王文波 錢龍
摘? ?要:針對母體腹部混合心電信號中胎兒心電信號微弱、包含諸多噪聲,難以清晰提取的問題,本文提出了一種基于奇異值分解(SVD)、平滑窗(SW)技術和最小二乘支持向量機(LSSVM)的胎兒心電提取新方法. 首先,利用SVD從單通道母體腹部心電信號中重構分解矩陣,估計出母體心電參考信號,并利用SW方法對估計出的母體心電參考信號進行平滑處理;然后,利用LSSVM建立非線性估計模型,通過該模型和平滑后的母體心電參考信號估計出腹部信號中的母體心電成分,并采用布谷鳥搜索算法(CS)優(yōu)化LSSVM的超參數;最后,將腹部混合信號與CS-LSSVM模型估計出的母體心電成分相減,即可獲得初步胎兒心電信號,為了進一步消除干擾,對初步獲取的胎兒心電信號再進行SW-SVD操作,從而獲得較為清晰的胎兒心電信號. 采用Daisy數據集進行實驗,結果表明,本文所提出的方法在可視化對比分析和四個統計評價指標上均優(yōu)于其他三種經典方法,可從腹部混合信號中提取出更清晰的胎兒心電信號.
關鍵詞:胎兒心電信號;奇異值分解;平滑窗;最小二乘支持向量機;布谷鳥搜索算法
中圖分類號:R331? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:A
A New Technology for Extracting Fetal ECG Signals
from Single-channel Maternal Abdominal ECG Signals
WANG Wenbo QIAN long
(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
Abstract:Aiming at the problems that the fetal electrocareliogram(ECG) signal in the mixed ECG signal of the mother's abdomen is weak,contains a lot of noise,and is difficult to be extracted clearly,this paper proposes a method based on singular value decomposition (SVD),smooth window (SW) technology and least square support vector machine (LSSVM) new method of fetal ECG extraction. Firstly,SVD is used to reconstruct the decomposition matrix from the single-channel maternal abdominal ECG signal in order to estimate the maternal ECG reference signal,and the SW method is used to smooth the estimated maternal ECG reference signal;then,LSSVM is used to establish a non-linear estimation model,the maternal ECG component in the abdominal signal is estimated through the model and the smoothed maternal ECG reference signal,and the cuckoo search algorithm(CS) is used to optimize the hyperparameters of LSSVM. Finally,the mixed abdominal signal is subtracted from the maternal ECG component estimated by the CS-LSSVM model so as to obtain the preliminary fetal ECG signal. To further eliminate the interference,the SW-SVD operation is performed on the initially obtained fetal ECG signal,thereby obtaining a clearer fetal ECG signal. Experiments with Daisy data set show that the method proposed in this paper is superior to the other three classic methods in visual comparative analysis and four statistical evaluation indicators,and can extract clearer fetal ECG signals from the mixed abdominal signals.
Key words:fetal ECG signal;singular value decomposition;smooth window;least squares support vector machine;cuckoo search algorithm
據統計,全世界每年發(fā)生260多萬例死產,其中45%以上病例發(fā)生于孕婦分娩期間,因此產前胎兒健康檢測具有重要的生理學意義[1]. 通過在孕婦分娩前對胎兒心電信號進行檢測,并分析其波形,可以高效評估胎兒在子宮內的生長發(fā)育情況,從而降低圍產兒的死亡率和發(fā)病率[2-3]. 目前,多采用無創(chuàng)的非入侵式檢測方法對胎兒健康進行檢查[4-5].
非入侵式檢測方法是使用多導聯置電極技術分別記錄孕婦胸部和腹壁混合信號,然后將胎兒心電信號從孕婦腹壁混合信號中分離出來. 然而由腹壁電極所采集的信號普遍包含較多的噪聲:導聯電極干擾、母體心電活動干擾、基線漂移[6]等,因此,如何有效抑制各種噪聲從而分離出純凈的胎兒心電信號成為一個國內外學者研究的熱點問題.
為了消除各種背景干擾和母體心電成分,國內外學者已經提出了一系列從腹壁混合信號中獲取胎兒心電信號的方法:盲源提取技術[7-8]是假設各個源信號未知的情況下,只提取出胎兒心電信號,但該技術對時間延遲周期的依賴性較大,其性能具有局限性;獨立成分分析(Independent Component Analysis,ICA)技術[9]在假定各信號成分統計獨立的基礎上建立ICA模型,該算法一般采用梯度法對分離矩陣自適應尋優(yōu),且需要嚴格設定初始分離矩陣和步長,使得該技術容易陷入局部最優(yōu),導致分離的胎兒心電信號精度不高[10];自適應濾波法[11]計算量小且易于收斂,但該算法不能有效提取出母體心電和胎兒心電重合部分的胎兒心電信號;小波分解技術[12]涉及到小波基和其他參數的選擇,對于不同的數據,參數選擇較為困難,因此該方法適用性較低,不能用于實時提取;匹配濾波法[13]需要保持信號之間同一波形形態(tài),對濾波器的選擇較為困難;支持向量機技術[14]和人工神經網絡[15-16]技術在胎兒心電提取方法中得到了較多的應用,這些方法將傳統統計學作為基礎,以經驗風險最小化原則進行學習,存在著泛化能力弱、結構設計較難、易陷入局部最優(yōu)等問題. 以上這些方法都是建立在復雜導聯多通道信號采集的基礎上,然而多通道記錄數據會要求在孕婦體表放置更多的電極,這可能會引起孕婦的身體不適從,并間接影響心電信號的提取效果. 因此這些方法的臨床使用價值非常有限.
隨著胎兒心電提取方法的不斷深入研究,采用單通道腹壁混合心電信號進行胎兒心電提取的方法成為主流. 這些方法以自適應噪聲消除技術[17]、奇異值分解技術[18]、模板去除技術[19]和卡爾曼濾波技術[20]等為基礎,從單通道腹壁混合心電信號中分離出胎兒心電信號. 但現有的單通道胎兒心電提取方法仍存在一定的不足:模板去除技術很難從腹壁混合心電信號中消除噪聲和母體心電成分[21],導致提取效果較差;奇異值分解技術分解出來的矩陣往往解釋性較弱且分解矩陣隨時間越來越大,對存貯空間有較大的需求[22];卡爾曼濾波技術的計算復雜度較高,并且在胎兒心電與母體心電重疊的部分,該技術將失去其提取作用[23];自適應噪聲消除技術通常需要訓練特定的濾波器參數[24],該方法的臨床實用性較低.
為了解決上述問題并提取更為清晰的胎兒心電信號,本文提出了一種利用單通道腹壁混合信號進行胎兒心電信號分離的新方法,該方法只需記錄一次孕婦腹壁混合信號,極大降低了信號的電極干擾且可以進行長期監(jiān)測. 該方法的具體思路為:首先,將平滑窗(Smooth Window,SW)技術與SVD技術相結合(SW-SVD),用來估計孕婦腹壁混合信號中的母體心電成分,采用估計的母體心電信號代替母體胸部信號;然后,將SW-SVD方法估計的母體心電信號作為輸入信號,利用最小二乘支持向量機(Least squares support vector machine,LSSVM)構造輸入信號和腹壁混合信號中母體心電成分的最佳映射模型,并采用布谷鳥優(yōu)化算法(cuckoo search,CS)優(yōu)化LSSVM的關鍵超參數;最后,將CS-LSSVM映射模型得到最佳母體心電信號與腹壁混合信號相減,即可分離出初步的胎兒心電信號,對初步獲取的胎兒心電信號再次使用SW-SVD技術進一步消除母體心電的干擾,最終得到更為純凈的胎兒心電信號. 實驗結果表明,與傳統的歸一化最小均方誤差(Normalized least mean squares,NLMS)、長短時記憶(Long short term memory,LSTM)網絡以及LSSVM方法相比,文中所提出的方法具有更強的抗噪聲能力和泛化能力,可以得到更為清晰的胎兒心電信號.
1? ?胎兒心電信號提取原理
2? ?SW-SVD技術
2.1? ?SVD原理
2.2? ?SVD提取母體心電參考信號
2.3? ?均值濾波
3? ?基于CS優(yōu)化的LSSVM
3.1? ?LSSVM原理
3.2? ?CS算法
3.3? ?CS優(yōu)化的LSSVM母體心電信號估計模型
4? ?實驗與結果
4.1? ?模型評價標準
4.2? ?實驗數據和實驗方法
本文實驗數據選取DaISy數據集進行研究,并與NLMS[43]、LSTM方法[44]和LSSVM方法進行對比實驗. DaISy數據庫(Database for the Identification of Systems)由Lieven De Lathauwer提供[45],心電數據采樣頻率為250 Hz,記錄時長為10 s,各通道心電數據長度為2 500,采用電極放置法從孕婦體表獲取的八導聯(ch1~ch8)心電信號,ch1~ch5導聯記錄孕婦腹部混合信號,ch6~ch8 導聯記錄孕婦胸部信號. 考慮模型運算復雜度、計算時長和提取性能,選擇前1 500點數據作為訓練數據集,剩余1 000點數據作為測試數據集. NLMS方法中,迭代步長設為0.005,迭代次數設為 1 000. LSTM方法中隱藏層神經元選為30個,迭代次數設為400,學習率取為r = 0.01. 傳統LSSVM方法中選擇徑向基函數作為核函數,核函數參數σ和懲罰系數C的取值分別為σ2= 3,C = 50.
4.3? ?實驗結果比較
4.3.1? ?母體心電參考信號的可視化提取結果
選取Daisy數據集中的五個腹部心電信號進行單通道胎兒心電信號的提取,五個通道的信號波形如圖4所示. 為了去除基線漂移對信號的影響,本文對母體心電參考信號做了Savitzky-Golay(S-G)平滑濾波操作;然后利用第二節(jié)中所提出的SW-SVD技術,提取母體心電參考信號,提取結果如圖7所示. 通過對比圖4和圖5的五通道信號可知,利用SW和SVD結合的技術可以從腹壁混合心電信號中提取出清晰的母體心電參考信號.
4.3.2? ?胎兒心電信號提取結果的可視化對比分析
本文將ch1和ch2兩個腹部通道信號作為可視化結果分析,并與目前傳統的NLMS、LSTM和LSSVM方法進行對比實驗,實驗可視化對比結果如圖6和圖7所示.
圖6和圖7顯示了四種胎兒心電信號提取方法在ch1和ch2兩個通道上的可視化結果,可以看出本文提出的方法明顯優(yōu)于其他三種方法,基本上可以提取出所有的胎兒QRS波,且有效避免了母體心電和其他噪聲的干擾.
4.3.3? ?胎兒心電信號提取結果的統計指標分析
為了定量研究CS-LSSVM方法的提取效果,本文采用Se、PPV、ACC和F1四個指標來分析[12,13]. 選擇DaISy數據集中 ch1~ch5 共5個通道孕婦腹壁心電數據進行統計分析,該數據集中每個通道記錄有22個胎兒心電QRS波,在測試集數據中每個通道有9個QRS波,本文統計5個通道共45個胎兒心電QRS波. 四種方法的統計分析結果如表1所示.
由表 1 可知,CS-LSSVM心電信號提取方法在五個導聯上的胎兒心電信號提取效果最好,該方法可以提取到42個胎兒心電QRS波,誤檢和漏檢的胎兒心電個數相對較少,只有4個QRS波被誤檢且漏檢個數為3個,模型準確率ACC高達85.71%,靈敏度Se為93.33%,精確度PPV達到91.30%,且總體概率F1為 92.31%,四項統計指標均為最高. NLMS方法能夠提取到40個胎兒心電QRS波,誤檢個數為12個,漏檢的胎兒心電為5個,模型準確率ACC為70.18%,四項評價指標都不及本文提出的方法. 這是由于NLMS方法對胎兒心電信號適應性不強,尤其在母體心電與胎兒心電重疊部分,對胎兒心電的識別率較低. LSTM 方法可以提取到30個胎兒心電QRS波,在四項心電提取性能指標分析中,其ACC只有51.72%,四項評價指標均為最低,這是由于LSTM存在泛化能力弱,易陷入局部極值,導致該模型漏檢和誤檢較多. LSSVM方法可以提取到40個胎兒心電QRS波,誤檢11個,漏檢5個,并且ACC為71.43%,Se為88.89%,PPV為78.43%,F1為83.33%. 由于LSSVM方法的超參數很難人工取到最優(yōu)值,導致該方法提取性能低于CS-LSSVM. 通過上述的對比可見,CS-LSSVM心電提取方法在四項指標上均優(yōu)于其他三種心電提取方法. 可見利用CS算法先對LSSVM模型的關鍵超參數進行尋優(yōu)處理,然后構建CS-LSSVM母體心電信號估計模型,并經過SW-SVD操作可以有效提高胎兒心電信號提取性能.
5? ?結? ?論
在本文的研究中,提出了一種利用單通道母體腹部混合心電信號提取胎兒心電信號的新方法. 該方法以LSSVM模型為基礎構建CS-LSSVM母體心電信號提取模型,采用CS算法對LSSVM模型的超參數進行尋優(yōu)處理,有效提高了模型的預測性能,減小了人為確定超參數的影響. 并且結合平滑窗口和奇異值分解技術,建立母體心電參考信號,有效避免了至少記錄一個母體胸部心電信號的局限性. 文中選取DaISy數據集進行對比實驗,實驗表明,相比于傳統的NLMS、LSTM 和 LSSVM方法,本文提出的CS-LSSVM心電提取方法表現出更優(yōu)的性能,能夠提取出42個清晰的胎兒心電信號QRS波,誤檢和漏檢的胎兒心電較少,為產前胎兒健康檢測提供了新思路,具有較好的臨床應用價值.
參考文獻
[1]? ? ZHANG Y,YU S. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis[J]. Medical & Biological Engineering & Computing,2020,58(2):419—432.
[2]? ? 韋雯雯,李曉蘭,于震,等. 多普勒超聲技術在妊娠期高血壓孕婦妊娠結局中的應用[J].安徽醫(yī)科大學學報,2020,55(9):1466—1468.WEI W W,LI X L,YU Z,et al. The application of Doppler ultrasound in evaluating the pregnancy outcome of pregnant women with HDP[J]. Journal of Anhui Medical University,2020,55(9):1466—1468. (In Chinses)
[3]? ? BARNETT S B,MAULIK D. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications[J]. Journal of Maternal-Fetal Medicine,2001,10(2):75—84.
[4]? ? VULLINGS R,PETERS C H,SLUIJTER R J,et al. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings[J]. Physiological Measurement,2009,30(3):291—307.
[5]? ? 蒲秀娟,曾孝平,陳悅君,等. 基于徑向基函數神經網絡的胎兒心電提取[J]. 重慶大學學報,2009,32(1):111—115.PU X J,ZENG X P,CHEN Y J,et al. Fetal electrocardiogram extraction based on radial basis function neural networks[J]. Journal of Chongqing University,2009,32(01):111—115. (In Chinses)
[6]? ? 賈文娟 楊春蘭,鐘果程,等. 基于自適應線性神經網絡的胎兒心電信號提取[J]. 北京生物醫(yī)學工程,2010,29(6):575—580.JIA W J,YANG C L,ZHONG G C,et al. Fetal ECG signals extraction based on adaptive linear neural network[J]. Beijing Biomedical Engineering,2010,29(6):575—580. (In Chinses)
[7]? ? 化希耀,蘇博妮. 胎兒心電提取方法研究綜述[J]. 微型機與應用,2015,34(3):21—23.HUA X Y,SU B N. A review of fetal electrocardiogram extraction method[J]. Microcomputer and Application,2015,34(3):21—23. (In Chinses)
[8]? ? 茍梅梅,黃華. 基于分塊擴展Infomax算法的胎兒心電分離[J].中國組織工程研究,2012,16(26):4877—4880.GOU M M,HUANG H. Block-extend Infomax algorithms in fetal electrocardiogram extraction[J]. Chinese Journal of? Tissue Engineering Research,2012,16(26):4877—4880. (In Chinses)
[9]? ? 李朝蘭,方濱,李慧杰,等. 應用自相關和獨立分量分析的胎兒心電信號提取[J]. 中國醫(yī)學物理學雜志,2016,33(8):838—843.LI C L,FANG B,LI H J,et al. Fetal electrocardiogram signal extraction based on autocorrelation and independent component analysis[J]. Chinese Journal of Medical Physics,2016,33(8):838—843. (In Chinses)
[10]? 袁麗,吳水才,袁延超. 胎兒心電提取算法研究綜述[J]. 中國醫(yī)療設備,2017,32(6):114—117.YUAN L,WU S C,YUAN Y C. Review of fetal electrocardiogram extraction method research[J]. China Medical Devices,2017,32(6):114—117.(In Chinese)
[11]? 袁麗,吳水才,袁延超,等. 一種變步長LMS算法提取胎兒心電[J]. 2中國醫(yī)療設備,2018,33(3):14—21.?YUAN L,WU S C,YUAN Y C. A kind of variable step size LMS algorithm for extracting fetal ECG[J]. China Medical Devices,2018,33(3):14—21. (In Chinses)
[12]? SUTHA P,JAYANTHI V. Fetal electrocardiogram extraction and analysis using adaptive noise cancellation and wavelet transformation techniques[J]. Journal of Medical Systems,2018,42(1):21.
[13]? DESSI A,PANI D,RAFFO L. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings[J]. Physiological Measurement,2014,35(8):1621—1636.
[14]? 柴建樸.基于支持向量機的睡眠分期算法研究及應用實現[D].成都:電子科技大學,2018.CHAI J P. A research of sleep staging algorithm based on support vector machine and the implementation of application[D]. Chengdu:University of Electronic Science and Technology,2018.(In Chinses)
[15]? VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988—999.
[16]? 袁延超,吳水才,袁麗,等. 基于BP神經網絡的胎兒心電提取算法研究[J]. 生物醫(yī)學工程與臨床,2018,22(3):257—243.YUAN Y C,WU S C,YUAN L,et al. Research of fetal electrocardiogram extraction algorithm based on BP neural network[J]. Biomedical Engineering and Clinical Medicine,2018,22(3):257—243. (In Chinses)
[17]? SWARNALATHA R,PRASAD D V. A novel technique for extraction of FECG using multi stage adaptive filtering[J]. Journal of Applied Sciences,2010,10(4):319—324.
[18]? ZIANI S,JBARI A,BELLARBI L,et al. Blind maternal-fetal ECG separation based on the time-scale image TSI and SVD - ICA methods[J]. Procedia Computer Science,2018,134:322—327.
[19]? COSTA J D Jr,DE SEIXAS J M,MIRANDA DE S?魣 A M F L. A template subtraction method for reducing electrocardiographic artifacts in EMG signals of low intensity[J]. Biomedical Signal Processing and Control,2019,47:380—386.
[20]? PANIGRAHY D,SAHU P K. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording[J]. Sadhana,2015,40(4):1091—1104.
[21]? TSUI S Y,LIU C S,LIN C W. Modified maternal ECG cancellation for portable fetal heart rate monitor[J]. Biomedical Signal Processing and Control,2017,32:76—81.
[22]? ZHAN N N,YONG J. A novel technique for fetal ECG extraction using single-channel abdominal recording[J]. Sensors,2017,17(3):457.
[23]? PAQUET-DURAND O,YOUSEFI DARANI A,HITZMANN B.Online state prediction of S. cerevisiae cultivation purely based on ethanol gas sensors and an extended Kalman filter[J]. Chemie Ingenieur Technik,2020,92(9):1222.
[24]? 洪少春. 基于LMS改進算法的自適應濾波器在胎兒心電監(jiān)測中的應用[J]. 邵陽學院學報(自然科學版),2007,(3):24—28.HONG S C. The research about adaptive filter based on the improvement of the LMS algorithm and its effect on FECG[J]. Journal of Shaoyang University (Natural Science Edition),2007,4(3):24—28. (In Chinses)
[25]? 蒲秀娟,曾孝平,韓亮,等. 基于經驗模式分解和最小二乘支持向量機的胎兒心電信號提取[J]. 四川大學學報(工程科學版),2010,42(6):158—165.?PU X J,ZENG X P,HAN L,et al. Extraction of fetal electrocardiogram signal using empirical mode decomposition and least squares support vector machines[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(6):158—165. (In Chinses)
[26]? ASSALEH K. Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems[J]. IEEE Transactions on Biomedical Engineering,2007,54(1):59—68.
[27]? 曾兆山,沈海斌,陸昊俊. 基于SVD-LSSVM的單導聯胎兒心電提取算法[J]. 電子技術,2016,45(4):4—8.ZENG Z S,SHEN H B,LU H J. Fetal ECG extraction using single lead based on SVD -LSSVM method[J]. Electronic Technology,2016,45(4):4—8. (In Chinses)
[28]? 陳甸甸,趙治棟. 基于奇異值和相異度的心電身份識別方法[J].計算機仿真,2016,33(2):427—432.CHEN D D,ZHAO Z D. Identification method of ECG signal based on SVD and dissimilarity analysis[J]. Computer? ? ?Simulation,2016,33(2):427—432. (In Chinses)
[29]? DAAMOUCHE A,HAMAMI L,ALAJLAN N,et al. A wavelet optimization approach for ECG signal classification[J]. Biomedical Signal Processing and Control,2012,7(4):342—349.
[30]? 趙學智,陳統堅,葉邦彥. 基于奇異值分解的銑削力信號處理與銑床狀態(tài)信息分離[J]. 機械工程學報,2007(6):169—174.ZHAO X Z,CHEN T J,YE B Y. Milling force signal processing and milling machine state information separation based on singular value decomposition[J]. Journal of Mechanical Engineering,2007(6):169—174. (In Chinses)
[31]? 周祥,詹寧波,高磊,等. 一種自適應最小均方算法提取胎兒心電信號的方法研究[J]. 醫(yī)療衛(wèi)生裝備,2014,35(10):47—49.ZHOU X,ZHAN N B,GAO L,et al. Extracting fetal ECG by modified adaptive method [J]. Medical and Health Equipment,2014,35(10):47—49. (In Chinses)
[32]? 祁樹剛,張啟超. 均值濾波和中值濾波對InSAR影像預處理的影響研究[J]. 測繪與空間地理信息,2020,43(S1):131—133,136.QI S G,ZHANG Q C. Study on the influence of mean filter and median filter on InSAR image preprocessing [J]. Surveying and Spatial Geographic Information,2020,43(S1):131—133,136. (In Chinses)
[33]? VO K,LE T,RAHMANI A M,et al. An efficient and robust deep learning method with 1-D octave convolution to extract fetal electrocardiogram[J]. Sensors,2020,20(13):3757.
[34]? 卜朝暉,周斌,尹曉晶,等. 基于擴展卡爾曼濾波和奇異值分解算法的單通道胎兒心電提取方法[J].中國生物醫(yī)學工程學報,2019,38(6):662—671.BU Z H,ZHOU B,YIN X J,et al. Fetal ECG extraction from single-channel abdominal ECG based on EKF combined with SVD[J]. Chinese Journal of Biomedical Engineering,2019,38(6):662—671. (In Chinses)
[35]? SHARMA T,SHARMA K K.QRS complex detection in ECG signals using the synchrosqueezed wavelet transform[J]. IETE Journal of Research,2016,62(6):885—892.
[36]? KANJILAL P P,PALIT S,SAHA G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition[J]. IEEE Transactions on Biomedical Engineering,1997,44(1):51—59.
[37]? SIVARAM M,LYDIA E L,PUSTOKHINA I V,et al. An optimal least square support vector machine based earnings prediction of blockchain financial products[J]. IEEE Access,2020,8:120321—120330.
[38]? 劉曉東,孫麗君,陳天飛. 布谷鳥算法的收斂性分析及性能比較[J/OL]. 計算機科學與探索:1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html.LIU X D,SUN L J,CHEN T F. Convergence Analysis an-d Performance Comparison of Cuckoo Search Algorithm[J/OL]. Computer Science and Exploration::1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html. (In Chinses)
[39]? SHETTY R P,SATHYABHAMA A,PAI P S. An efficient online sequential extreme learning machine model based on feature selection and parameter optimization using cuckoo search algorithm for multi-step wind speed forecasting[J]. Soft Computing,2021,25(2):1277—1295.
[40]? BOHAT V K,ARYA K V. An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks[J]. Knowledge-Based Systems,2018,143:192—207.
[41]? PANDA S,MISHRA D,BISWAL B B. An approach for design optimization of 3R manipulator using Adaptive Cuckoo Search algorithm[J]. Mechanics Based Design of Structures and Machines,2020,48(6):773—798.
[42]? ANSI/AAMI/ISO EC57 (1998/(R) 2008). Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms;American National Standards Institute:New York,NY,USA,2008.
[43]? BERSHAD N J,JOSE C M,BERMUDEZ. A switched variable step size NLMS adaptive filter[J]. Digital Signal Processing,2020,101:102730.
[44]? CHEN,GONG Z,LI Q,et al. Hierarchical LSTM with char-subword-word tree-structure representation for Chinese named entity recognition[J]. Science China. Information Sciences,2020,63(10):1—15.
[45]? DE LATHAUWER? L. DaIsy:database for the identification of systems:Biomedical systems [EB/OL]. (2000-10-10)[2017-8-18]. http://homes.esat.kuleuven.be/~smc/daisy/.