高志遠(yuǎn) 袁鳴 姚槐應(yīng) 葛超榮
摘要:隨著現(xiàn)代社會的快速發(fā)展和人類活動的日益增多,極端氣候如干旱和高溫等事件越來越頻繁地出現(xiàn)。干旱和高溫的同時發(fā)生容易形成極端干旱,不僅會改變土壤基本理化性質(zhì)及功能,還會影響土壤微生物群落的組成和結(jié)構(gòu),同時對微生物介導(dǎo)的土壤微生物過程及生物地球化學(xué)循環(huán)產(chǎn)生深遠(yuǎn)影響,因此了解極端干旱如何影響土壤微生物群落及其功能顯得至關(guān)重要。本文從個體到群落的角度綜述了極端干旱對土壤微生物的影響及微生物對極端干旱的響應(yīng),包括極端干旱對微生物DNA及細(xì)胞完整性造成的傷害、對細(xì)菌群落和真菌群落組成的影響、對土壤微生物介導(dǎo)的碳氮循環(huán)功能的影響以及極端干旱下根際分泌物對根際微生物功能的影響,最后從交叉學(xué)科原位研究角度和分子組學(xué)角度對相關(guān)機理進行了展望。
關(guān)鍵詞:極端干旱;土壤微生物響應(yīng);微生物群落;微生物功能
中圖分類號: S154.3 ?文獻標(biāo)志碼: A ?文章編號:1002-1302(2021)13-0035-11
極端氣候的產(chǎn)生對全球農(nóng)業(yè)生產(chǎn)產(chǎn)生了負(fù)面影響[1],而且其影響程度在未來很可能持續(xù)加劇[2]。在這些極端事件中,干旱與高溫通常同時發(fā)生,容易形成長期的極端干旱,而且可能成為生態(tài)系統(tǒng)功能變化的重要驅(qū)動力[3]。研究顯示,全球干旱地區(qū)的面積已達(dá)到總陸地面積的45%,由于氣候變化造成干旱加劇,預(yù)計全球干旱地區(qū)面積將在21世紀(jì)末上升到68%,而干旱地區(qū)面積的擴張又會進一步造成局部地區(qū)的高溫[4]。土壤是一種能夠支持植物生產(chǎn)和保持其健康的復(fù)雜體系[5]。土壤微生物群落在土壤-植物體系的養(yǎng)分循環(huán)中扮演著重要的角色[6],其活動是植物群落組成和生產(chǎn)力的關(guān)鍵驅(qū)動因素[7]。但是,極端氣候?qū)ν寥牢⑸锘钚约岸鄻有栽斐闪溯^大的擾動,也對微生物參與的土壤生態(tài)服務(wù)功能造成了較大的影響[8]。高溫和干旱事件會對土壤微生物群落產(chǎn)生累加、協(xié)同或抑制的作用,雖然這2個因素在極端干旱條件下同時出現(xiàn)[9-10],但是結(jié)合高溫和干旱這2種因素的綜合研究仍然不夠系統(tǒng)[11-12]。因此,全面深入地了解高溫干旱對微生物行為及其生態(tài)系統(tǒng)功能的影響具有重要意義。
極端干旱通常定義為土壤含水量小于2%,同時表層土壤(0~5 cm)溫度高于45 ℃的干旱條件[12]。極端干旱通過改變微生物生理而以非常直接的方式影響微生物群落。微生物利用各種生理策略來應(yīng)對氣候變化,一些微生物種群快速生長,而另一些則死亡[13-14],從而導(dǎo)致了微生物群落組成的轉(zhuǎn)變[12]。另一方面,極端干旱也會引起土壤理化性質(zhì)的變化[15],從而通過改變微生物棲息地環(huán)境來間接改變微生物群落[16-17],以致進一步影響到土壤元素循環(huán)及植物的生長。
在過去的幾十年中,有大量涉及極端干旱對土壤微生物的生理、豐度、群落組成及多樣性影響的研究[18],這些研究也包括干旱對土壤呼吸的影響[19]以及干旱[20]和溫度因素對藥物、農(nóng)業(yè)和食品工業(yè)的影響等[21]。然而,在全球極端氣候變化條件下,關(guān)于干旱和高溫因素對土壤微生物個體與群落、土壤生態(tài)系統(tǒng)功能的影響,以及土壤微生物對高溫干旱的響應(yīng)等方面,尚未有系統(tǒng)的闡述。本研究綜述了極端干旱對土壤微生物從個體細(xì)胞水平到群落系統(tǒng)水平的影響,主要包括:(1)極端干旱對土壤微生物細(xì)胞的直接影響;(2)極端干旱對土壤微生物的間接影響;(3)極端干旱條件下土壤微生物群落結(jié)構(gòu)和多樣性的改變;(4)極端干旱對土壤微生物生態(tài)功能的影響。
1 極端干旱對微生物細(xì)胞的直接影響
微生物通過其半滲透性細(xì)胞壁與水緊密接觸。在干旱條件下,微生物細(xì)胞內(nèi)水分的流失可能會損害細(xì)胞完整性并對細(xì)胞具有致死性[22]。此外,大多數(shù)微生物只能耐受40 ℃以下的溫度[12]。當(dāng)微生物長期暴露在極端干旱條件下時,在核酸層面上會造成DNA鏈斷裂、彎曲、超螺旋、化學(xué)修飾以及mRNA二級結(jié)構(gòu)的改變等[23]。另外,極端干旱條件還可以通過烷基化或氧化等化學(xué)修飾、交聯(lián)或堿基去除等方式來破壞微生物核酸,從而改變微生物細(xì)胞的基因表達(dá)模式[24-25]。在細(xì)胞膜結(jié)構(gòu)層面上,極端干旱去除了微生物細(xì)胞膜磷脂雙分子層的水合殼,增加了相鄰脂質(zhì)之間范德華力的相互作用,造成了膜相變溫度的升高,并且促進了膜在環(huán)境相變溫度下向凝膠相的轉(zhuǎn)變,相變溫度較高的膜將進入凝膠相,并與相變溫度較低的膜分離,從而導(dǎo)致蛋白質(zhì)聚集[22]。在再水化過程中,如果經(jīng)過干燥的膜在后高溫干旱時期的相變溫度高于環(huán)境溫度,造成的膜泄漏對細(xì)胞是一種嚴(yán)重傷害[26]。此外,極端干旱造成的脫水還會誘導(dǎo)蛋白構(gòu)象變化并限制酶效率,導(dǎo)致電子傳輸鏈發(fā)生變化,進而造成自由基積聚[20]。脫水過程中自由基的積累可改變微生物的膜特性,并導(dǎo)致細(xì)胞溶解,這主要是因為其引起了細(xì)胞內(nèi)蛋白質(zhì)的變性和脂質(zhì)的過氧化[25,27]。
微生物在受到環(huán)境影響時,可以采取多種生理適應(yīng)機制,使其能夠保持活躍并生存下去[13]。為了保護微生物的結(jié)構(gòu)和細(xì)胞器的完整,微生物采取的主要生理適應(yīng)機制為DNA的自我修復(fù)[24]。此外,暴露于高溫下的微生物還可以合成部分熱休克蛋白[28]。另外,經(jīng)歷干旱的一些細(xì)菌可以儲存大量核糖體,從而使它們能夠快速合成蛋白質(zhì)[29]。微生物還可以通過改變脂質(zhì)脂肪酸成分的組成[27]來實現(xiàn)膜組成的變化以維持關(guān)鍵特性,例如通過快速的細(xì)胞生理調(diào)節(jié)機質(zhì)來保持膜的流動性狀態(tài)[30]。為了降低土壤干旱對細(xì)胞膜和蛋白質(zhì)的損傷,微生物還可以合成細(xì)胞內(nèi)滲透因子[31]。最后,微生物孢子形成和休眠也是其克服各種不利極端環(huán)境條件的重要策略[32]。這些策略標(biāo)志著在極端干旱等應(yīng)激過程中,細(xì)胞生長控制和細(xì)胞周期調(diào)控的最終形式的形成[33]。
2 極端干旱對土壤微生物的間接影響
土壤具有各種各樣的微環(huán)境,這些環(huán)境提供了適合于微生物生長、活動和生存發(fā)展的廣泛生態(tài)位。微生物生境特征取決于土壤的非生物特性,例如水分、溫度、pH值、鹽度、滲透平衡、土壤養(yǎng)分、氧氣和氧化還原電位等。不同的土壤孔隙提供了不同的生境,可以適應(yīng)不同的微生物種群的生存[34]。土壤顆粒的排列結(jié)構(gòu)決定了土壤的孔隙空間大小[35],在該空間內(nèi)部,水分含量決定了土壤的物理通透性,并且是控制土壤非生物因子空間異質(zhì)性的關(guān)鍵因素之一[36]。在變動的環(huán)境條件下,水的運動推動了微環(huán)境特征的快速時空動態(tài)變化,對微生物種群變化造成了重要影響[37]。極端干旱條件對土壤微生物的影響取決于所涉及的土壤特性,但是由于極端干旱條件本身也是土壤特性的決定因素之一,因此極端干旱也可以通過改變土壤特性來間接影響土壤微生物群落結(jié)構(gòu)。
2.1 極端干旱對土壤理化性質(zhì)及微生物活動的影響
極端干旱主要通過增加和減少土壤中水分的聚集過程來調(diào)節(jié)土壤結(jié)構(gòu)[38]。土壤結(jié)構(gòu)的改變通過改變土壤的凈水特性[39]和保水能力[40]以及其熱導(dǎo)率[41]來影響土壤水分的運動。更好的通氣條件也可能改變土壤的氧化還原狀態(tài),這會導(dǎo)致一些離子在可溶與不可溶形式之間轉(zhuǎn)化,改變了其生物可利用度,從而改變這些元素的化學(xué)存在形式及微生物對其利用的方式。此外,土壤含水量決定了土壤pH值,隨著土壤溶液變得更加濃縮,它可能會使微生物暴露于滲透脅迫下[42]。土壤pH值在廣泛的生物地球化學(xué)條件下與微生物群落密切相關(guān)[43]。土壤pH值以不同的方式影響微生物的代謝。在自然環(huán)境中,將環(huán)境pH值升高或降低1個單位會使微生物群落的代謝活性降低多達(dá)50%[44]。
極端干旱還可以通過改變養(yǎng)分的利用率來改變微生物的活動。干燥土壤,尤其是再濕潤的干燥土壤會導(dǎo)致生物或物理過程中有機物的利用率增加,從而增加微生物的活性[45]。這可能是由于在干旱期間土壤微生物分泌的外切酶改變了土壤的微環(huán)境,但所產(chǎn)生的有機質(zhì)對于微生物仍然不可利用,直到潤濕使其具有生物可利用性,從而提升了這些有機質(zhì)的利用率[12,45]。此外,極端干旱條件下,有機物的“質(zhì)量”可能會提高,并且可能具有高周轉(zhuǎn)率使其更容易被降解,從而為微生物提供了新的營養(yǎng)優(yōu)勢[46]。另外,極端干旱可能會加劇有機質(zhì)分解,提高有機物的生物利用率[18],從而促進了高親和力土壤有機礦物的分解和吸收[47],并可能在動力學(xué)上刺激微生物對不穩(wěn)定碳的吸收和利用[48]。
2.2 微生物細(xì)胞膜對極端干旱條件的響應(yīng)
生物膜是由細(xì)胞生物量和細(xì)胞外聚合物組成的一種混合微生物群體。其中,后者主要成分是微生物分泌的高分子量物質(zhì)以及細(xì)胞裂解和大分子水解的產(chǎn)物,可顯著促進微生物聚集并維持微生物聚集體的穩(wěn)定性。胞外聚合物是生物膜的主要成分,可在極端環(huán)境下為細(xì)胞提供碳源和能量[49]。眾所周知,各種微生物生物膜環(huán)境,例如水生附生植物和生物土壤結(jié)皮,都對微生物群落有利,可以保護它們免受極端環(huán)境的干擾[50]。在極端環(huán)境下,胞外聚合物的產(chǎn)生不僅在細(xì)胞上而且在環(huán)境層面上都起著關(guān)鍵作用[51]。實際上,在干旱、侵蝕、輻射和高溫下的沙漠表層土壤微生態(tài)系統(tǒng)中,生物土壤結(jié)皮的形成、土壤穩(wěn)定化和保水作用均取決于胞外聚合物的產(chǎn)生[52]。
胞外聚合物能夠吸收環(huán)境中的水[26],保留土壤養(yǎng)分[53],保持了土壤中水分的運輸特性以及土壤的濕潤性[54],并增加了土壤團聚體的穩(wěn)定性[55]。這意味著胞外聚合物可能在快速干濕過程中造成一定程度的水分隔離,從而保護了土壤中包埋在生物膜中的微生物[50]。土壤胞外聚合物在土壤-微生物界面的位置及其特定的水文特征,可能對極端干旱條件下,分析土壤孔隙連通性和受水合作用影響的微生物活性之間的相互影響具有重要作用[56]。
3 極端干旱條件下土壤微生物群落結(jié)構(gòu)和多樣性格局的改變 ?極端干旱不僅能對土壤微生物細(xì)胞產(chǎn)生影響,還能進一步改變土壤微生物群落的組成和結(jié)構(gòu)。由于微生物群落是生態(tài)過程的重要驅(qū)動因素,了解極端干旱對土壤微生物群落的影響對于預(yù)測生態(tài)系統(tǒng)功能具有重要意義[57-58]。
3.1 極端干旱對微生物群落組成的影響
雖然極端干旱對微生物群落組成產(chǎn)生了一定的影響,但不同微生物種類對極端干旱的響應(yīng)存在較大的差異。與細(xì)菌相比,真菌在全球范圍內(nèi)對高溫更加敏感[59]。研究顯示,大部分真菌比細(xì)菌更適合土壤低濕度條件[60]。這種適應(yīng)性差異與特定的真菌性狀有關(guān),例如,在低擴散率時,真菌菌絲比細(xì)菌更能自主運輸擴散,不過度依賴水驅(qū)動運輸[61]。因此,干旱條件可能會增加微生物群落中的真菌優(yōu)勢[62-63]。在細(xì)菌組中,干旱可能會對革蘭氏陰性細(xì)菌影響較大,而對于革蘭氏陽性細(xì)菌影響較小[13,64]。革蘭氏陽性細(xì)菌被認(rèn)為比革蘭氏陰性細(xì)菌更能適應(yīng)高的水位滲透勢[65],因為它們具有保守的生物學(xué)特性,例如厚而堅硬的細(xì)胞壁、高滲透壓調(diào)節(jié)能力[13,66-68]和孢子形成能力[25]。有研究者應(yīng)用了這些發(fā)現(xiàn),并提出了優(yōu)化革蘭氏陽性對革蘭氏陰性和真菌對細(xì)菌的比率,作為群落抗旱性的全球指標(biāo)[69]。
極端干旱還會對微生物的豐度造成較大的影響,研究顯示干旱環(huán)境的土壤微生物菌群主要由放線菌門、變形菌門、擬桿菌門、酸桿菌門和厚壁菌門為主,而海洋微生物門、衣原體門、軟壁菌門和糖化菌門等不存在[70]。進一步研究表明,在干旱土壤中,微生物結(jié)構(gòu)似乎受到年平均降水量和年平均溫度的強烈調(diào)控,而不是pH值的影響[70]。從溫度角度來說,寒冷條件下的土壤微生物主要是由變形菌門(12.1%)、放線菌門(31.8%)、擬桿菌門(11.7%)和酸桿菌門(15.4%)組成,高溫條件下的土壤微生物是由厚壁菌門(8.6%)、放線菌門(36.8%)、變形菌門(23.8%)和酸桿菌門(5.5%)組成。同樣地,盡管放線菌是干旱土壤中的優(yōu)勢門,但隨著年平均降水量的增加,其相對豐度顯著降低。這些觀察結(jié)果強調(diào)了溫度和水分對干旱土壤中某些微生物類群相對豐度的影響。
有些研究認(rèn)為,放線菌是干旱土壤中的優(yōu)勢門,與土壤相對濕度的降低呈正相關(guān)[71-72]。也有研究認(rèn)為,當(dāng)土壤濕度降低時,變形菌、藍(lán)藻菌和黑體菌與其正相關(guān)[70]。將微生物豐度與年平均溫度的增加對比,可以觀察到變形菌門和厚壁菌門豐度增加,而酸桿菌門和擬桿菌門豐度減少[70]。相反,寒冷條件下內(nèi)蒙古草原上擬桿菌門的豐度很高[73]。同樣,Kumar等研究表明,擬桿菌門在寒冷環(huán)境中占優(yōu)勢,但在研究的較冷地區(qū)則不占優(yōu)勢[74]。有趣的是,研究發(fā)現(xiàn)極端干旱條件下細(xì)菌群落內(nèi)部觀察到了更多的擬桿菌,這個門類微生物在28 d 50 ℃試驗中表現(xiàn)出耐熱性[75]。這表明,擬桿菌門在寒冷環(huán)境和高溫干旱環(huán)境中都能生長旺盛,具有較好的極端環(huán)境適應(yīng)性。
3.2 細(xì)菌群落和真菌群落對極端干旱的響應(yīng)差異
生態(tài)網(wǎng)絡(luò)分析是研究微生物群落對擾動反應(yīng)的一種新方法[76]。土壤微生物群落形成了高度復(fù)雜的生態(tài)網(wǎng)絡(luò),其中包括共存類群之間的多種相互作用,而且越來越多的證據(jù)表明,這些網(wǎng)絡(luò)的特性可以影響它們對極端氣候的反應(yīng)。例如,最近的一項研究顯示,干旱對細(xì)菌的影響大于對真菌的影響[77],這與土壤細(xì)菌群落比真菌群落抗旱能力弱的預(yù)期相一致[62,78-79]。然而,也有研究發(fā)現(xiàn),細(xì)菌共生網(wǎng)絡(luò)在理論上具有在擾動下穩(wěn)定性較低的特性,如高連通性和中心性,而真菌網(wǎng)絡(luò)具有穩(wěn)定性較高的特性,如負(fù)相關(guān)性較少,從而使微生物生態(tài)共生網(wǎng)絡(luò)趨于穩(wěn)定[80-83]。另一個重要的發(fā)現(xiàn)是,對干旱反應(yīng)最靈敏的主要細(xì)菌類群高度集中并在生態(tài)網(wǎng)絡(luò)中相互連接,這表明它們是細(xì)菌網(wǎng)絡(luò)結(jié)構(gòu)變化的主要驅(qū)動因素[77]。盡管在解釋共生網(wǎng)絡(luò)時需要謹(jǐn)慎[84-85],但它可以提供關(guān)于微生物類群間的相關(guān)性和時空結(jié)構(gòu)以及面對極端氣候等擾動時微生物群落的穩(wěn)定性的重要信息[77,86]。
細(xì)菌和真菌群落如何適應(yīng)干旱脅迫呢?細(xì)菌群落對干旱的適應(yīng)力和恢復(fù)力取決于該群落的組成以及它們是否或如何適應(yīng)干旱脅迫。一般來說,革蘭氏陽性細(xì)菌有內(nèi)在的抗旱能力,因為它們有厚厚的細(xì)胞壁起到限制脫水的作用[87],這與前述一致。相比之下,革蘭氏陰性硝化菌或甲烷氧化菌對脫水更敏感,受干旱影響較大,會被弱化部分功能[13]。暴露在干旱脅迫下的細(xì)菌群落能夠通過更靈敏的感應(yīng)脅迫、溶質(zhì)合成和休眠等反應(yīng)機制[88]以更好地應(yīng)對干旱[89]。在干旱很少發(fā)生的地方,細(xì)菌群落更容易受到干旱的影響,因為它們不能預(yù)先適應(yīng)土壤濕度的極端范圍[89]。
真菌是土壤微生物群落的另一個重要組成部分。真菌被認(rèn)為比細(xì)菌更能適應(yīng)水分脅迫,并且能夠通過多糖的分泌在自己周圍創(chuàng)造一個保護環(huán)境來防止脫水[90]。當(dāng)土壤水分受限時,底物擴散限制可能會迫使土壤真菌菌絲網(wǎng)絡(luò)擴張,有助于真菌對水分和養(yǎng)分的吸收[91],而且真菌群落組成的變異性更高,具有高可塑性的種群周轉(zhuǎn)率使得真菌能快速對干旱做出響應(yīng)[92]。另一方面,土壤水分變化通過植物群落間接影響真菌,真菌群落中大量的菌根和腐生真菌強烈依賴植物物種[93-94]。腐生真菌更易受到資源可用性的影響,如植物根系分泌物輸入量及化學(xué)特性[95]。像細(xì)菌一樣,真菌也以多元醇[96]而不是氨基酸的形式積累滲透物質(zhì)。在極端水分脅迫下,真菌細(xì)胞的碳和氮可分別增加30%~40%和20%[13,97]。干濕交替和長期干旱也可能增加真菌與細(xì)菌的比率[98],真菌群落比例較大的土壤更能保持養(yǎng)分[99]。
4 極端干旱對微生物功能的影響
微生物群落組成及其與物種的相互作用是生態(tài)系統(tǒng)功能的關(guān)鍵驅(qū)動力[100]。極端干旱引起的微生物組成變化可能會影響土壤功能,進而影響土壤所提供的服務(wù)[101]。極端干旱造成的土壤條件的變化會影響微生物的功能,如二氧化碳排放、有機質(zhì)降解、養(yǎng)分循環(huán)和固氮等[12,18,63,102-103]。在這些功能里面,涉及土壤碳氮循環(huán)及微生物-植物相互作用等方面更值得被關(guān)注。
4.1 極端干旱條件對微生物參與土壤碳氮循環(huán)的影響
極端干旱顯著地影響了土壤微生物群落的結(jié)構(gòu)和功能,從而改變土壤微生物介導(dǎo)的碳氮轉(zhuǎn)化。由于干旱通常與高溫同時發(fā)生,因此了解土壤中碳氮循環(huán)與水和溫度相互作用至關(guān)重要[104]。極端干旱主要通過降低土壤水分來影響土壤碳氮循環(huán),所以土壤碳氮循環(huán)對土壤水分的變化較為敏感[105]。干旱期間較低的水位滲透勢和減少底物擴散可以抑制微生物的生長,增加微生物的死亡率,誘導(dǎo)微生物休眠,從而造成微生物群落組成發(fā)生變化[105-106]。同時,干旱會降低微生物的活性,例如降低呼吸作用[105]。干旱也會降低參與蛋白質(zhì)解聚的細(xì)胞外酶活性,但是其對微生物攝入和生產(chǎn)總氨基酸的影響仍未能確定[107]。在干旱期間,有機化合物可以集中在剩余的土壤溶液中,并可能增加底物酶解作用的能力[108]。此外,在干燥條件下,細(xì)胞外酶的活性可能比微生物細(xì)胞更高[109]。干旱會降低NO-3產(chǎn)生量和增加NH+4的吸收。氮礦化的減少導(dǎo)致微生物氮素利用效率總體減少。雖然干旱可能會刺激微生物采取策略來保護氮,例如生產(chǎn)含氮的滲透壓化合物[105],但干旱對氮礦化和硝化的影響很大程度上取決于生態(tài)系統(tǒng)和土地管理類型[104,110]。研究顯示,干旱降低了2個草地中微生物生物量中的氮濃度,顯著提高了蛋白質(zhì)解聚速率,這是蛋白酶催化的胞外過程[111],這與在溫帶荒地中觀察到的動態(tài)變化相反。在溫帶荒地中,蛋白質(zhì)解聚速率不受干旱的影響[112]??傮w而言,干旱能夠增加微生物中碳氮比,這種現(xiàn)象與以前的研究結(jié)果[63]一致,表明干旱對微生物氮循環(huán)的影響可能比碳循環(huán)更大。
溫度升高通常會增加微生物的活性,但也會增加維護成本和微生物能量需求[113]。如果微生物將更多的碳分配給呼吸,而不是增加其生物量,則會降低微生物的碳利用率[114],這可能會導(dǎo)致土壤碳的整體損失[115]。較高的溫度可使蛋白質(zhì)在熱力學(xué)上以更快的速度分解為適合微生物吸收的有機氮形式,從而刺激微生物生長[116],盡管它們也可能會加速酶的失活[117]。還有研究顯示,隨著溫度的升高,微生物對氮的礦化作用和硝化作用比吸收無機氮的作用更強烈,從而導(dǎo)致土壤中無機氮的凈增加[118-119]。總體而言,微生物的碳和氮循環(huán)過程對環(huán)境條件的變化反應(yīng)不同,微生物的碳循環(huán)對溫度變化更敏感,而氮循環(huán)受水的可利用性更強烈。
在干旱期間,表層土壤中常出現(xiàn)多個干濕交替的情況,因為這些地區(qū)有一些間歇降雨,但不足以使土壤完全重新濕潤并打破干旱。研究發(fā)現(xiàn),重復(fù)的干濕交替循環(huán)增加了有機質(zhì)的氮礦化和周轉(zhuǎn)[120]。多次干濕交替會降低氨氮含量和脲酶活性,增加溶解的有機碳[121]。草地土壤干濕交替后,可提取有機碳立即增加80%,微生物生物量碳下降[122]。然而,重濕后并沒有發(fā)現(xiàn)土壤氮總?cè)芙鉂舛仍黾拥淖C據(jù)[123]。礦化率增加導(dǎo)致的氮和碳的淋洗可能在2~3 d后消退[124],或者在最初的重新潤濕后持續(xù)10 d[125]。Butterly等測定的重新濕潤后溶解氮增加,持續(xù)4 d后恢復(fù)到與干燥前相同的水平[126]。
在同一研究中,微生物生物量碳隨著每次干濕交替的發(fā)生而降低,在5個循環(huán)后為潮濕對照中測量的60%。Mikha等也觀察到,反復(fù)干燥和濕潤循環(huán)導(dǎo)致碳量的減少[127]。同樣,增加濕潤和干燥循環(huán)次數(shù)會減少干燥再濕潤事件中的氮礦化[128],凋落物分解隨著再濕潤頻率的增加而減少[129]。在反復(fù)的水土流失事件中,土壤中碳和氮的損失分別高達(dá)18%和10%[130],這是每年土壤養(yǎng)分損失的重要部分。
4.2 極端干旱條件下根系分泌物對微生物功能的影響
土壤微生物對植物多樣性和生產(chǎn)力的貢獻可能是其在生態(tài)系統(tǒng)功能中,特別是在農(nóng)業(yè)系統(tǒng)中最重要的作用之一[131-132]。在根際這樣的土壤微生物活動“熱點”區(qū)域中,微生物在不同時空尺度上參與了土壤-植物體系的各種過程[5]。另外,已經(jīng)有研究顯示,植物可以直接或間接控制和介導(dǎo)土壤中尤其是微生物圈的多營養(yǎng)相互作用[5,133],植物群落組成差異影響微生物生物量和分解代謝活動,從而對干濕擾動的恢復(fù)力存在抗性差異[134]。隨著植物通過碳輸入獲得更多的資源,微生物群落結(jié)構(gòu)對全球變化干擾的適應(yīng)力會增加,這可能會刺激胞外聚合物的產(chǎn)生和生物膜的發(fā)育[56]。研究顯示,極端干旱條件下,土壤微生物的多樣性與植物的多樣性存在顯著正相關(guān)[135],因此植物與土壤微生物之間存在著相互反饋的協(xié)同抗旱機制。
根系分泌物是植物與微生物間的主要交流途徑,在生態(tài)系統(tǒng)對環(huán)境變化的響應(yīng)中發(fā)揮著關(guān)鍵作用。植物發(fā)育會影響根系分泌物的組成,進而通過優(yōu)先吸收特定代謝產(chǎn)物影響根際細(xì)菌群落[136]。微生物群落的變化也可以促進植物的生長和物候變化,例如擬南芥中香豆素的滲出刺激了致病菌誘導(dǎo)和促進生長的根瘤菌的存在[137]。也有研究顯示,根系分泌物選擇的土壤微生物增加了土壤氮的利用率,進而延遲了開花時間[138]。另外,根系分泌物也可能反映干旱后植物再生和生態(tài)系統(tǒng)恢復(fù)情況[139-140],例如,有研究記錄了干旱恢復(fù)期間向日葵和大豆根系分泌物滲出速率和組成的差異響應(yīng)[141]。而在冬櫟中,分泌物的代謝特征取決于干旱或恢復(fù)的不同階段[142]。還有一些植物通過微生物影響根部基因的表達(dá)以促進干旱保護,例如,干旱期間玉米得益于與叢枝菌根真菌(arbuscular mycorrhizal fungi)的共生關(guān)系,叢枝菌根真菌通過減少根中水通道蛋白相關(guān)基因的表達(dá)來調(diào)節(jié)水分流失[143]。此外,植物還可以通過根系分泌物選擇特定的細(xì)菌來增強抗旱能力,例如,干旱能增加玉米中有機酸的滲出,特別是蘋果酸(以及富馬酸、丙二酸、琥珀酸和草酸)[144],它是枯草芽孢桿菌(Bacillus subtilis)的一種有效的化學(xué)吸引劑[145],枯草芽孢桿菌是有益的細(xì)菌種類,研究顯示其可增加植物的抗旱性[146]。這些研究表明,不同生長策略的植物根系分泌物不同,根系分泌物可以選擇有益的土壤微生物群落,以不同的方式降低極端干旱對植物的脅迫并保證植物的正常生長。
5 總結(jié)與展望
極端干旱(干旱與高溫同時存在的條件)對土壤微生物介導(dǎo)的生物地球化學(xué)循環(huán)及其陸地生態(tài)系統(tǒng)生態(tài)服務(wù)功能產(chǎn)生了較大的影響。為了應(yīng)對極端干旱,土壤微生物動員了從個體到群落的應(yīng)對策略(圖1),包括DNA的自我修復(fù)、合成熱休克蛋白、維持細(xì)胞膜的流動性、分泌胞外聚合物以及合成生物膜等措施。從群落角度而言,真菌比細(xì)菌更容易耐受極端干旱條件,革蘭氏陽性菌比陰性菌也具有更高的極端干旱耐受性。放線菌門、擬桿菌門、變形菌門等門類的微生物是極端干旱環(huán)境下微生物的主要門類。土壤微生物所介導(dǎo)的碳循環(huán)對溫度變化更敏感,而氮循環(huán)受水的影響更大。植物根際分泌物也能夠選擇有益的土壤微生物群落,根際微生物能夠以不同的方式降低極端干旱對植物的脅迫,并保證營養(yǎng)和水分的運輸。雖然本文梳理了極端干旱對土壤微生物從個體到群落以及功能方面的影響,但是其相關(guān)機制仍然不甚清楚,為了更加系統(tǒng)地研究極端干旱對土壤微生物群落與功能的影響機制,還需要從以下幾個方面進行進一步的研究:(1)在極端干旱對土壤微生物群落的影響上,應(yīng)該考慮進行原位研究,比較微生物群落對不
同緯度和不同土地土壤中極端氣候事件的反應(yīng),并討論高溫和干旱綜合影響的模型效果。(2)有必要開展極端干旱條件下土壤微生物結(jié)構(gòu)功能的穩(wěn)定性狀、共耐受性和微生物抗性和恢復(fù)性的相關(guān)性方面的研究。(3)元轉(zhuǎn)錄組學(xué)和代謝組學(xué)可以提供定量信息來反映具有相同功能的微生物群落,可以通過識別分類單元功能基因的表達(dá)來反應(yīng)環(huán)境干擾。雖然轉(zhuǎn)錄組學(xué)和代謝組學(xué)為在極端干旱環(huán)境下將土壤微生物群落結(jié)構(gòu)的穩(wěn)定性與微生物群落的功能聯(lián)系起來提供了新的補充工具,但是極端干旱環(huán)境下土壤中潛在的功能基因的分布仍然是一個挑戰(zhàn)。(4)積極開展跨學(xué)科的合作,進一步研究極端干旱發(fā)生前后根際及其寄主的物理化學(xué)特性與植物和微生物相互作用機制,對理解土壤微生物的農(nóng)業(yè)生態(tài)功能有重要意義。
參考文獻:
[1]IPCC. Climate change 2014[M]. Cambridge:Cambridge University Press,2014.
[2]IPCC. Climate change 2013[M]. Cambridge:Cambridge University Press,2013.
[3]Heisler J L,Weltzin J F. Variability matters:towards a perspective on the influence of precipitation on terrestrial ecosystems[J]. New Phytologist,2006,172(2):189-192.
[4]Huang J P,Yu H P,Guan X D,et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change,2016,6(2):166-171.
[5]Chakraborty S,Pangga I,Roper M. Climate change and multitrophic interactions in soil:the primacy of plants and functional domains[J]. Global Change Biology,2012,18(7):2111-2125.
[6]Reynolds H L,Packer A,Bever J D,et al. Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics [J]. Ecology,2003,84(9):2281-2291.
[7]Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304(5677):1629-1633.
[8]Jentsch A,Kreyling J,Elmer M,et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J]. Journal of Ecology,2011,99(3):689-702.
[9]Berard A,Bouchet T,Sévenier G,et al. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves[J]. European Journal of Soil Biology,2011,47(6):333-342.
[10]Wang H,Yang J P,Yang S H,et al. Effect of a 10 ℃-elevated temperature under different water contents on the microbial community in a tea orchard soil [J]. European Journal of Soil Biology,2014,62:113-120.
[11]Acosta-Martínez V,Cotton J,Gardner T,et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling [J]. Applied Soil Ecology,2014,84:69-82.
[12]Acosta-Martinez V,Moore-Kucera J,Cotton J,et al. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics [J]. Applied Soil Ecology,2014,75:43-51.
[13]Schimel J,Balser T C,Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology,2007,88(6):1386-1394.
[14]Allison S D,Martiny J B H. Resistance,resilience,and redundancy in microbial communities [J]. PNAS,2008,105(s1):11512-11519.
[15]Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(781):165-173.
[16]Parker S S,Schimel J P. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland[J]. Applied Soil Ecology,2011,48(2):185-192.
[17]Navarro-Garcia F,Casermeiro M A,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[18]Hamdi S,Chevallier T,Ben Aissa N,et al. Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures[J]. Soil Biology & Biochemistry,2011,43(9):1752-1758.
[19]Manzoni S,Schimel J P,Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology,2012,93(4):930-938.
[20]Vriezen J C,de Bruijn F J,Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress,oxygen,and temperature[J]. Applied and Environmental Microbiology,2007,73(11):3451-3459.
[21]García A H. Anhydrobiosis in bacteria:from physiology to applications[J]. Journal of Biosciences,2011,36(5):939-950.
[22]Billi D,Potts M. Life and death of dried prokaryotes[J]. Research in Microbiology,2002,153(1):7-12.
[23]Schumann W. Temperature sensors of eubacteria [J]. Advances in Applied Microbiology,2009,67:213-256.
[24]Dose K,Bieger-Dose A,Kerz O,et al. DNA-strand breaks limit survival in extreme dryness[J]. Origins of Life and Evolution of the Biosphere,1991,21(3):177-187.
[25]Potts M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews,1994,58(4):755-805.
[26]Potts M. Desiccation tolerance:a simple process?[J]. Trends in Microbiology,2001,9(11):553-559.
[27]Russell N J,Evans R I,ter Steeg P,et al. Membranes as a target for stress adaptation[J]. International Journal of Food Microbiology,1995,28(2):255-261.
[28]Hecker M,Schumann W,Vlker U. Heat-shock and general stress response in Bacillus subtilis[J]. Molecular Microbiology,1996,19(3):417-428.
[29]Placella S A,Brodie E L,F(xiàn)irestone M K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups[J]. PNAS,2012,109(27):10931-10936.
[30]Kakumanu M L,Cantrell C L,Williams M A. Microbial community response to varying magnitudes of desiccation in soil:a test of the osmolyte accumulation hypothesis [J]. Soil Biology & Biochemistry,2013,57:644-653.
[31]Zhang Q,Yan T. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations[J]. Applied and Environmental Microbiology,2012,78(20):7407-7413.
[32]Lennon J T,Jones S E. Microbial seed banks:the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology,2011,9(2):119-130.
[33]Kültz D. Molecular and evolutionary basis of the cellular stress response[J]. Annual Review of Physiology,2005,67:225-257.
[34]Ruamps L S,Nunan N,Chenu C. Microbial biogeography at the soil pore scale[J]. Soil Biology & Biochemistry,2011,43(2):280-286.
[35]Voroney R P. 2-The soil habitat [M]//Soil Microbiology,Ecology & Biochemistry,Academic Press,2007:25-49.
[36]Ettema C H,Wardle D A. Spatial soil ecology[J]. Trends in Ecology & Evolution,2002,17(4):177-183.
[37]賈全全,黃寶祥,劉麗婷,等. 水梔子根結(jié)線蟲種群動態(tài)及其對土壤微環(huán)境的影響[J]. 南方林業(yè)科學(xué),2019,47(1):33-36,48.
[38]Denef K,Six J,Bossuyt H,et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics[J]. Soil Biology & Biochemistry,2001,33(12/13):1599-1611.
[39]Alaoui A,Lipiec J,Gerke H H. A review of the changes in the soil pore system due to soil deformation:a hydrodynamic perspective [J]. Soil & Tillage Research,2011,115/116:1-15.
[40]馬媛媛,戴顯慶,彭紹好,等. 天然沸石對松嫩平原黑鈣土理化性質(zhì)和保水能力的影響[J]. 北京林業(yè)大學(xué)學(xué)報,2018,40(2):51-57.
[41]Usowicz B,Lipiec J,Usowicz J B,et al. Effects of aggregate size on soil thermal conductivity:comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer,2013,57(2):536-541.
[42]Bertram J E,Orwin K H,Clough T J,et al. Effect of soil moisture and bovine urine on microbial stress[J]. Pedobiologia,2012,55(4):211-218.
[43]Thompson L R,Sanders J G,Mcdonald D,et al. A communal catalogue reveals Earths multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.
[44]Fernández-Calvio D,Bth E. Growth response of the bacterial community to pH in soils differing in pH[J]. FEMS Microbiology Ecology,2010,73(1):149-156.
[45]Navarro-García F,ngel Casermeiro M,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[46]Zhang B,Deng H,Wang H L,et al. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?[J]. Soil Biology & Biochemistry,2010,42(5):850-859.
[47]Conant R T,Ryan M G,Agren G I,et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward[J]. Global Change Biology,2011,17(11):3392-3404.
[48]Hamdi S,Moyano F,Sall S,et al. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions [J]. Soil Biology & Biochemistry,2013,58:115-126.
[49]臺喜榮,馮 騫,孫亞青,等. 胞外DNA在生物膜形成及發(fā)展過程中的作用[J]. 凈水技術(shù),2019,38(11):54-60.
[50]Flemming H C,Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9):623-633.
[51]Rossi F,Potrafka R M,Pichel F G,et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts [J]. Soil Biology & Biochemistry,2012,46:33-40.
[52]Wu N,Zhang Y M,Pan H X,et al. The role of nonphotosynthetic microbes in the recovery of biological soil crusts in the gurbantunggut desert,northwestern China[J]. Arid Land Research and Management,2010,24(1):42-56.
[53]Mager D M,Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts:a review of their role in dryland soil processes[J]. Journal of Arid Environments,2011,75(2):91-97.
[54]Schaumann G E,Braun B,Kirchner D,et al. Influence of biofilms on the water repellency of urban soil samples[J]. Hydrological Processes,2010,21(17):2276-2284.
[55]Sandhya V,Skz A,Grover M,et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils,2009,46(1):17-26.
[56]Redmile-Gordon M A,Brookes P C,Evershed R P,et al. Measuring the soil-microbial interface:extraction of extracellular polymeric substances (EPS) from soil biofilms [J]. Soil Biology & Biochemistry,2014,72:163-171.
[57]Tardy V,Mathieu O,Lévêque J,et al. Stability of soil microbial structure and activity depends on microbial diversity[J]. Environmental Microbiology Reports,2014,6(2):173-183.
[58]Shade A,Peter H,Allison S D,et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology,2012,3:417.
[59]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[60]Yuste J C,Penuelas J,Estiarte M,et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature[J]. Global Change Biology,2011,17(3):1475-1486.
[61]Poll C,Ingwersen J,Stemmer M,et al. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere[J]. European Journal of Soil Science,2010,57(4):583-595.
[62]Barnard R L,Osborne C A,F(xiàn)irestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal,2013,7(11):2229-2241.
[63]Zeglin L H,Bottomley P J,Jumpponen A,et al. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales[J]. Ecology,2013,94(10):2334-2345.
[64]Castro Gonzalez H F,Classen A T,Austin E E,et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology,2010,76(4):999-1007.
[65]Rokitko P V,Romanovskaia V A,Malashenko I,et al. Soil drying as a model for the action of stress factors on natural bacterial populations [J]. Mikrobiologiia,2003,72(6):854-861.
[66]Kempf B,Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology,1998,170(5):319-330.
[67]Uhlírová E,Elhottová D,Tríska J,et al. Physiology and microbial community structure in soil at extreme water content[J]. Folia Microbiologica,2005,50(2):161-166.
[68]Hamer U,Unger M,Manuela F,et al. Impact of air-drying and rewetting on PLFA profiles of soil microbial communities[J]. Journal of Plant Nutrition and soil Science,2007,170(2):259-264.
[69]de Vries F T,Shade A. Controls on soil microbial community stability under climate change[J]. Frontiers in Microbiology,2013,4:265.
[70]Vásquez-Dean J,Maza F,Morel I,et al. Microbial communities from arid environments on a global scale. A systematic review[J]. Biological Research,2020,53(1):29.
[71]Chanal A,Chapon V,Benzerara K,et al. The desert of Tataouine:an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria[J]. Environmental Microbiology,2006,8(3):514-525.
[72]Nagy M L,Pérez A,Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument,AZ)[J]. FEMS Microbiology Ecology,2005,54(2):233-245.
[73]Yao M J,Rui J P,Niu H S,et al. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe[J]. Catena,2017,152:47-56.
[74]Kumar S,Suyal D C,Yadav A,et al. Microbial diversity and soil physiochemical characteristic of higher altitude[J]. PLoS One,2019,14(3):e0213844.
[75]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[76]Ramirez K S,Geisen S,Morrin E,et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science,2018,23(9):759-768.
[77]de Vries F T,Griffiths R I,Bailey M,et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications,2018,9:3033.
[78]de Vries F T,Liiri M E,Bjrnlund L,et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nature Climate Change,2012,2(4):276-280.
[79]Bapiri A,Bth E,Rousk J. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil[J]. Microbial Ecology,2010,60(2):419-428.
[80]Rooney N,McCann K,Gellner G,et al. Structural asymmetry and the stability of diverse food webs[J]. Nature,2006,442(710):265-269.
[81]Neutel A M,Heesterbeek J A,De Ruiter P C. Stability in real food webs:weak links in long loops[J]. Science,2002,296(5570):1120-1123.
[82]Coyte K Z,Schluter J,F(xiàn)oster K R. The ecology of the microbiome:networks,competition,and stability[J]. Science,2015,350(6261):663-666.
[83]Stouffer D B,Bascompte J. Compartmentalization increases food-web persistence[J]. PNAS,2011,108(9):3648-3652.
[84]Freilich M A,Wieters E,Broitman B R,et al. Species co-occurrence networks:can they reveal trophic and non-trophic interactions in ecological communities?[J]. Ecology,2018,99(3):690-699.
[85]Berry D,Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks[J]. Frontiers in Microbiology,2014,5:219.
[86]Barberán A,Bates S T,Casamayor E O,et al. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal,2012,6(2):343-351.
[87]Koch A L. The biophysics of the gram-negative periplasmic space[J]. Critical Reviews in Microbiology,1998,24(1):23-59.
[88]Wood J M. Osmosensing by bacteria:signals and membrane-based sensors[J]. Microbiology and Molecular Biology Reviews,1999,63(1):230-262.
[89]Fierer N,Schimel J P,Holden P A. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology,2003,45(1):63-71.
[90]Borken W,Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Global Change Biology,2009,15(4):808-824.
[91]胡振琪,紀(jì)晶晶,王幼珊,等. AM真菌對復(fù)墾土壤中苜蓿養(yǎng)分吸收的影響[J]. 中國礦業(yè)大學(xué)學(xué)報,2009,38(3):428-432,449.
[92]Kaisermann A,Maron P A,Beaumelle L,et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities [J]. Applied Soil Ecology,2015,86:158-164.
[93]Hawkes C V,Kivlin S N,Rocca J D,et al. Fungal community responses to precipitation[J]. Global Change Biology,2015,17(4):1637-1645.
[94]Suttle K B,Thomsen M A,Power M E. Species interactions reverse grassland responses to changing climate[J]. Science,2007,315(5812):640-642.
[95]Waldrop M P,Zak D R,Blackwood C B,et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127-1135.
[96]Witteveen C F B,Visser J. Polyol pools in Aspergillus niger[J]. FEMS Microbiology Letters,1995,134(1):57-62.
[97]Schimel J P,Scott W J,Killham K. Changes in cytoplasmic carbon and nitrogen pools in a soil bacterium and a fungus in response to salt stress[J]. Applied and Environmental Microbiology,1989,55(6):1635-1637.
[98]Evans S E,Wallenstein M D. Soil microbial community response to drying and rewetting stress:does historical precipitation regime matter?[J]. Biogeochemistry,2012,109(1):101-116.
[99]Gordon H,Haygarth P M,Bardgett R D. Drying and rewetting effects on soil microbial community composition and nutrient leaching[J]. Soil Biology & Biochemistry,2008,40(2):302-311.
[100]Bell T,Newman J A,Silverman B W,et al. The contribution of species richness and composition to bacterial services[J]. Nature,2005,436(754):1157-1160.
[101]Strickland M S,Lauber C,F(xiàn)ierer N,et al. Testing the functional significance of microbial community composition[J]. Ecology,2009,90(2):441-451.
[102]Unger S,Máguas C,Pereira J S,et al. The influence of precipitation pulses on soil respiration—Assessing the“Birch effect”by stable carbon isotopes[J]. Soil Biology & Biochemistry,2010,42(10):1800-1810.
[103]Mills R T E,Gavazov K S,Spiegelberger T,et al. Diminished soil functions occur under simulated climate change in a sup-alpine pasture,but heterotrophic temperature sensitivity indicates microbial resilience [J]. Science of the Total Environment,2014,473/474:465-472.
[104]Novem A D,Suseela V,Dukes J S. Warming and drought reduce temperature sensitivity of nitrogen transformations[J]. Global Change Biology,2013,19(2):662-676.
[105]Moyano F E,Manzoni S,Chenu C. Responses of soil heterotrophic respiration to moisture availability:an exploration of processes and models [J]. Soil Biology & Biochemistry,2013,59:72-85.
[106]Blagodatskaya E,Kuzyakov Y. Active microorganisms in soil:critical review of estimation criteria and approaches [J]. Soil Biology & Biochemistry,2013,67:192-211.
[107]Sanaullah M,Blagodatskaya E,Chabbi A,et al. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition[J]. Applied Soil Ecology,2011,48(1):38-44.
[108]Tiemann L K,Billings S A. Tracking C and N flows through microbial biomass with increased soil moisture variability [J]. Soil Biology & Biochemistry,2012,44:11-22.
[109]Steinweg J M,Dukes J S,Paul E A,et al. Microbial responses to multi-factor climate change:effects on soil enzymes[J]. Frontiers in Microbiology,2013,4:146.
[110]Homyak P M,Allison S D,Huxman T E,et al. Effects of drought manipulation on soil nitrogen cycling:a meta-analysis[J]. Journal of Geophysical Research:Biogeosciences,2017,122(12):3260-3272.
[111]Wanek W,Mooshammer M,Blchl A,et al. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique[J]. Soil Biology & Biochemistry,2010,42(8):1293-1302.
[112]Wild B,Ambus P,Reinsch S,et al. Resistance of soil protein depolymerization rates to eight years of elevated CO2,warming,and summer drought in a temperate heathland[J]. Biogeochemistry,2018,140(3):255-267.
[113]Frey S D,Lee J,Melillo J M,et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change,2013,3(4):395-398.
[114]Dijkstra P,Salpas E,F(xiàn)airbanks D,et al. High carbon use efficiency in soil microbial communities is related to balanced growth,not storage compound synthesis [J]. Soil Biology & Biochemistry,2015,89:35-43.
[115]Melillo J M,F(xiàn)rey S D,DeAngelis K M,et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science,2017,358(6359):101-105.
[116]吳堂清,周昭芬,王鑫銘,等. 微生物致裂的熱力學(xué)和動力學(xué)分析[J]. 中國腐蝕與防護學(xué)報,2019,39(3):227-234.
[117]Alvarez G,Shahzad T,Andanson L,et al. Catalytic power of enzymes decreases with temperature:new insights for understanding soil C cycling and microbial ecology under warming[J]. Global Change Biology,2018,24(9):4238-4250.
[118]Larsen K S,Andresen L C,Beier C,et al. Reduced N cycling in response to elevated CO2,warming,and drought in a Danish heathland:synthesizing results of the CLIMAITE project after two years of treatments[J]. Global Change Biology,2011,17(5):1884-1899.
[119]Niboyet A,Le Roux X,Dijkstra P,et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere,2011,2(5):1-24.
[120]Xiang S R,Doyle A,Holden P A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology & Biochemistry,2008,40(9):2281-2289.
[121]Zhao B Z,Chen J,Zhang J B,et al. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices[J]. Geoderma,2010,160(2):218-224.
[122]Wu J,Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry,2005,37(3):507-515.
[123]Shepherd M,Lucci G,Vogeler I,et al. The effect of drought and nitrogen fertiliser addition on nitrate leaching risk from a pasture soil;an assessment from a field experiment and modelling[J]. Journal of the Science of Food and Agriculture,2018,98(10):3795-3805.
[124]Franzluebbers A J. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture[J]. Soil Biology and Biochemistry,1999,31(8):1083-1090.
[125]Murphy D V,Sparling G P,F(xiàn)illery I P,et al. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil[J]. Soil Research,1998,36(2):231-246.
[126]Butterly C R,Marschner P,McNeill A M,et al. Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties[J]. Biology and Fertility of Soils,2010,46(7):739-753.
[127]Mikha M M,Rice C W,Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology & Biochemistry,2005,37(2):339-347.
[128]Appel T. Non-biomass soil organic N-the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying[J]. Soil Biology & Biochemistry,1998,30(10/11):1445-1456.
[129]Jin V L,Haney R L,F(xiàn)ay P A,et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality [J]. Soil Biology & Biochemistry,2013,58:172-180.
[130]Miller A E,Schimel J P,Meixner T,et al. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology & Biochemistry,2005,37(12):2195-2204.
[131]Van Der Heijden M A. Bardgett R D,Van Straalen N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
[132]楊雍康,藥 棟,李 博,等. 微生物群落在修復(fù)重金屬污染土壤過程中的作用[J]. 江蘇農(nóng)業(yè)學(xué)報,2020,36(5):1322-1331.
[133]Chaparro J M,Badri D V,Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal,2014,8(4):790-803.
[134]王 攀,朱灣灣,牛玉斌,等. 氮添加對荒漠草原植物群落組成與微生物生物量生態(tài)化學(xué)計量特征的影響[J]. 植物生態(tài)學(xué)報,2019,43(5):427-436.
[135]王靜婭,王明亮,張鳳華. 干旱區(qū)典型鹽生植物群落下土壤微生物群落特征[J]. 生態(tài)學(xué)報,2016,36(8):2363-2372.
[136]Zhalnina K,Louie K B,Hao Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3(4):470-480.
[137]Stringlis I A,Yu K,F(xiàn)eussner K,et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5213-5222.
[138]Lu T,Ke M J,Lavoie M,et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome,2018,6(1):231.
[139]Mommer L,Hinsinger P,Prigent-Combaret C,et al. Advances in the rhizosphere:stretching the interface of life[J]. Plant and Soil,2016,407(1):1-8.
[140]Karlowsky S,Augusti A,Ingrisch J,et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions[J]. Journal of Ecology,2018,106(3):1230-1243.
[141]Canarini A,Merchant A,Dijkstra F A. Drought effects on Helianthus annuus and Glycine max metabolites:from phloem to root exudates [J]. Rhizosphere,2016,2:85-97.
[142]Gargallo-Garriga A,Preece C,Sardans J,et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports,2018,8(1):12696.
[143]Quiroga G,Erice G,Aroca R,et al. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar[J]. Frontiers in Plant Science,2017,8:1056.
[144]Henry A,Doucette W,Norton J,et al. Changes in crested wheatgrass root exudation caused by flood,drought,and nutrient stress[J]. Journal of Environmental Quality,2007,36(3):904-912.
[145]Allard-Massicotte R,Tessier L,Lécuyer F,et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio,2016,7(6):1616-1664.
[146]Gagné-Bourque F,Bertrand A,Claessens A,et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with?Bacillus subtilis B26[J]. Frontiers in Plant Science,2016,7:584.