高 星,楊 坡,徐 磊
(中國船舶重工集團(tuán)公司第七二三研究所,江蘇 揚(yáng)州 225101)
為了擴(kuò)大相控陣?yán)走_(dá)的同時(shí)觀測空域范圍以及搜索與跟蹤數(shù)據(jù)率,相控陣天線必須具有發(fā)射多波束形成能力。傳統(tǒng)相控陣?yán)走_(dá)的發(fā)射多波束主要采用模擬方式產(chǎn)生,通過功分網(wǎng)絡(luò)將信號分到各個(gè)通道中,再經(jīng)過移相器對信號進(jìn)行移相,實(shí)現(xiàn)掃描波束賦形。其主要缺點(diǎn)是一旦多波束網(wǎng)絡(luò)確定之后,波束形狀、相鄰波束間隔以及它們的相交電平等便固定不變,難以對波束進(jìn)行靈活控制,給調(diào)整和使用帶來極大的困難。數(shù)字多波束則通過直接數(shù)字式頻率合成器來完成發(fā)射工作,在數(shù)字域?qū)⑿盘栠M(jìn)行加權(quán)處理后直接發(fā)射,具有靈活控制波束指向且方便實(shí)現(xiàn)發(fā)射波束的零點(diǎn)控制、超高分辨率或超低旁瓣等特點(diǎn),為相控陣?yán)走_(dá)實(shí)現(xiàn)多功能、同時(shí)多任務(wù)提供了技術(shù)基礎(chǔ),也為相控陣?yán)走_(dá)實(shí)現(xiàn)靈活抗干擾提供了手段。本文在發(fā)射多波束形成的基礎(chǔ)上,研究了自適應(yīng)置零發(fā)射多波束的形成算法,其使得相控陣?yán)走_(dá)發(fā)射波束在目標(biāo)方向上形成窄的主波束,以增強(qiáng)目標(biāo)信號;同時(shí)在干擾方向上形成零陷,以降低干擾對目標(biāo)提取的影響。
發(fā)射數(shù)字波束形成與接收數(shù)字波束形成的原理相類似,下面以一維陣列為例來闡述發(fā)射數(shù)字多波束形成的原理。
如圖1所示,由M
個(gè)全向陣元均勻排列組成陣列,陣元間間距為d
,發(fā)射信號為:圖1 發(fā)射多波束形成原理框圖
s
(t
)=z
(t
)ej(1)
式中:w
為發(fā)射信號的載波角頻率;z
(t
)為發(fā)射信號的復(fù)包絡(luò)。設(shè)遠(yuǎn)場測試點(diǎn)S
與線陣的夾角為θ
(i
=1,2,3,…,M
),發(fā)射波在θ
方向上的等相位面為P
,則陣元m
(m
=1,2,3,…,k
)到達(dá)平面P
的傳播延時(shí)可以表示為:(2)
若陣元1的發(fā)射信號為s
(t
),則陣元m
的發(fā)射信號可以表示為:s
(t
+τ
)=z
(t
+τ
)ej(+)(3)
當(dāng)發(fā)射信號為窄帶信號時(shí),其復(fù)包絡(luò)是慢變化的,則陣元m
的發(fā)射信號可表示為:s
(t
+τ
)=s
(t
)ej=s
(t
)ej(4)
其中:
φ
=2πd
sinθ
/λ
(5)
將整個(gè)發(fā)射陣列寫成向量形式:
(t
)=(θ
)s
(t
)(6)
(θ
)=[1 ej… ej(-1)](7)
式中:(θ
)為信號s
(t
)的方向矢量,其主要與發(fā)射角度θ
以及陣列幾何結(jié)構(gòu)有關(guān)。設(shè)發(fā)射陣列空域?yàn)V波器的權(quán)值為:
=[w
1w
1…w
](8)
對于方向?yàn)?p>θ的遠(yuǎn)場接收區(qū),其能量分布為:(9)
式中:φ
=2πd
sinθ
/λ
。寫成向量形式:
(θ
)=s
(t
)(θ
)(10)
根據(jù)疊加原理,對同時(shí)k
個(gè)發(fā)射波束,輸出的信號可以表示為:(11)
正交投影自適應(yīng)波束形成方法將期望導(dǎo)向矢量向干擾子空間的正交補(bǔ)空間投影,得到自適應(yīng)權(quán)向量,從而使期望方向的波束與干擾方向正交。
(12)
從而可以得到自適應(yīng)權(quán)向量:
=·(θ
)=(-)·(θ
)(13)
θ
),(θ
),…,(θ
))(14)
則在這一組基下的正交投影矩陣可以表示為:
=()(15)
進(jìn)而自適應(yīng)權(quán)向量可以表示為:=(-())·(θ
)(16)
線性約束最小方差(LCMV)準(zhǔn)則可以表示為:
(17)
式中:為協(xié)方差矩陣;為約束值矢量;為要求的最優(yōu)權(quán)值;為約束矩陣,則其最優(yōu)解可表示為:(18)
發(fā)射自適應(yīng)置零多波束形成可描述為如下的優(yōu)化問題:
(19)
式中:θ
為期望方向;θ
為第i
個(gè)干擾方向,由于|(θ
)|=(θ
)(θ
),因此令:(20)
式中:σ
是為了防止為奇異矩陣而做的對角加載。2.3導(dǎo)數(shù)約束加寬零陷算法
為了在角度θ
,θ
,…,θ
形成加寬零陷,只需要波束圖P
(θ
)對θ
的高階導(dǎo)數(shù)在θ
(i
=1,…,L
)處為0即可:(21)
式中:φ
=πsin(θ
)。將方向圖P
(θ
)=(θ
)代入上式求導(dǎo)得:(22)
因此導(dǎo)數(shù)約束的寬零陷發(fā)射波束形成算法的改進(jìn)優(yōu)化問題等價(jià)于:
(23)
式中:=diag(0,1,…,M
-1)。令=[(θ
),(θ
),…,(θ
-1),(θ
),(θ
),…,(θ
-1)],對矩陣做奇異值分解可得:=(24)
式中:為的所有奇異值組成的對角矩陣。將M
階酉矩陣表示為[]的形式,則根據(jù)奇異值分解的性質(zhì),可得上述優(yōu)化問題的解為:(25)
式中:為矩陣(θ
)(θ
)特征值分解后非零特征值所對應(yīng)的特征向量。下面利用均勻線陣對發(fā)射自適應(yīng)置零數(shù)字多波束形成算法進(jìn)行仿真分析。
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,3 dB波束寬度為3.1°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-10°,-3.1°,0°,3.1°,30°),采用正交投影算法仿真結(jié)果如圖2所示。
圖2 正交投影算法自適應(yīng)置零仿真圖(最小間隔3.1°)
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,4 dB,波束寬度為3.6°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-10°,-3.6°,0°,3.6°,30°),采用正交投影算法,仿真結(jié)果如圖3所示。
圖3 正交投影算法自適應(yīng)置零仿真圖(最小間隔3.6°)
由仿真圖2、圖3可知,5個(gè)發(fā)射波束均在除自身以外的其它4個(gè)波束主瓣方向上形成了零陷,實(shí)現(xiàn)了發(fā)射多波束之間的隔離。由圖2可知,發(fā)射波束最小間隔為3 dB、波束寬度為3.1°的2個(gè)波束主瓣都偏離了期望方向,而且第一副瓣電平也有所提高。由圖3可知,發(fā)射波束最小間隔為4 dB、波束寬度為3.6°時(shí),波束主瓣方向未發(fā)生偏移,波束第一副瓣也未發(fā)生變化。因此,在實(shí)際工程應(yīng)用中,正交投影算法自適應(yīng)置零多波束形波束指向間隔不能小于4 dB波束寬度。
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,3 dB波束寬度為3.1°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-10°,-3.1°,0°,3.1°,30°),采用線性約束最小方差算法,仿真結(jié)果如圖4所示。
圖4 線性約束最小方差算法自適應(yīng)置零仿真圖(最小間隔3.1°)
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,4 dB波束寬度為3.6°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-10°,-3.6°,0°,3.6°,30°),采用線性約束最小方差算法,仿真結(jié)果如圖5所示。
圖5 線性約束最小方差算法自適應(yīng)置零仿真圖(最小間隔3.6°)
由仿真圖4、圖5可知,與正交投影算法類似,5個(gè)發(fā)射波束在除自身以外的其它4個(gè)波束主瓣方向上形成了零陷,在最小波束間隔為3.1°的2個(gè)波束主瓣都偏離了期望方向,第一副瓣電平也有所提高,而在波束寬度為3.6°時(shí),波束主瓣方向未發(fā)生偏移,波束第一副瓣也未發(fā)生變化。因此,同正交投影算法,線性約束最小方差算法要求波束指向間隔不能小于4 dB波束寬度。
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,4 dB波束寬度為3.6°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-30°,-3.6°,0°,3.6°,30°),采用導(dǎo)數(shù)約束加寬零陷算法,仿真結(jié)果如圖6所示。
圖6 導(dǎo)數(shù)約束加寬零陷算法自適應(yīng)置零仿真圖(最小間隔3.6°)
陣元間距為發(fā)射信號的半波長,陣元個(gè)數(shù)為32,3 dB波束寬度為3.1°,同時(shí)發(fā)射5個(gè)波束,波束指向分別為(-30°,-5.6°,0°,5.6°,30°),采用導(dǎo)數(shù)約束加寬零陷算法,仿真結(jié)果如圖7所示。
圖7 導(dǎo)數(shù)約束加寬零陷算法自適應(yīng)置零仿真圖(最小間隔4°)
由仿真圖6、圖7可知,使用導(dǎo)數(shù)約束加寬零陷算法,5個(gè)發(fā)射波束在除自身以外的其它4個(gè)主瓣方向形成了零陷,并且有效地加寬了零陷,然而其主瓣有所展寬。由圖6可知,4 dB波束寬度間隔時(shí)的主瓣都偏離了期望方向,因此4 dB波束寬度間隔已不能滿足波束隔離要求。通過仿真計(jì)算,當(dāng)采用5.6°(3 dB波束寬度的1.8倍)時(shí),主瓣都回歸了期望方向,因此導(dǎo)數(shù)約束加寬零陷算法下的主瓣間隔不能小于3 dB波束寬度的1.8倍。
本文介紹了幾種發(fā)射自適應(yīng)置零多波束形成算法,包括正交投影算法、線性約束最小方差算法以及導(dǎo)數(shù)約束加寬零陷算法,對每種方法都進(jìn)行了仿真分析。通過仿真分析可以看出,每種波束形成算法都有其優(yōu)點(diǎn)與不足,正交投影算法、線性約束最小方差算法要求的波束間隔窄,但零陷寬度不夠?qū)挘瑢?dǎo)數(shù)約束加寬零陷算法雖然零陷寬度寬,但相應(yīng)地要求波束間隔變大。實(shí)際工程應(yīng)用中,由于干擾角度估計(jì)存在一定的誤差,另外當(dāng)干擾處于高速運(yùn)動(dòng)時(shí),會(huì)造成自適應(yīng)權(quán)失配,干擾跳出零陷區(qū)域,因此實(shí)際應(yīng)用時(shí)建議使用導(dǎo)數(shù)約束加寬零陷算法,擴(kuò)大零陷寬度,增加系統(tǒng)的魯棒性。當(dāng)然,對于干擾方向固定的干擾則可以采用正交投影算法和線性約束最小方差算法,以降低對波束間隔的要求。