左效平
【中考真題】
(2020·湖北·黃岡)已知:如圖1,在[?]ABCD中,點(diǎn)O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E,求證:AD = CE.
解析:∵四邊形ABCD是平行四邊形,∴AD[?]BC,∴∠D = ∠OCE,
∵[∠D=∠OCE],[OD=OC], [∠AOD=∠EOC],∴△AOD ≌ △EOC(ASA),∴AD = CE.
【構(gòu)建模型】
平行四邊形提供了一組平行線,已知一條線段的中點(diǎn),可構(gòu)成中點(diǎn)型全等三角形. (如圖1)
基本模型1:如圖2,已知AC = CB, AD[?]BE,則△ACD ≌ △BCE.
基本模型2:如圖3,已知AD是△ABC的中線, AB[?]CE,則△ABD ≌ △ECD.
【應(yīng)用模型】
1.中點(diǎn)在平行四邊形的邊上
例1(2020·浙江·紹興)如圖4,點(diǎn)E是[?]ABCD的邊CD的中點(diǎn),連接AE并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F.(1)若AD的長(zhǎng)為2,求CF的長(zhǎng).(2)若∠BAF = 90°,試添加一個(gè)條件,寫出在該條件下∠F的度數(shù).
解析:(1)∵四邊形ABCD是平行四邊形,∴AD[?]CF,
∴∠DAE = ∠CFE,∠ADE = ∠FCE,
∵[∠DAE=∠CFE],[∠ADE=∠FCE],[DE=CE],
∴△ADE ≌ △FCE(AAS),∴AD = CF,∵AD = 2,∴CF = 2.
(2)若∠BAF = 90°,當(dāng)∠B = 60°時(shí),∠F = 90° - 60° = 30°(答案不唯一).
2.中點(diǎn)在平行四邊形的對(duì)角線上
例2(2020·江蘇·淮安)如圖5,在[?]ABCD中,點(diǎn)E,F(xiàn)分別在BC,AD上,AC與EF相交于點(diǎn)O,且AO = CO.(1)求證:△AOF ≌ △COE;(2)連接AE,CF,則四邊形AECF (填“是”或“不是”)平行四邊形.
解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD[?]BC,∴∠OAF = ∠OCE,
∵[OA=OC],[∠AOF=∠COE],∴△AOF ≌ △COE(ASA).
(2)解:四邊形AECF是平行四邊形,理由如下:由(1)得:△AOF ≌ △COE,∴FO = EO,
∵AO = CO,∴四邊形AECF是平行四邊形. 故應(yīng)填“是”.
例3(2020·四川·廣元)已知O為[?]ABCD的對(duì)角線AC的中點(diǎn),過O的一條直線交AD于點(diǎn)E,交BC于點(diǎn)F.(1)求證:△AOE ≌ △COF;(2)若AE ∶ AD = 1 ∶ 2,△AOE的面積為2,求[?]ABCD的面積.
解析:(1)如圖6,∵四邊形ABCD是平行四邊形,∴AD[?]BC,∴∠EAO = ∠FCO,
∵OA = OC,[∠EAO=∠FCO],[∠AOE=∠COF],∴△AOE ≌ △COF(ASA).
(2)如圖7,過點(diǎn)O作GH[?]BC,分別交AB,CD于點(diǎn)G,H,連接OD,
易證四邊形AGOE、四邊形EOHD、四邊形AGHD、四邊形BCHG都是平行四邊形,
∵AE ∶ AD = 1 ∶ 2,∴AE = ED,∴[S△AOE=S△DOE] = 2,∴△AOD的面積為4,
∴[?]AGHD的面積為8,∴[?]ABCD的面積為16.
3.構(gòu)造對(duì)角線的中點(diǎn)
例4(2020·湖北·孝感)如圖8,在[?]ABCD中,點(diǎn)E在AB的延長(zhǎng)線上,點(diǎn)F在CD的延長(zhǎng)線上,滿足BE = DF. 連接EF,分別與BC,AD交于點(diǎn)G,H. 求證:EG = FH.
解析:連接AC,交EF于點(diǎn)O,
∵四邊形ABCD是平行四邊形,∴AB[?]CD,AB = CD,∴∠E = ∠F,
∵BE = DF,∴AE = CF. ∵[∠AOE=∠COF],∴△AOE ≌ △COF(AAS),
∴OA = OC,OE = OF,
同理可證△AOH ≌ △COG, ∴OH = OG,
∴OE - OG = OF - OH,即EG = FH.
4.中點(diǎn)在平行四邊形外
例5(2020·天津)如圖9,[?]ABCD的頂點(diǎn)C在等邊三角形BEF的邊BF上,點(diǎn)E在AB的延長(zhǎng)線上,G為DE的中點(diǎn),連接CG. 若AD = 3,AB = CF = 2,則CG的長(zhǎng)為 .
解析:∵四邊形ABCD是平行四邊形,∴AD = BC,CD = AB,DC[?]AB,
∵AD = 3,AB = CF = 2,∴CD = 2,BC = 3,∴BF = BC + CF = 5,
∵△BEF是等邊三角形,∴BE = BF = 5,
延長(zhǎng)CG交BE于H,∵DC[?]AB,∴∠CDG = ∠HEG,
∵[∠DGC=∠EGH],DG = EG,∴△DCG ≌ △EHG(ASA),
∴DC = EH,CG = HG,∵CD = 2,BE = 5,∴HE = 2,BH = 3,
∵∠CBH = 60°,BC = BH = 3,∴△CBH是等邊三角形,
∴CH = BC = 3,∴CG [=12]CH [=32]. 故應(yīng)填[32].