵酶Tri1共定位于囊泡中;在誘導產毒條件下,F(xiàn)gAbp1與Tri1則共定位于毒素體中。此外,敲除基因會導致毒素體不能正常形成。肌動蛋白結合蛋白FgAbp1在禾谷鐮孢營養(yǎng)生長、發(fā)育、氰烯菌酯敏感性以及毒素體形成過程中發(fā)揮著重要作用。
禾谷鐮孢;FgAbp1;氰烯菌酯;毒素體
【研究意義】由禾谷鐮孢()引起的小麥赤霉病是小麥上的毀滅性病害,該病害不但會導致小麥嚴重減產,而且病原菌在小麥粒中可以產生真菌毒素嚴重危害人和動物健康[1]。禾谷鐮孢通常產生的真菌毒素為脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON)、雪腐鐮刀菌烯醇(nivalenol,NIV)以及玉米赤霉烯酮(zearalenone,ZEN),而其中又以DON的毒性最大,也是全世界范圍內最受關注的真菌毒素之一,很多國家都已經制定了小麥及其制品中DON毒素殘留的最高限量標準[2-3]。DON毒素可以作用于動物細胞的核糖體,抑制蛋白質的合成,從而使機體的免疫系統(tǒng)出現(xiàn)障礙,導致血液、生殖以及呼吸系統(tǒng)發(fā)生病變甚至誘發(fā)癌癥[4]。減少食品中DON毒素污染最直接有效的辦法就是防控小麥赤霉病的發(fā)生,目前農業(yè)生產中防控小麥赤霉病的關鍵措施就是在小麥抽穗揚花期施用殺菌劑[5-6]。氰烯菌酯作為一種新型殺菌劑對鐮孢菌具有特異的抑菌活性,其通過作用于肌球蛋白myosin-Ⅰ,從而實現(xiàn)抑菌和控制產毒的機理在一定程度上已經得到了詳細的解析[7-8]。肌動蛋白結合蛋白(actin binding protein,Abp1)作為肌球蛋白myosin-Ⅰ重要的互作元件之一[9],研究其在禾谷鐮孢生長發(fā)育、殺菌劑敏感性以及DON毒素生物合成過程中的作用,對于揭示該病原菌的產毒調控機制具有重要的理論意義。【前人研究進展】Abp1廣泛存在于真核生物細胞中,包括真菌、果蠅、寄生蟲以及哺乳動物,并且作為橋梁參與肌動蛋白骨架連接的內吞過程[10]。Abp1p首次被研究鑒定是在釀酒酵母()中,通過親和層析試驗發(fā)現(xiàn)Abp1p與肌動蛋白功能的正常發(fā)揮密切相關[11]。Abp1p蛋白結構特征主要包括N-端肌動蛋白解聚因子同源結構域(N-terminal actin depolymerizing factor homology,ADF-H)[12]、螺旋區(qū)域(helical region)、富含脯氨酸(proline-rich region,PRR)的中心區(qū)域以及C-端的SH3(Src-homology 3)結構域[13]。Abp1p不與肌動蛋白單體(actin monomer)結合,而是主要通過ADF-H結構域結合肌動蛋白絲(actin filament)[12,14]。Abp1p具有的兩個酸性氨基酸殘基序列是結合并激活Arp2/3復合體所必需的[14];通過SH3結構域與Ark1p、Scp1p以及Sjl2p等蛋白互作共同參與內吞過程[13,15-17]。與釀酒酵母的Abp1p類似,哺乳動物的同源蛋白mAbp1也是通過ADF-H結構域與肌動蛋白絲結合并參與受體介導的內吞作用[18-19]。不同的是,酵母的Abp1p定位于近細胞膜側的肌動蛋白塊(actin patch)中,而mAbp1通常定位在近細胞核區(qū)域,但是當被Rac GTPase激活后,mAbp1被招募到動態(tài)的肌動蛋白束(actin cable)上,并精確地定位到Arp2/3復合體中[11,20]。此外,mAbp1還通過與其他多種蛋白互作參與背紋的形成和細胞運動[21-23]。在酵母中,僅僅敲除并不會影響菌體的生長,只是輕微地影響了細胞的內吞過程,但是當參與內吞過程的、或其中的任何一個與同時被敲除則會致死[24-25];過表達會導致酵母細胞中的肌動蛋白骨架出現(xiàn)嚴重的缺陷[11]。還有研究表明,同時敲除和肌動蛋白形成相關的蛋白激酶時,會導致酵母對溫度異常敏感[26]。Abp1作為細胞內吞過程的標志性蛋白,在酵母中參與內吞作用時與Sla2的功能類似[27-28]。在哺乳動物細胞中,mAbp1介導肌動蛋白骨架與內吞作用之間的聯(lián)系,并充當匯聚多個信號途徑的樞紐[18]。在稻瘟病菌()中,MoAbp1與蛋白激酶MoArk1互作,調控病原菌的生長、致病以及內吞過程[29]?!颈狙芯壳腥朦c】Abp1普遍存在于真核生物中,雖然在蛋白結構上具有一定的保守性,但其功能在不同的物種中又具有差異性。禾谷鐮孢中Abp1同源蛋白由基因(FGSG_01316)編碼,尚未有研究報道其在病原真菌次生代謝過程中的作用?!緮M解決的關鍵問題】基于同源重組原理,通過PEG介導的原生質體轉化的方法,獲得基因敲除突變體ΔFgAbp1以及相關的熒光標記菌株,明確FgAbp1在禾谷鐮孢生長發(fā)育、對氰烯菌酯敏感性以及毒素體形成等方面的作用,為進一步揭示DON毒素生物合成調控提供一定的理論依據。
試驗于2019—2020年在安徽農業(yè)大學國家農作物品種審定特性鑒定站完成。
禾谷鐮孢野生型菌株PH-1(NRRL 31084)、基因敲除突變體ΔFgAbp1和回補突變體ΔFgAbp1-C、質粒neo-PYF11、pBluescript SK+以及大腸桿菌DH5等均保存在安徽農業(yè)大學國家農作物品種審定特性鑒定站。誘導產毒培養(yǎng)基TBI(trichothecene biosynthesis induction medium):1 L,pH 4.5,含有蔗糖30 g、腐胺0.8 g、KH2PO41 g、MgSO4·7H2O 0.5 g、KCl 0.5 g、FeSO4·7H2O 10 mg和微量元素溶液200 μL(100 mL:檸檬酸5 g、ZnSO4·7H2O 5 g、CuSO4·5H2O 0.25 g、MnSO4·H2O 50 mg、H3BO350 mg和NaMoO4·2H2O 50 mg)。試驗中涉及到的完全培養(yǎng)基(complete medium,CM)、基本培養(yǎng)基(minimal medium,MM)、馬鈴薯瓊脂培養(yǎng)基(potato dextrose agar,PDA)、分生孢子誘導培養(yǎng)基(carboxymethyl cellulose,CMC)等的配制方法來源于鐮孢菌試驗手冊(laboratory manual)[30]。
高保真和普通DNA聚合酶、RNA反轉錄試劑盒、SYBR Green Ⅰ熒光染料購自南京諾唯贊生物科技有限公司;酵母轉化試劑盒購自美國MP Biomedicals公司;潮霉素、酵母質粒提取試劑盒購自北京索萊寶科技有限公司;質粒小量提取試劑盒、膠回收試劑盒、引物以及常規(guī)生化試劑均采購于上海生工生物工程有限公司。
移液器、小型臺式離心機、低溫冷凍離心機產自Eppendorf公司;PCR儀型號:C1000 Touch,Bio-Rad公司;垂直電泳儀(Powerpac HV)和多功能凝膠成像儀(Chemidoc)均為Bio-Rad公司生產;激光共聚焦顯微鏡Zeiss LSM780,德國;透射電子顯微鏡JEOL JEM-1230,日本。
在真菌基因組數(shù)據庫(https://fungidb.org/fungidb/)中檢索出基因(FGSG_01316),并設計引物(表1)。首先,以野生型菌株PH-1的基因組DNA為模板,分別擴增出基因編碼區(qū)上游、下游序列各約1 000 bp,以質粒pBluescript SK+為模板擴增出潮霉素磷酸轉移酶基因()。其次,利用融合PCR(double-joint PCR)技術原理,按照上游--下游的順序融合成一個完整的重組DNA片段,從而構建出基因敲除打靶片段[31]。最后,借助原生質體轉化的方法將重組打靶DNA片段轉入野生型菌株PH-1中[32],在含有100 μg·mL-1潮霉素B的PDA平板中篩選轉化子,并用表1中引物Abp1-ID-F/Abp1-ID-R鑒定敲除轉化子。
利用高保真酶和表1中的引物Abp1-GFP-F/Abp1- GFP-R,連同基因的啟動子區(qū)至開放閱讀框一起擴增,將純化后的PCR產物與經Ⅰ線性化的質粒neo-pYF11,共轉化進入酵母菌株XK1-25細胞中[33-34]。經PCR鑒定并提取陽性克隆酵母中的重組質粒,將其轉入大腸桿菌DH5中進行質粒擴繁;提取大腸桿菌質粒,通過PEG介導的原生質體轉化,回補基因缺失突變體ΔFgAbp1,通過抗生素G418(100 μg·mL-1)篩選,同時PCR鑒定出回補突變體。
生長速率測定:用內徑為5 mm的打孔器切取已活化于PDA中生長3 d的菌落邊緣,菌碟分別接種于含有PDA、MM和CM的9 cm培養(yǎng)皿中,25℃培養(yǎng)3 d后測量菌落直徑并拍照,每次重復3塊培養(yǎng)皿,試驗重復3次。
產孢量及分生孢子形態(tài)觀測:從新鮮的菌落邊緣取5個直徑為5 mm的菌碟接種到30 mL CMC培養(yǎng)液中,每個菌株3瓶,25℃,光暗交替12 h,180 r/min搖培3 d。三層擦鏡紙過濾收集分生孢子,血球計數(shù)板統(tǒng)計產孢量,試驗重復3次。分別吸取2.5 μL濾液中的分生孢子和2.5 μL熒光增白劑(calcofluor white,CFW)于潔凈的載玻片上吸打混勻,于熒光顯微鏡下觀察分生孢子的形態(tài)特征。
表1 本研究所用到的引物
有性生殖測定:將各菌株接種于胡蘿卜培養(yǎng)基中進行有性生殖誘導,每個菌株5個重復。25℃普通光照培養(yǎng)箱中待各菌株完全長滿整個培養(yǎng)皿,刮凈胡蘿卜培養(yǎng)基表面的氣生菌絲,并在表面均勻涂抹800 μL 0.1% Tween-20,晾干后封口并正置于黑光燈下,25℃培養(yǎng)20 d后拍照。接種針挑取胡蘿卜培養(yǎng)基表面的子囊殼于載玻片上,滴加無菌水,加上蓋玻片輕輕按壓,顯微鏡下觀察子囊及子囊孢子的形態(tài)。
從新鮮的菌落邊緣打孔取直徑5 mm的菌碟分別接種于含有0.5 μg·mL-1氰烯菌酯和等量二甲基亞砜(DMSO)的PDA培養(yǎng)基中,25℃培養(yǎng)3 d后測量菌落直徑并拍照,每次重復3個皿,試驗重復3次。觀察氰烯菌酯對分生孢子萌發(fā)的影響時,用2%的蔗糖水溶液調節(jié)分生孢子濃度至5 000個/mL,加入氰烯菌酯使之終濃度為0.5 μg·mL-1并以等量的DMSO作為對照組,25℃黑暗條件下處理5 h,各菌株分別統(tǒng)計300個孢子計算萌發(fā)率。
將新鮮的菌碟分別接種于PDB和TBI培養(yǎng)基中25℃避光,搖培48 h,吸取菌絲于激光共聚焦顯微鏡下觀察紅、綠熒光信號,物鏡60×1.30 Oil DIC M27,激發(fā)波長488、561 nm,采集8位模式的圖像。用透射電子顯微鏡觀察細胞中囊泡的方法參考Tang等[35]。
基因敲除突變體ΔFgAbp1在培養(yǎng)基PDA和MM上的生長速率與野生型PH-1、回補突變體ΔFgAbp1-C相比降低了約15%,但在CM培養(yǎng)基中生長時,ΔFgAbp1的生長速率降低了38%。雖然敲除基因在一定程度上減慢了病原菌的生長速率,但是突變體ΔFgAbp1合成色素的能力并沒有發(fā)生明顯變化(圖1-a、1-b)。
觀察統(tǒng)計誘導產孢培養(yǎng)基CMC中分生孢子的產量以及形態(tài)特征,發(fā)現(xiàn)突變體ΔFgAbp1與野生型PH-1相比并沒有明顯差異(圖2-a、2-b)。此外,子囊殼和子囊孢子作為重要的初侵染源,在禾谷鐮孢侵染小麥的過程中發(fā)揮著關鍵作用[36]。通過有性生殖誘導發(fā)現(xiàn),野生型PH-1、敲除突變體ΔFgAbp1和回補體ΔFgAbp1-C在子囊殼數(shù)量、子囊以及子囊孢子的形態(tài)特征上沒有明顯差異(圖2-c),說明基因的缺失并不影響禾谷鐮孢的無性繁殖和有性生殖過程。
a:野生型PH-1、敲除突變體ΔFgAbp1和回補體ΔFgAbp1-C在PDA、MM和CM中25℃培養(yǎng)3 d的菌落形態(tài)Colony morphology of the wild-type PH-1, deletion mutant ΔFgAbp1 and the complemented strain ΔFgAbp1-C on PDA, MM and CM after 3 days of incubation at 25℃;b:統(tǒng)計分析各菌株在PDA、MM和CM中25℃生長3 d后的菌落直徑。誤差線表示標準差,*:P<0.05 Statistical analysis of each strain colony diameters following growth on PDA, MM and CM at 25℃ for 3 days. Error bars represent standard deviation
a:PH-1、ΔFgAbp1和ΔFgAbp1-C的分生孢子經熒光增白劑染色,標尺20 μm Conidia of PH-1, ΔFgAbp1 and ΔFgAbp1-C were stained with calcofluor white. Bar = 20 μm;b:各菌株在CMC培養(yǎng)液中3 d的產孢量Conidiation of each strain was assayed with 3-day-old CMC cultures;c:PH-1、ΔFgAbp1和ΔFgAbp1-C在胡蘿卜培養(yǎng)基中的有性生殖。有性生殖誘導20 d后拍照;插入框中為子囊和子囊孢子Sexual development of PH-1, ΔFgAbp1 and ΔFgAbp1-C grown on carrot agar media. Photos were taken 20 days after sexual induction. Dissecting the perithecia exhibited the asci and ascospores of each strain (inset boxes)
將野生型PH-1、突變體ΔFgAbp1和回補體ΔFgAbp1-C分別接種在含有0.5 μg·mL-1氰烯菌酯的PDA平板中時發(fā)現(xiàn),突變體ΔFgAbp1對氰烯菌酯的敏感性顯著增加,氰烯菌酯對野生型PH-1的菌絲生長抑制率為75.2%,而相同條件下ΔFgAbp1則幾乎不能生長(圖3-a、3-b)。通過進一步分析氰烯菌酯對突變體ΔFgAbp1分生孢子萌發(fā)的影響,發(fā)現(xiàn)在0.5 μg·mL-1氰烯菌酯作用下,ΔFgAbp1分生孢子萌發(fā)率顯著降低(圖3-c、3-d)。但是ΔFgAbp1對苯并咪唑類殺菌劑多菌靈、三唑類殺菌劑戊唑醇的敏感性與野生型相比沒有明顯差異(數(shù)據未顯示)。
a:PH-1、ΔFgAbp1和ΔFgAbp1-C在含有0.5 μg·mL-1氰烯菌酯的PDA中25℃培養(yǎng)3 d的生長比較。溶劑DMSO作為對照組Comparison of PH-1, ΔFgAbp1 and ΔFgAbp1-C following incubation at 25℃ for 3 days on PDA plates supplemented 0.5 μg·mL-1phenamacril. DMSO was used as a control treatment;b:各菌株在0.5 μg·mL-1氰烯菌酯處理下的生長抑制率。誤差線表示標準差,**:P<0.01 The growth inhibition rate of each strain under 0.5 μg·mL-1phenamacril treatment. Error bars represent standard deviation;c:氰烯菌酯對PH-1、ΔFgAbp1和ΔFgAbp1-C分生孢子萌發(fā)的抑制作用。激光共聚焦顯微鏡拍攝微分干涉(DIC)和熒光增白劑(CFW)染色照片。標尺50 μm Inhibitory effect of 0.5 μg·mL-1 phenamacril on conidial germination of PH-1, ΔFgAbp1 and ΔFgAbp1-C. Differential interference contrast (DIC) images of conidia stained with calcofluor white (CFW) were taken with a confocal fluorescence microscope. Bar = 50 μm;d:0.5 μg·mL-1氰烯菌酯處理下各菌株分生孢子的萌發(fā)率。誤差線表示標準差**:P<0.01 The conidial germination rate of each strain under 0.5 μg·mL-1 phenamacril treatment. Error bars represent standard deviation
通過融合綠色熒光蛋白(green fluorescent protein,GFP)回補基因缺失突變體ΔFgAbp1,激光共聚焦顯微鏡觀察發(fā)現(xiàn)回補菌株ΔFgAbp1-C中GFP熒光信號主要呈顆粒狀定位于細胞膜附近(圖4-a)。為了進一步明確突變體ΔFgAbp1細胞內部結構的變化,利用透射電子顯微鏡觀察發(fā)現(xiàn),野生型菌株PH-1的細胞中液泡形態(tài)正常,而基因敲除突變體ΔFgAbp1細胞中則沒有大液泡,而是出現(xiàn)了很多囊泡(圖4-b)。
a:FgAbp1的亞細胞定位。DIC,微分干涉;GFP,綠色熒光蛋白。標尺10 μm Subcellular localization of FgAbp1. DIC, differential interference contrast. GFP, green fluorescent protein. Bar = 10 μm;b:突變體ΔFgAbp1細胞中形成大量的囊泡和異常的液泡。透射電子顯微鏡拍攝PH-1和ΔFgAbp1細胞超微結構中液泡/囊泡的形態(tài)The mutant ΔFgAbp1 caused a high vesicle number and abnormal vacuole. The ultrastructural morphology of vacuole/vesicle in PH-1 and ΔFgAbp1 was visualized by transmission electron microscopy
近年來研究發(fā)現(xiàn),DON毒素生物合成途徑中關鍵氧化酶Tri1定位于一種被稱為毒素體(toxisome)的囊泡膜上[37]。在禾谷鐮孢中FgAbp1與囊泡/液泡的形成密切相關,為了明確FgAbp1是否參與了毒素體的形成,進行了共定位試驗。將FgAbp1融合紅色熒光蛋白(red fluorescent protein,RFP),參與DON毒素合成的關鍵酶Tri1融合GFP。在非誘導產毒培養(yǎng)基PDB中,Tri1-GFP與FgAbp1-RFP共定位于囊泡中(圖5-a),但在誘導產毒培養(yǎng)基TBI中,發(fā)現(xiàn)Tri1-GFP與FgAbp1-RFP則完全共定位于毒素體膜上(圖5-b)。為了進一步證實該結果,將Tri1-GFP分別轉入野生型PH-1和突變體ΔFgAbp1中,在誘導產毒條件下,發(fā)現(xiàn)PH-1細胞中能產生形態(tài)正常的毒素體,而突變體ΔFgAbp1則不能正常形成毒素體(圖5-c)。
肌動蛋白作為細胞骨架的重要組成部分,在真核生物中起著至關重要的作用。肌動蛋白在細胞形態(tài)、極性的產生和維持,內吞作用和物質運輸,細胞的收縮性、運動性以及細胞分裂等生物學過程中發(fā)揮功能[38]。但是,肌動蛋白的組裝和拆卸,以及它們編織為功能性高級網絡的過程,又都受到肌動蛋白結合蛋白的調節(jié)[39]。本研究通過基因敲除和回補以及亞細胞定位等方法研究了肌動蛋白結合蛋白FgAbp1在禾谷鐮孢中的生物學功能。
基因敲除突變體ΔFgAbp1與野生型相比生長速率有一定程度降低,這與稻瘟病菌中Δ突變體的生長缺陷相類似[29]。然而,釀酒酵母突變體和構巢曲霉()同源基因缺失突變體Δ則并沒有明顯的生長缺陷[24,40],這說明Abp1 在絲狀真菌和酵母中的功能存在一定的分化。肌動蛋白通常在細胞中主要的存在形式有絲狀肌動蛋白和斑點狀肌動蛋白[9],通過C-端融合GFP發(fā)現(xiàn),禾谷鐮孢中FgAbp1主要呈顆粒狀定位于近細胞膜側或彌散在細胞質中,這種現(xiàn)象的出現(xiàn)與細胞中肌動蛋白的形態(tài)相吻合。研究已發(fā)現(xiàn),無論是在酵母、哺乳動物還是絲狀真菌中,Abp1都直接參與了細胞內吞過程[24,29,40-41]。突變體ΔFgAbp1細胞中液泡/囊泡的形態(tài)異常,很可能是因為敲除基因后導致菌體內吞過程受阻所致,因為內吞過程需要囊泡/液泡的參與。在真核生物中,肌球蛋白myosin-Ⅰ與Abp1互作共同參與肌動蛋白的組裝以及內吞過程[9,42],對鐮孢菌特異的新型殺菌劑氰烯菌酯的作用靶標即為肌球蛋白myosin-Ⅰ(FgMyo1)[8,43]。最新研究表明,F(xiàn)gMyo1與肌動蛋白互作調控禾谷鐮孢毒素體的形成進而影響DON毒素的生物合成[7,44]。筆者發(fā)現(xiàn)突變體ΔFgAbp1專一性地對氰烯菌酯表現(xiàn)敏感,可能是由于ΔFgAbp1中肌動蛋白骨架受損,影響了肌球蛋白FgMyo1正常的功能,間接導致ΔFgAbp1表現(xiàn)出對氰烯菌酯的敏感性。有趣的是,在非產毒環(huán)境中FgAbp1與DON毒素生物合成過程中關鍵酶Tri1共定位于囊泡中;而在誘導產毒條件下,F(xiàn)gAbp1與Tri1共定位于毒素體膜上,并且的缺失會導致毒素體不能正常形成,該結果表明FgAbp1在禾谷鐮孢毒素體的形成過程中發(fā)揮著重要作用。關于FgAbp1調控毒素體形成的機制有待于進一步研究。
a:PDB培養(yǎng)液中生長48 h后Tri1-GFP和FgAbp1-RFP共定位情況。標尺5 μm Co-localization of Tri1-GFP with FgAbp1-RFP in liquid PDB medium for 48 h. Bar = 5 μm;b:TBI培養(yǎng)基中誘導48 h后,Tri1-GFP和FgAbp1-RFP共定位于毒素體。標尺5 μm Tri1-GFP and FgAbp1-RFP co-localized in toxisomes after 48 h incubation in TBI medium. Bar = 5 μm;c:TBI培養(yǎng)基中誘導48 h后,PH-1和ΔFgAbp1菌絲中毒素體的形成狀態(tài)。Tri1-GFP指示毒素體的形成。標尺5 μm The toxisome formation patterns in the mycelia of PH-1 and ΔFgAbp1 after 48 h incubation in TBI medium. The toxisome formation was visualized using Tri1-GFP as the indicator. Bar = 5 μm
FgAbp1參與禾谷鐮孢的營養(yǎng)生長,但不影響其無性繁殖和有性生殖。更為重要的是,F(xiàn)gAbp1特異性地參與了禾谷鐮孢對殺菌劑氰烯菌酯的敏感性,并且與毒素體的形成密切相關。
[1] DEAN R, VAN KAN J A L, PRETORIUS Z A, HAMMOND- KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430.
[2] AUDENAERT K, VANHEULE A, HOFTE M, HAESAERT G. Deoxynivalenol: a major player in the multifaceted response ofto its environment. Toxins, 2013, 6(1): 1-19.
[3] BIANCHINI A, HORSLEY R, JACK M M, KOBIELUSH B, RYU D, TITTLEMIER S, WILSON W W, ABBAS H K, ABEL S, HARRISON G, MILLER J D, SHIER W T, WEAVER G. DON occurrence in grains: a north American perspective. Cereal Foods World, 2015, 60(1): 32-56.
[4] PESTKA J J. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 2010, 84(9): 663-679.
[5] 陳云, 王建強, 楊榮明, 馬忠華. 小麥赤霉病發(fā)生危害形勢及防控對策. 植物保護, 2017, 43(5): 11-17.
CHEN Y, WANG J Q, YANG R M, MA Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protection, 2017, 43(5): 11-17. (in Chinese)
[6] 史建榮, 劉馨, 仇劍波, 祭芳, 徐劍宏, 董飛, 殷憲超, 冉軍艦. 小麥中鐮刀菌毒素脫氧雪腐鐮刀菌烯醇污染現(xiàn)狀與防控研究進展. 中國農業(yè)科學, 2014, 47(18): 3641-3654.
SHI J R, LIU X, QIU J B, JI F, XU J H, DONG F, YIN X C, RAN J J. Deoxynivalenol contamination in wheat and its management. Scientia Agricultura Sinica, 2014, 47(18): 3641-3654. (in Chinese)
[7] TANG G F, CHEN Y, XU J R, KISTLER H C, MA Z H. The fungal myosin I is essential fortoxisome formation. Plos Pathogens, 2018, 14(1): e1006827.
[8] ZHANG C Q, CHEN Y, YIN Y N, JI H H, SHIM W B, HOU Y P, ZHOU M G, LI X D, MA Z H. A small molecule species specifically inhibitsmyosin I. Environmental Microbiology, 2015, 17(8): 2735-2746.
[9] BEREPIKI A, LICHIUS A, READ N D. Actin organization and dynamics in filamentous fungi. Nature Reviews. Microbiology, 2011, 9(12): 876-887.
[10] GARCIA B, STOLLAR E J, DAVIDSON A R. The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality. Genetics, 2012, 191(4): 1199-1211.
[11] DRUBIN D G, MILLER K G, BOTSTEIN D. Yeast actin-binding proteins: evidence for a role in morphogenesis. Journal of Cell Biology, 1988, 107(6): 2551-2561.
[12] LAPPALAINEN P, KESSELS M M, COPE M J, DRUBIN D G. The ADF homology (ADF-H) domain: a highly exploited actin-binding module.Molecular Biology of the Cell, 1998, 9(8): 1951-1959.
[13] STOLLAR E J, GARCIA B, CHONG P A, RATH A, LIN H, FORMAN-KAY J D, DAVIDSON A R. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Journal of Biological Chemistry, 2009, 284(39): 26918-26927.
[14] GOODE B L, RODAL A A, BARNES G, DRUBIN D G. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. Journal of Cell Biology, 2001, 153(3): 627-634.
[15] FAZI B, COPE M, DOUANGAMATH A, FERRACUTI S, SCHIRWITZ K, ZUCCONI A, DRUBIN D G, WILMANNS M, CESARENI G, CASTAGNOLI L. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. Journal of Biological Chemistry, 2002, 277(7): 5290-5298.
[16] STEFAN C J, PADILLA S M, AUDHYA A, EMR S D. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Molecular and Cellular Biology, 2005, 25(8): 2910-2923.
[17] HAYNES J, GARCIA B, STOLLAR E J, RATH A, ANDREWS B J, DAVIDSON A R. The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context. Genetics, 2007, 176(1): 193-208.
[18] KESSELS M M, ENGQVIST-GOLDSTEIN A E Y, DRUBIN D G, QUALMANN B. Mammalian Abp1, a signal-responsive F-actin- binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. Journal of Cell Biology, 2001, 153(2): 351-366.
[19] MISE-OMATA S, MONTAGNE B, DECKERT M, WIENANDS J, ACUTO O. Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: functional analysis by RNA interference. Biochemical and Biophysical Research Communications, 2003, 301(3): 704-710.
[20] KESSELS M M, ENGQVIST-GOLDSTEIN A E Y, DRUBIN D G. Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Molecular Biology of the Cell, 2000, 11(1): 393-412.
[21] CORTESIO C L, PERRIN B J, BENNIN D A, HUTTENLOCHER A. Actin-binding protein-1 interacts with WASp-interacting protein to regulate growth factor-induced dorsal ruffle formation. Molecular Biology of the Cell, 2010, 21(1): 186-197.
[22] FENSTER S D, KESSELS M M, QUALMANN B, CHUNG W J, NASH J, GUNDELFINGER E D, GARNER C C. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. Journal of Biological Chemistry, 2003, 278(22): 20268-20277.
[23] HAN J, KORI R, SHUI J W, CHEN Y R, YAO Z B, TAN T H. The SH3 domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in T cell receptor signaling. Journal of Biological Chemistry, 2003, 278(52): 52195-52202.
[24] HOLTZMAN D A, YANG S, DRUBIN D G. Synthetic-lethal interactions identify two novel genes,and, that control membrane cytoskeleton assembly in. Journal of Cell Biology, 1993, 122(3): 635-644.
[25] TUO S, NAKASHIMA K, PRINGLE J R. Role of endocytosis in localization and maintenance of the spatial markers for bud-site selection in yeast. Plos One, 2013, 8(9): e72123.
[26] COPE M J, YANG S, SHANG C, DRUBIN D G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. Journal of Cell Biology, 1999, 144(6): 1203-1218.
[27] WESP A, HICKE L, PALECEK J, LOMBARDI R, AUST T, MUNN A L, RIEZMAN H. End4p/Sla2p interacts with actin-associated proteins for endocytosis in. Molecular Biology of the Cell, 1997, 8(11): 2291-2306.
[28] AGHAMOHAMMADZADEH S, SMACZYNSKA-DE ROOIJ I I, AYSCOUGH K R. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited. Plos One, 2014, 9(7): e103311.
[29] LI L W, ZHANG S P, LIU X Y, YU R, LI X R, LIU M X, ZHANG H F, ZHENG X B, WANG P, ZHANG Z G.Abp1, a MoArk1 kinase-interacting actin binding protein, links actin cytoskeleton regulation to growth, endocytosis, and pathogenesis. Molecular Plant-Microbe Interactions, 2019, 32(4): 437-451.
[30] NICHOLSON P. Thelaboratory manual. Plant Pathology, 2007, 56(6): 1037.
[31] YU J H, HAMARI Z, HAN K H, SEO J A, REYES-DOMINGUEZ Y, SCAZZOCCHIO C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41(11): 973-981.
[32] PROCTOR R H, HOHN T M, MCCORMICK S P. Reduced virulence ofcaused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions, 1995, 8(4): 593-601.
[33] BRUNO K S, TENJO F, LI L, HAMER J E, XU J R. Cellular localization and role of kinase activity of PMK1 in. Eukaryotic Cell, 2004, 3(6): 1525-1532.
[34] CHEN Y, ZHENG S Y, JU Z Z, ZHANG C Q, TANG G F, WANG J, WEN Z Y, CHEN W, MA Z H. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus. Environmental Microbiology, 2018, 20(9): 3224-3245.
[35] TANG G F, ZHANG C Q, JU Z Z, ZHENG S Y, WEN Z Y, XU S, CHEN Y, MA Z H. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in. Molecular Plant Pathology, 2018, 19(7): 1595-1611.
[36] TRAIL F. For blighted waves of grain:in the postgenomics era. Plant Physiology, 2009, 149(1): 103-110.
[37] MENKE J, DONG Y H, KISTLER H C.Tri12p influences virulence to wheat and trichothecene accumulation. Molecular Plant-Microbe Interactions, 2012, 25(11): 1408-1418.
[38] WINDER S J, AYSCOUGH K R. Actin-binding proteins. Journal of Cell Science, 2005, 118(4): 651-654.
[39] DOS REMEDIOS C G, CHHABRA D, KEKIC M, DEDOVA I V, TSUBAKIHARA M, BERRY D A, NOSWORTHY N J. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiological Reviews, 2003, 83(2): 433-473.
[40] ARAUJO-BAZAN L, PENALVA M A, ESPESO E A. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in. Molecular Microbiology, 2008, 67(4): 891-905.
[41] QUALMANN B, KESSELS M M, KELLY R B. Molecular links between endocytosis and the actin cytoskeleton. Journal of Cell Biology, 2000, 150(5): F111-F116.
[42] MATSUO K, HIGUCHI Y, KIKUMA T, ARIOKA M, KITAMOTO K. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in. Fungal Genetics and Biology, 2013, 56: 125-134.
[43] ZHENG Z T, HOU Y P, CAI Y Q, ZHANG Y, LI Y J, ZHOU M G. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in. Scientific Reports, 2015, 5: 8248.
[44] CHEN Y, KISTLER H C, MA Z H.trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology, 2019, 57: 15-39.
The actin binding protein FgAbp1 is involved in growth, development and toxisome formation in
ZHANG Chengqi, WANG Xiaoyan, CHEN Li
School of Plant Protection, Anhui Agricultural University/Anhui Province Key Laboratory of Integrated Pest Management on Crops/Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036
【】Abp1 is one of the actin binding proteins that plays a central role in actin cytoskeleton of diverse eukaryotic organisms. The objective of this study is to analyze functions of the actin binding protein FgAbp1 in growth and development, sensitivity to the novel fungicide phenamacril and toxisome formation in.【】Targeted gene deletion construct and fluorescent protein fusion vectors were generated by double-joint PCR and budding yeast gap repair system, respectively. Then, the mutant ΔFgAbp1 and fluorescently labeled strains were obtained using polyethylene glycol (PEG) mediated protoplast transformation. Mycelia growth, sexual/asexual reproduction and sensitivity to phenamacril of wild type PH-1, the mutant ΔFgAbp1 and complemented strain ΔFgAbp1-C were investigated. Localization of FgAbp1 in hyphae was examined through fusion green fluorescent protein. Transmission electron microscopy was carried out to assay the role of FgAbp1 in vacuole/vesicle morphology. Under noninducing medium and DON biosynthesis induction conditions, the role of FgAbp1 in the toxisome formation ofwas performed by dual fluorescence colocalization assay.【】FgAbp1 is primarily localized near the cell membrane in patches of. In MM medium, the growth rate of gene knockout mutant ΔFgAbp1 was reduced by 15% compared with the wild type. But in the nutrient-rich CM, the growth rate of ΔFgAbp1 was decreased by 38%. The mutant ΔFgAbp1 had no obvious defects in sexual and asexual reproduction in comparison with the wild type, while the mycelial growth of ΔFgAbp1 was completely inhibited and the conidia showed significant reduction of germination rate with 0.5 μg·mL-1phenamacril treatment. Moreover,deletion resulted in a high vesicle number and a block of normal vacuole formation. During growth in a toxinnoninducing condition, FgAbp1 and the DON biosynthetic key enzyme Tri1 co-fluoresced in vesicles. Unexpectedly, FgAbp1 and Tri1 cellular co-localized in toxisomes under DON biosynthesis inducing conditions. Furthermore, disruption ofresulted in abnormal toxisomes.【】The actin binding protein FgAbp1 plays an important role in vegetative growth, development, phenamacril tolerance and toxisome formation in
;FgAbp1; phenamacril; toxisome
10.3864/j.issn.0578-1752.2021.13.006
2020-10-11;
2020-10-28
國家自然科學基金(31701744)
張承啟,E-mail:zhcq@ahau.edu.cn。通信作者陳莉,E-mail:chenlii@ahau.edu.cn
(責任編輯 岳梅)